
HyPer: A Hybrid OLTP&OLAP Main Memory Database
System Based on Virtual Memory Snapshots

Alfons Kemper1, Thomas Neumann2

Fakultät für Informatik
Technische Universität München

Boltzmannstraße 3, D-85748 Garching
1kemper@in.tum.de
2neumann@in.tum.de

Abstract—The two areas of online transaction processing
(OLTP) and online analytical processing (OLAP) present differ-
ent challenges for database architectures. Currently, customers
with high rates of mission-critical transactions have split their
data into two separate systems, one database for OLTP and
one so-called data warehouse for OLAP. While allowing for
decent transaction rates, this separation has many disadvantages
including data freshness issues due to the delay caused by only pe-
riodically initiating the Extract Transform Load-data staging and
excessive resource consumption due to maintaining two separate
information systems. We present an efficient hybrid system, called
HyPer, that can handle both OLTP and OLAP simultaneously
by using hardware-assisted replication mechanisms to maintain
consistent snapshots of the transactional data. HyPer is a main-
memory database system that guarantees the ACID properties of
OLTP transactions and executes OLAP query sessions (multiple
queries) on the same, arbitrarily current and consistent snapshot.
The utilization of the processor-inherent support for virtual
memory management (address translation, caching, copy on
update) yields both at the same time: unprecedentedly high
transaction rates as high as 100000 per second and very fast
OLAP query response times on a single system executing both
workloads in parallel. The performance analysis is based on a
combined TPC-C and TPC-H benchmark.

I. INTRODUCTION

Historically, database systems were mainly used for online
transaction processing. Typical examples of such transaction
processing systems are sales order entry or banking transaction
processing. These transactions access and process only small
portions of the entire data and, therefore, can be executed quite
fast. According to the standardized TPC-C benchmark results
the currently most powerful systems can process more than
100.000 such sales transactions per second.

About two decades ago a new usage of database systems
evolved: Business Intelligence (BI). BI-applications rely on
long running so-called Online Analytical Processing (OLAP)
queries that process substantial portions of the data in order to
generate reports for business analysts. Typical reports include
aggregated sales statistics grouped by geographical regions, or
by product categories, or by customer classifications, etc. Ini-
tial attempts – such as SAP’s EIS project [1] – to execute these
queries on the operational OLTP database were dismissed
as the OLAP query processing led to resource contentions
and severely hurt the mission-critical transaction processing.
Therefore, the data staging architecture was devised where
the transaction processing is carried out on a dedicated OLTP

database system. In addition, a separate Data Warehouse
system is installed for business intelligence query processing.
Periodically, e.g., during the night, the OLTP database changes
are extracted, transformed to the layout of the data warehouse
schema, and loaded into the data warehouse. This data staging
and its associated ETL (Extract–Transform–Load) obviously
incurs the problem of data staleness as the ETL process can
only be executed periodically.

Recently, strong arguments for so-called real time business
intelligence were made. Hasso Plattner, the co-founder of
SAP, advocates the “data at your fingertips”-goal for enter-
prise resource planning systems [2]. The currently exercised
separation of transaction processing on the OLTP database
and BI query processing on the data warehouse that is only
periodically refreshed violates this goal as business analysts
have to base their decisions on stale (outdated) data. Real-
time/operational business intelligence demands to execute
OLAP queries on the current, up-to-date state of the trans-
actional OLTP data. We propose to enhance the transactional
database with highly effective query processing capabilities
– thereby shifting (some of) the query processing from the
DW to the OLTP system. Therefore, mixed workloads of
OLTP transaction processing and OLAP query processing on
the same database have to be supported. This is somewhat
counter to the recent trend of building dedicated systems
for different application scenarios. The integration of these
two very different workloads on the same system necessitates
drastic performance improvements which can be achieved by
main-memory database architectures.

