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Abstract. In this paper we extend the work of Campeanu, Salomaa
and Yu [1] on extended regular expressions featured in the Unix utility
egrep and the popular scripting language Perl. We settle the open issue
of closure under intersection and provide an improved pumping lemma
that will show that a larger class of languages is not recognizable by ex-
tended regular expressions. We also investigate some questions regarding
extended multi-pattern languages introduced by Nagy in [2].

1 Introduction

Grep, a well-known command line search utility, is used regularly on Unix and
other operating systems to find matching lines in files or standard input. Grep
uses regular expressions to match patterns, thereby allowing a user to quickly find
important data in very large files or command output. Egrep, a variant of grep,
uses extended regular expressions1 to increase the set of languages recognizable
by the utility. Because the set of languages recognized by egrep is larger than that
of theoretical regular expressions, it is important to understand the expressive
power of this utility.

In this paper we extend the pioneering work of [1]; we show that the family
of languages recognizable by extended regular expressions is not closed under
intersection, thereby settling an open problem. Furthermore, we introduce a
different pumping lemma and use that lemma to show a class of languages that
satisfy the pumping property of [1] but are not expressible by extended regular
expressions. We also investigate some decidability and complexity issues.

We also consider the work of Nagy [2] which extends the multi-pattern lan-
guages (MPL) defined by Kari, Mateescu, Paun and Salomaa [3]. We show that
the class Nagy defines, which we call extended multi-pattern languages (EMPL),
is a strict subclass of the family of languages recognized by egrep. We also settle
some questions that are left open in [2].

2 Definitions

The syntax of extended regular expressions as in egrep and Perl is defined
in [1]. Standard regular expressions, as specified in formal language theory, are
1 Note our definition of extended regular expressions includes backreferences unlike

the definition given in some other sources.

A.H. Dediu, A.M. Ionescu, and C. Mart́ın-Vide (Eds.): LATA 2009, LNCS 5457, pp. 279–289, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



280 B. Carle and P. Narendran

extended using backreferences. The backreference \n stands for the string previ-
ously matched by the regular expression between the nth left parenthesis and the
corresponding right parenthesis. As is well-known, this significantly increases ex-
pressive power; for instance, the expression ((aa)+a)\1* specifies the language

{ ai | i > 0 and i is not a power of 2}
which is not even context-free. Similarly (a+)(b+)\1\2 specifies

{ aibjaibj | i, j > 0}
which is not context-free either.

For clarity, let us number left parentheses, starting with 1, from the left. Give
the same numbers to the corresponding (matching) right parentheses.

(
1
. . . (

2
. . . )

2
. . . (

3
. . . )

3
. . . )

1

As in [1] we assume that any occurrence of a backreference \m in an extended
regular expression is preceded by )

m
.

Matching a string with an extended regular expression (eregex-matching) is
often defined as follows (paraphrasing [4]):

1. If a is a symbol in the alphabet, then a matches a.
2. if r matches a string x, then (

i

r )
i

matches x and the value x is assigned to

\i.
3. \j matches the string that has been assigned to it.
4. if r1 and r2 are eregexes, then r1 ∪ r2 matches any string matched by either

r1 or r2.
5. if r1 and r2 are eregexes, then r1r2 matches any string of the form xy where

r1 matches x and r2 matches y.
6. if r is an eregex, then r∗ matches any string of the form x1 . . . xn, n ≥ 0,

where r matches each xi (1 ≤ i ≤ n).

A more precise definition of a match is given in [1] using ordered trees. We
give below that definition too, with a slight modification. Positions in an ordered
tree are denoted by sequences of positive integers, with the empty sequence
denoting the root position. (See [5] for a formal definition.) Note that left-to-right
lexicographic order ≺lex among positions corresponds to pre-order traversal.

An ordered tree T is a valid match-tree for w and α if and only if:

1. The root of T has the label (w, α).
2. For every node u ∈ dom(T ),

(a) if T (u) = (w, a) for some a ∈ Σ, then u is a leaf node and w = a.
(b) if T (u) = (w, β1β2), then u has two children labeled, respectively, by

(w1, β1) and (w2, β2) where w1w2 = w.
(c) if T (u) = (w, β1|β2), then u has one child labeled by either (w, β1) or

(w, β2).
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(d) if T (u) = (w, β∗), then either u is a leaf node and w = λ or u has
k ≥ 1 children labeled by (w1, β), . . . , (wk, β) where each wi ∈ Σ+,
and w = w1 . . . wk.

(e) if T (u) = (w, (
i

γ )
i

), then it has one child labeled by (w, γ).

(f) if T (u) = (w, \m), then u is a leaf node, (
m

β )
m

is a subexpression of α,

and there is a node v to the left of u such that T (v) = (w, (
m

β )
m

) and

no node between v and u has (
m

β )
m

in its label. In other words, w is the

string previously (in the left-to-right pre-order) matched by (
m

β )
m

.

The difference between this definition and the one in [1] is that unassigned
backreferences are not set to the empty string λ as default in our definition.
Thus there is no valid match-tree for b and ((aa)|\2b).

The language denoted by an extended regular expression α is defined as

L(α) = {w ∈ Σ∗ | (w, α) is the label at the root of a valid match-tree }.
Let EREG be the family of languages defined by extended regular expressions.

A language L is an EREG language if and only if there is an extended regular
expression α such that L = L(α). In relation to the regular languages (REG), it
can be seen that

REG ⊂ EREG.

3 The Results on EREG Languages

Campeanu, Salomaa and Yu [1] proved the following pumping lemma for EREG
languages. To the best of our knowledge, this is the only pumping lemma of its
kind.

Lemma 1. (The CSY Pumping Lemma) [1] Let α be an extended regular
expression. Then there is a constant N > 0 such that if w ∈ L(α) and |w| > N ,
then there is a decomposition w = x0yx1y · · · yxm, for some m ≥ 1, such that

1. |x0y| < N ,
2. |y| ≥ 1, and
3. x0y

jx1y
j · · · yjxm ∈ L(α) for all j > 0.

Lemma 2. The language

S = { aibai+1bak | k = i(i + 1)k′ for some k′ > 0, i > 0 }

is not an EREG language.

Proof: Assume S is expressed by an eregex and let N be the constant given
by the CSY pumping lemma. Consider w = aNbaN+1baN(N+1). Then there is
a decomposition w = x0yx1y . . . yxm for some m ≥ 1 and from the pumping
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lemma y = ap for some p ≥ 1. Since |x0y| < N there must be at least one
occurrence of y in aN . Assume there are q ≥ 1 occurrences of y in aN . By (3)
from the CSY pumping lemma there must also be q occurrences of y in aN+1

as otherwise x0y
2x1y

2 . . . y2xm /∈ S. Let r be the number of occurrences of y in
aN(N+1) and note that N(N + 1) ≥ rp ≥ 0. Now consider x0y

2x1y
2 . . . y2xm =

aN+qpbaN+1+qpbaN(N+1)+rp ∈ S. Then

k2(N + qp)(N + 1 + qp) = N(N + 1) + rp

for some k2. Since rp ≤ N(N + 1), N(N + 1) + rp ≤ 2(N(N + 1)). Since qp ≥ 1,
(N+qp)(N+1+qp) ≥ (N+1)(N+2) > N(N+1). Thus k2(N+qp)(N+1+qp) ≥
k2(N + 1)(N + 2) > k2N(N + 1). k2N(N + 1) < 2(N(N + 1)) is only true for
k2 = 1. Thus we have (N + qp)(N + 1 + qp) = N(N + 1) + rp, so

rp = q2p2 + qp(2N + 1) (1)

Now consider x0y
3x1y

3 . . . y3xm = aN+2qpbaN+1+2qpbaN(N+1)+2rp ∈ S. Then it
must be that

k3(N + 2qp)(N + 1 + 2qp) = N(N + 1) + 2rp

for some k3. But note that (N + 2qp)(N + 1 + 2qp) = N(N + 1) + 4q2p2 +
2qp(2N + 1), whereas N(N + 1) + 2rp = N(N + 1) + 2q2p2 + 2qp(2N + 1)
by (1). Hence such a k3 cannot exist. �

Theorem 1. EREG languages are not closed under intersection.

Proof: The language S of the previous lemma is the intersection of

L((a+)b(\1a)b\1+) and L((a+)b(\1a)b\2+). �

We can show, by a reduction from the membership problem for phrase structured
grammars, that

Theorem 2. The following problem is undecidable:

Emptiness of Intersection of Extended Regular Expressions (EIERE):

Instance: Two eregexes α and β.
Question: Is L(α) ∩ L(β) empty?