On first view, the dramatic explosion of the (Internet acces-
sible) data volume may contradict this premise of keeping all
transactional data main memory-resident. However, a closer
examination shows that the business critical transactional
database volume has limited size, which favors main memory
data management. To corroborate this assumption let us ana-
lyze one of the largest commercial enterprises, Amazon, which
has a yearly revenue of about 15 billion Euros. Assuming that
an individual order line values at about 15 Euros and each
order line incurs stored data of about 54 bytes – as specified
for the TPC-C-benchmark –, we derive a total data volume of
54 GB per year for the order lines which is the dominating
repository in such a sales application. This estimate neither
includes the other data (customer and product data) which
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increases the volume nor the possibility to compress the data
to decrease the volume. Nevertheless it is safe to assume that
the yearly sales data can be fit into main memory of a large
scale server. This was also analyzed by Ousterhout et. al. [3]
who proclaim the so-called RAMcloud as a main-memory
storage device for the largest Internet software applications.
Extrapolating the past developments it is safe to forecast that
the main memory capacity of commodity as well as high-end
servers is growing faster than the largest business customer’s
requirements. For example, Intel announced a large multi-core
processor with several TB of main memory as part of its so-
called Tera Scale initiative [4]. We are currently in the process
of ordering a TB server from Dell for a “mere” 60000 Euros.

The transaction rate of such a large scale enterprise with
15 billion Euro revenue can be estimated at about 32 order
lines per second. Even though the arrival rate of such business
transactions is highly skewed (e.g., Christmas sales peaks) it is
fair to assume that the peak load will be below a few thousand
order lines per second.

For our HyPer system we adopt a main-memory architecture
for transaction processing. We follow the lock-less approach
first advocated in [5] whereby all OLTP transactions are
executed sequentially – or on private partitions. This archi-
tecture obviates the need for costly locking and latching of
data objects or index structures as the sole update transaction
“owns” the entire database – or its private partition of the
database. Obviously, this serial execution approach is only
viable for a pure main memory database where there is no
need to mask IO operations on behalf of one transaction by
interleavingly utilizing the CPUs for other transactions. In a
main-memory architecture a typical business transaction (e.g.,
an order entry or a payment processing) has a duration of
only a few up to ten microseconds. Such a system’s viability
for OLTP processing was previously proven in a research
prototype named H-Store [6] conducted by researchers led by
Mike Stonebraker at MIT, Yale and Brown University. The
H-Store prototype was recently commercialized by a start-up
company named VoltDB.

However, the H-Store architecture is limited to OLTP trans-
action processing only. If we simply allowed complex OLAP-
style queries to be injected into the workload queue they would
clog the system, as all subsequent OLTP transactions have to
wait for the completion of such a long running query. Even
if such OLAP queries finish within, say, 30 ms they lock the
system for a duration in which around 1000 or more OLTP
transactions could have completed.

Nevertheless, our goal was to architect a main-memory
database system that can
• process OLTP transactions at rates of tens or hundreds

of thousands per second as efficiently as dedicated OLTP
main memory systems such as VoltDB or TimesTen, and,
at the same time,

• process OLAP queries on up-to-date snapshots of the
transactional data as efficiently as dedicated OLAP main
memory DBMS such as MonetDB or TREX.

This challenge is sketched in Figure 1. We architected such
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Fig. 1. Hybrid OLTP&OLAP Database Architecture

an efficient hybrid system, called HyPer, that can handle both
OLTP and OLAP simultaneously by using hardware-assisted
replication mechanisms to maintain consistent snapshots of the
transactional data. HyPer is a main-memory database system
that guarantees the ACID properties of OLTP transactions. In
particular, we devised logging and backup archiving schemes
for durability, atomicity and fast recovery. In parallel to the
OLTP processing, HyPer executes OLAP query sessions (mul-
tiple queries) on the same, arbitrarily current and consistent
snapshot. These snapshots are created by forking the OLTP
process and thereby creating a consistent virtual memory
snapshot. This snapshot is kept consistent via the implicit
OS/processor-controlled lazy copy-on-write mechanism. The
utilization of the processor-inherent support for virtual mem-
ory management (address translation, caching, copy on update)
accomplishes both in the same system and at the same time:
unprecedentedly high transaction rates of millions of trans-
actions per minute as high as any OLTP-optimized database
system and ultra-low OLAP query response times as low as
the best OLAP-optimized column stores. These numbers were
achieved on a commodity desktop server. Even the creation
of a fresh, transaction-consistent snapshot can be achieved in
subseconds.