Proof: The reduction is from the membership problem for phrase-structure
grammars (MPSG), a known undecidable problem, as mentioned earlier. A
phrase structure grammar is specified as G = (V, Σ, P, S) where V is a finite
nonempty set called the total vocabulary, Σ ⊆ V is a finite nonempty set called
the terminal alphabet , N = V − Σ is the nonterminal alphabet, S ∈ N is the
start symbol and P is a finite set of rules (or productions) of the form l → r
where l ∈ V ∗NV ∗ and r ∈ V ∗. The membership problem MPSG is defined as
follows:

Instance: Phrase-structure grammar G = (V, Σ, P, S) and a string w ∈ Σ∗

Question: Is w ∈ L(G)?
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Given an instance of MPSG, we construct an instance of EIERE as follows:
For each production li → ri ∈ P let αi = #((Σ)∗) li ((Σ)∗)#\1 ri \3, for some
# /∈ V , for 1 ≤ i ≤ |P |. Let α = (α1|α2| . . . |αn)∗. Note that the backreferences
will have to be renumbered, replacing each \j in αi with \j′ where j′ = 4(i −
1) + j + 1.

So, L(α) is the language of sequences of derivation steps (though not neces-
sarily continuous).

#w1#w′
1

︸ ︷︷ ︸

#w2#w′
2

︸ ︷︷ ︸

#w3#w′
3

︸ ︷︷ ︸

. . . #wn#w′
n

︸ ︷︷ ︸

αi1 αi2 αi3 αin

where each wi = xly and w′
i = xry for 1 ≤ i ≤ n for some x, y ∈ Σ∗ and some

l → r ∈ P .
We now define β to enforce derivation continuity. Consider

β0 = #((Σ)∗)# \1 which matches strings of the form #wi#wi for wi ∈ Σ∗. Let
β = #S(#((Σ)∗)# \2) ∗ #w. Then L(β) contains all strings of the form

#S #w1#w1
︸ ︷︷ ︸

#w2#w2
︸ ︷︷ ︸

. . . #wn#wn
︸ ︷︷ ︸

#w for some n ≥ 0

where each underbraced segment matches β0.
Thus L(β) is the language of all continuous steps. (Not necessarily derivation

steps from G.)
Finally, if we take the intersection of the two languages, namely L(α)∩L(β),

we get strings of the form

#S #w1#w1
︸ ︷︷ ︸

#w2#w2
︸ ︷︷ ︸

. . . #wn−1#wn−1
︸ ︷︷ ︸

#wn

where wi = xly and wi+1 = xry for each 1 ≤ i < n; x, y ∈ Σ∗; and l → r ∈ P
and S → w1 ∈ P , wn = w. That is, we get sequences of continuous derivation
steps beginning at S and ending in w.

Therefore, w ∈ L(G) iff L(α) ∩ L(β) �= φ �

Lemma 3. Let α be an eregex. Then for any k > 0 there are positive integers
N(k) and m such that if w ∈ L(α) and |w| > N(k) then w has a decomposition
w = x0yx1y · · · yxm′ (m′ < m) such that

1. |y| ≥ k, and
2. x0y

jx1y
j · · · yjxm′ ∈ L(α) for all j > 0.

Proof: Let N(k) = |α|2tk where t is the number of backreferences in α. Then
if |w| > N there is a substring of w of length ≥ k that matches a Kleene star in
α. (Each backreference can at most double the length of the word it matches.)
Let m = t + 1.

Let w = x0yz where y is the rightmost largest substring of w that matches a
Kleene star. Then clearly |y| ≥ k. Let t′ equal the number of (direct or indirect)
backreferences to any expression that contains this star. Let m′ = t′ + 1. Let
z = x1yx2yx3 . . . xm′ where the multiple instances of y correspond to these back-
references. Then w = x0yx1yx2y . . . yxm′ and clearly x0y

jx1y
jx2y

j . . . yjxm′ ∈
L(α) for all j ≥ 1. �
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Lemma 4. The language P = {wcwR | w ∈ {a, b}∗ } satisfies the CSY pump-
ing property. (wR stands for the reverse of w.)

Lemma 5. The language P = {wcwR | w ∈ {a, b}∗ } is not an EREG lan-
guage.