II. RELATED WORK/SYSTEMS

HyPer is a new RISC-style database systems [7] like RDF-
3X [8] (albeit for a very different purpose). Both systems are
developed from scratch. Thereby, historically motivated ballast
of traditional database systems is omitted and new hardware
and OS-functionality can be leveraged.

The development of main memory database systems (or
in-memory DBMS) originally started for the OLTP world.
TimesTen [9] was among the first such systems and was
recently acquired by Oracle and primarily serves as a “front”
cache for the Oracle mainstream database system. P*TIME
/ Transact in Memory [10] was acquired by SAP in 2005.
SolidDB of Solid Information Technology is a main memory
DB developed in Helsinki. In the meantime IBM took over
this company. For SolidDB the tuple level [11] snapshots were
proposed that are kept consistent by tuple shadowing instead
of page shadowing. The authors report 30 % transactional
throughput increase and a smaller main memory footprint.
The page-level shadowing dates back to the early ages of
relational database system development [12]. In HyPer we rely
on hardware-supported page shadowing that is controlled by
the processor’s memory management unit (MMU). For disk
based database systems shadowing was not really successful
because it destroys the page clustering. This hurts the scan
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performance, e.g., for a full table scan, as the disk’s read/write
head has to be moved. HyPer is based on virtual memory
supported shadow paging where scan performance is not
hurt by shadowing. In main memory there is no difference
between accessing two consecutive physical memory pages
versus accessing two physical pages that are further apart.
Furthermore, the snapshots based on VM shadowing do not
affect the logical page layout, i.e., potentially non-sequential
physical page accesses are hidden by the hardware.

Most recently, the drastic increase of main memory capacity
and the demand for real-time/operational business intelligence
has led to a revival of main memory database system re-
search and commercial development. The recent main-memory
database systems can be separated by their application domain:
OLAP verus OLTP. MonetDB is the most influential database
research project on column store storage schemes for an in-
memory OLAP database. An overview of the system can be
found in the summary paper [13] presented on the occasion
of receiving the 10 year test of time award of the VLDB
conference. TREX [14] is SAP’s most prominent database
project that relies, like MonetDB, on the column-major storage
scheme. It is now known as Business Warehouse Accelerator
and serves as the basis for SAP’s business intelligence func-
tionality. According to Hasso Plattners key note at SIGMOD
2009 [2] SAP intends to extend it to include OLTP func-
tionality and then make it the basis for hosted applications,
e.g., Business by Design. The hybrid system is apparently a
combination of TREX and P*TIME and relies on merging
the OLTP updates periodically into the column store of the
OLAP TREX database [15]. In HyPer this merge is implicit
and hardware-supported by creating a new VM snapshot.

Based on an early study for banking transactions [16] the
authors of H-Store [17], [6], [5] deserve the credit for ana-
lyzing the overhead imposed by various traditional database
management features (buffer management, logging, locking,
etc.). They proved the feasibility of a main memory database
system that processes transactions sequentially without syn-
chronization overhead. VoltDB [18] is the commercialization
of H-Store. The published VoltDB performance numbers are
largely due to database partitioning across a compute cluster.
[19] devised synchronization concepts for allowing inter-
partition transactions. Ulusoy and Buchmann [20] investigated
main memory database partitioning for optimized concurrency
control for real time applications. The automatic derivation of
partitioning schemes is an old research issue of distributed
database design and receives renewed interest [21].

HyPer’s partitioning technique (cf. Section III-D) is primar-
ily used for intra-node parallelism and is particularly beneficial
for multi-tenancy database applications [22].