Proof: Assume P is an EREG language. Let k = 5. Let N(k) and m be the
constants given by Lemma 5. Consider w = (abaabb)N(k)c(bbaaba)N(k). Then
there is a decomposition w = x0yx1y · · · yxm′ for some m′ < m. By Lemma 3,
|y| ≥ 5. (k = 5) Observe that (abaabb)N(k) and (bbaaba)N(k) do not share any
common substrings of length ≥ 5. Therefore, y must occur to the left or the
right of c, but not both. Consequently, x0y

2x1y
2 . . . y2xm′ /∈ P . �

We now consider the Matching Problem for Extended Regular Expressions
(MERE):

Instance: An eregex α and a string w ∈ Σ∗.
Question: Is (w,α) the label at the root of a valid match tree?

This has been shown to be NP-complete [4]. It turns out that the problem is
NP-complete even if the target alphabet is unary:

Theorem 3. The matching problem for extended regular expressions is NP-
complete even when the target (subject) string is over a unary alphabet.

Proof: Membership in NP follows from the earlier result. NP-hardness can be
proved by a reduction from the vertex cover problem.
Vertex Cover (VC)

Instance: A graph G = (V, E) and a positive integer k ≤ |V |.
Question: Is there a V ′ ⊆ V such that |V ′| ≤ k and

∀(u, v) ∈ E : u ∈ V ′ ∨ v ∈ V ′?

Given an instance of VC, construct an instance of MERE as follows: Define n =
|V | and m = |E|. Without loss of generality, assume the vertices are numbered
from 2 to n + 1, so V = {2,3,. . . n+1} and E ⊆ {(i, j) | 2 ≤ i ≤ n + 1, 2 ≤ j ≤
n + 1}. (Note: The n vertices are numbered from 2 to n + 1 to account for the
shifting of backreferences caused by the outer parenthesis of α0, defined below.)
Let Σ = {a}. Let w = ak+|E| = ak+m.

Vertex Component: Construct α as follows:

Let α0 = (
1

(
2
a )

2
| (

3
a )

3
| (

4
a )

4
| . . . | (

n
a )

n
| (

n+1
a )

n+1
)
1
∗

That is, α0 is n copies of (a) connected by or , and then starred. Note that α0

can be constructed in O(|V |) time.

Edge Component: Assume the edges are ordered from 1 to m: et ∈ E for 1 ≤
t ≤ m. For each et = (i, j) ∈ E, let αt = (\i | \j). That is, each αt represents
the tth edge via backreferences, with the backreference incremented by one to
account for the outer parenthesis in α0. Note that this can be done in O(|E|)
time.
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Finally, let α = α0α1α2 . . . αm. Note that α can be constructed in O(|V |+|E|)
time. We now show that α matches w iff G has a vertex cover of size ≤ k. Suppose
V ′ ⊆ V is a vertex cover for G with |V ′| ≤ k. Then we can find a valid match
tree for (w, α) as follows: We can safely assume that |V ′| = k, since additional
vertices from V can always be added to make this true. Let us start by matching
k iterations of α0, one for each v ∈ V ′. For each v ∈ V ′ ⊆ {2,3,. . . ,n+1} match
the vth option of the or in α0 on a different iteration. More specifically, if we let
V ′ = {v1, v2, . . . , vk} ⊆ {2, 3, . . . , n + 1} then on the vth

i iteration of α0 match
the vth

i option of the or in α0, which will assign a to \vi. Thus, α0 matches
ak. Recall that each αt = (\i | \j) for 1 ≤ t ≤ m represents edge et = (i, j).
Since V ′ is a vertex cover for G, at least one of {i, j} is in V ′. Therefore, at least
one of {\i, \j} is already defined in our match tree. If \i is defined, match it.
Otherwise match \j. Furthermore, any defined backreference \2, \3, . . .\n + 1
can only match a single a, so α1α2 . . . αm matches am.

Therefore, α = α0α1α2 . . . αm matches akam = ak+m = w.
Conversely, suppose (w, α) = (ak+m, α) is the root of a valid match tree. Then

we can find a vertex cover V ′ ⊆ V for G with |V ′| ≤ k as follows: To begin,
let V ′ = φ. Since there is a match for α, each of α1α2 . . . αm must be defined.
Thus, each αt for 1 ≤ t ≤ m matches a single a. For each αt = (\i | \j), if \i is
matched, let V ′ = V ′ ∪ {i}, else if \j is matched, let V ′ = V ′ ∪ {j}. Recall that
α1α2 . . . αm matches am. Thus, V ′ is a vertex cover for G since it contains one
vertex from each edge (from each corresponding αi).

Then α0 must match the remaining ak. Therefore, there can be at most k
unique backreferences defined, which means there can be at most k distinct
vertices in V ′. Therefore, |V ′| ≤ k and G has a vertex cover of size ≤ k.

Thus α matches w iff G has a vertex cover of size ≤ k. Furthermore, the
reduction can be done in O(|V | + |E|) = O(|V |2) time. Therefore, MERE is
NP-complete. �

Remark: Notice that this proof crucially uses the (semantic) assumption that
unassigned backreferences are not set to the empty string. The result can also be
proved without using this ‘feature’. However, the proof is a bit more complicated
and we omit it here.

4 Extended Multi-Pattern Languages (EMPL)

Let Σ be a finite set of terminals {a1, . . . , an} and V = {x1, x2, . . .} be an infinite
set of variables (Σ∩V = ∅). Then a pattern is a non-null finite string over Σ∪V .
We use the terms erasing (E) and non-erasing (NE) pattern languages in the
following sense. Let HΣ,V be the set of morphisms h : (Σ, V )∗ → (Σ, V )∗. The
E pattern language generated by a pattern π is defined as

LE(π) = {w ∈ Σ∗ | ∃h ∈ HΣ,V ((∀a ∈ Σ : h(a) = a) ∧ w = h(π))}
The NE pattern language generated by a pattern π is defined as

{w ∈ Σ∗ | ∃h ∈ HΣ,V ((∀a ∈ Σ : h(a) = a) ∧ (¬∃v ∈ V : h(v) = λ) ∧ w = h(π))}
and denoted as LNE(π).
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Given a set of patterns {π1, π2, . . . , πn}, the E-multi-pattern language (MPL-

E) they define is
n
⋃

i=1

LE(πi). Similarly, the NE-multi-pattern language (MPL-NE)

defined by {π1, π2, . . . , πn} is
n
⋃

i=1

LNE(πi).

This notion was extended by Nagy [2] to that of EMP expressions in the
following way:

Let {π1, π2, . . . , πn} be a set of patterns. Each pattern πi (1 ≤ i ≤ n) is an
EMP expression. If γ and δ are EMP expressions then

γ ∨ δ is also an EMP expression (using the operation union),
γ · δ is also an EMP expression (using the operation concatenation),
γ∗ is also an EMP expression (using the operation Kleene star).

In other words, extended multi-pattern (EMP) expressions are obtained from
the patterns π1, . . . , πn by using finitely many regular operators. The EMP ex-
pressions which can be obtained without using union (∨) are called star-pattern
expressions (EMSP expressions).

The erasing extended multi-pattern language defined by an EMP expression
can be obtained from the E pattern languages in the following way:

LE(γ ∨ δ) = LE(γ) ∪ LE(δ) (using the operation union),
LE(γ · δ) = LE(γ) · LE(δ) (using the operation concatenation),
LE(γ∗) = (LE(γ))∗ (using the operation Kleene star).

We then define EMPL-E (Extended Multi-Pattern Languages – Erasing) to
be the family of erasing extended multi-pattern languages 2.

The non-erasing extended multi-pattern language defined by an EMP expres-
sion can be obtained from the NE pattern languages in the following way:

LNE(γ ∨ δ) = LNE(γ) ∪ LNE(δ) (using the operation union),
LNE(γ · δ) = LNE(γ) · LNE(δ) (using the operation concatenation),
LNE(γ∗) = (LNE(γ))∗ (using the operation Kleene star).

Let EMPL-NE (Extended Multi-Pattern Languages – Non-Erasing) stand for
the family of non-erasing extended multi-pattern languages.

It is not hard to see that EMPL-E (resp. EMPL-NE) is the regular closure [7,8]
of the family of E pattern (resp. NE pattern) languages.

If γ is an EMSP expression then LE(γ) is an erasing extended multi-star-
pattern language. Let EMSPL-E be the family of erasing extended multi-star-
pattern languages. Similarly, if γ is an EMSP expression then LNE(γ) is a
non-erasing extended multi-star-pattern language. Let EMSPL-NE be the family
of non-erasing extended multi-star-pattern languages.

Finally, let EMPL = EMPL-E ∪ EMPL-NE, and likewise, let EMSPL =
EMSPL-E ∪ EMSPL-NE. Now two questions arise:

Question 1: Does EMPL-E = EMPL-NE (= EMPL)?

Question 2: Does EMSPL-E = EMSPL-NE (= EMSPL)?
2 Note that this is not the same as the family PL(REG, REG) defined in [6].
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We answer Question 1 affirmatively and Question 2 negatively.

Lemma 6. The language L = { xbx | x ∈ {a, b}∗ } ∈ EMSPL-E.

Proof: Let Σ = {a, b} and v ∈ V . Then α = vbv is an EMSP expression and
LE(α) = L. �

Lemma 7. The language L = { xbx | x ∈ {a, b}∗ } /∈ EMSPL-NE.

Proof: (by contradiction). Assume L is an NE star-pattern language. Then there
is an NE star-pattern expression α such that LNE(α) = L. α cannot contain the
union operator since it is an NE star-pattern expression.

Clearly α cannot have a star as its outer-most operator. Otherwise, α would
match λ, which is not in L. Define a language to be non-trivial if and only if it
is neither empty nor the singleton set {λ}.
Claim: L is not the concatenation of two non-trivial languages.

Proof: Assume the contrary and let L = A ◦ B with A and B non-trivial.
Without loss of generality assume that b ∈ B. Hence every non-empty string in
A must be of the form ubbu for some u ∈ {a, b}∗. Now consider the string aba
which belongs to L. aba has to be in B since no non-empty prefix of it can be
in A. But then the word equation ubbuaba =? xbx has no solution. �

Since α cannot be a single pattern either, the result follows3.

Lemma 8. EMSPL-E �= EMSPL-NE.

Proof: The language L of Lemma 6 (and 7) is in EMSPL-E, but is not in
EMSPL-NE. �

Lemma 9. EMPL-NE = EMPL-E.

Proof: This follows from the results of [3]. We omit the proof. �

Lemma 10. Every EMPL language is semi-linear.

Proof-sketch: Every language in MPL is semi-linear [3]. The family of semi-
linear languages is closed under union, concatenation and star. �

Lemma 11. The EREG language L((a*)b(\1)) = {aibai | i ≥ 0} is not an
EMPL.

Proof-idea: If any of the patterns used in the defining expression contains a
variable, then it can be replaced with bb. �

Theorem 4. EMPL ⊂ EREG.
3 Thus without backreferences the analogous result to Theorem 17 of [2] does not hold.
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Proof-idea: EREG �⊆ EMPL follows from the previous lemma. EMPL ⊆ EREG
can be shown as follows: Given an EMP expression γ over terminal alpha-
bet Σ = {a1, . . . , an}, we can construct an equivalent EREG pattern α. Let
{π1, π2, . . . , πn} be the set of patterns that occur within γ. For each pattern
πi (1 ≤ i ≤ n), replace the first occurrence of a variable within πi with
((a1|a2| . . . |an)∗), where k is the index of the outer left parenthesis we are adding.
Replace each subsequent occurrence of the same variable with \k. �

Lemma 12. The following problem is undecidable:

Instance: Two sets of patterns P1 and P2.
Question: Is (LE(P1))∗ ⊆ (LE(P2))∗?

Proof idea: The problem of deciding, given two patterns α and β, whether
LE(α) ⊆ LE(β) is known to be undecidable [9]. Let # be a new symbol, not
present in the alphabet Σ of α and β. Let Ω = Σ ∪ {#}. Now form the sets of
patterns

Γ = {#α#} and Δ = {#β#, #x1#x2#}.

Claim 1: (LE(Γ ))∗ ⊆ (LE(Δ))∗ over Ω if and only if LE(α) ⊆ LE(β) over Σ.

Claim 2: (LE(Γ ))∗ ⊆ (LE(Δ))∗ if and only if (LE(Γ ∪ Δ))∗ = (LE(Δ))∗.

Thus the equivalence problem for EMSPL-E is undecidable. �

The same technique will work for EMSPL-NE, except that Δ will have to be
defined a little differently, as {#β#, #x1#x2#, ##x2#, #x1##, ###}. It
can also be shown that

Lemma 13. For every EMP of the form α∗ (i.e., with star as the outermost
operator), there is an EMSP γ such that LNE(γ) = LE(α∗).

Proof-sketch: Since the families EMPL-E and EMPL-NE are the same, there
must be an EMP β such that LNE(β) = LE(α). It can be shown (see e.g., [10])
that an expression equivalent to β∗ that does not use ∨ can be found. �

Theorem 5. The equivalence problem for EMSPL-NE is undecidable.

This settles an open problem given in [2].
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