Crescando is a research project at ETH Zürich [23] that
processes queries in a batch by periodically scanning all the
data in a similar fashion as executing continuous queries over
streaming data. At EPFL Lausanne several projects around
the database system Shore have the goal to optimize the
locking [24] and logging [25] performance on modern multi-
core processors. Blink and its commercial product IBM Smart

Analytics Optimizer (ISAO) [26], [27] are recent develop-
ments at IBM to augment an OLTP database system with an
in-memory database for OLAP queries. Their original design
was based on materializing all the joins and use compression
to reduce the size of the resulting in-memory data.

III. SYSTEM ARCHITECTURE

The HyPer architecture was devised such that OLTP trans-
actions and OLAP queries can be performed on the same
main memory resident database – without interfering with each
other. In contrast to old-style disk-based storage servers we
omitted any database-specific buffer management and page
structuring. The data resides in quite simple, main-memory
optimized data structures within the virtual memory. Thus, we
can exploit the OS/CPU-implemented address translation at
“full speed” without any additional indirection. We currently
experiment with the two predominant relational database stor-
age schemes: In the row store approach we maintain relations
as arrays of entire records and in the column store approach
the relations are vertically partitioned into vectors of attribute
values. Currently, the HyPer prototype is globally configured
to operate as a column or a row store – but in future work the
table layout will be adjustable according to the access patterns.

Even though the virtual memory can (significantly) outgrow
the physical main memory we limit the database to the size
of the physical main memory in order to avoid OS-controlled
swapping of virtual memory pages.

A. OLTP Processing

Since all data is main-memory resident there will never be a
halt to await IO. Therefore, we can rely on a single-threading
approach first advocated in [5] whereby all OLTP transactions
are executed sequentially. This architecture obviates the need
for costly locking and latching of data objects as the sole
update transaction “owns” the entire database. Obviously, this
serial execution approach is only viable for a pure main
memory database where there is no need to mask IO operations
on behalf of one transaction by interleavingly utilizing the
CPUs for other transactions. In a main-memory architecture
a typical business transaction (e.g., an order entry or a pay-
ment processing) has a duration of only around ten µs. This
translates to throughputs in the order of tens of thousands per
second, much more than even large scale business applications
require – as analyzed in the Introduction.

The serial execution of OLTP transactions is exemplified
in Figure 2 by the queue on the left-hand side in which the
transactions are serialized to await execution. The transactions
are implemented as stored procedures in a high-level scripting
language. This language provides the functionality to look-
up database entries by search key, iterate through sets of
objects, insert, update and delete data records, etc. The high-
level scripting code is then compiled by the HyPer system into
low-level code that directly manipulates the in-memory data
structures.

Obviously, the OLTP transactions have to guarantee short
response times in order to avoid long waiting times for
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subsequent transactions in the queue. This prohibits any kind
of interactive transactions, e.g., requesting user input or syn-
chronously invoking a credit card check of an external agency.
This, however, does not constitute a real limitation as our
experience with high-performance business applications, such
as SAP R/3 [28], [29] reveals that these kinds of interactions
occur outside the database context in the application servers.1

B. OLAP Snapshot Management

If we simply allowed complex OLAP-style queries to be
injected into the OLTP workload queue they would clog the
system, as all subsequent OLTP transactions have to wait
for the completion of such a long running query. Even if
such OLAP queries finish within, say, 30 ms they lock the
system for a duration in which possibly thousands of OLTP
transactions could have completed. To achieve our goal of
architecting a main-memory database system that

• processes OLTP transactions at rates of tens of thousands
per second, and, at the same time,

• processes OLAP queries on up-to-date snapshots of the
transactional data

we exploit the operating systems functionality to create virtual
memory snapshots for new, duplicated processes. In Unix, for
example, this is done by creating a child process of the OLTP
process via the fork() system call. To guarantee transac-
tional consistency, the fork() should only be executed in
between two (serial) transactions, never in the middle of one
transaction. In section IV-F we will relax this constraint by
utilizing the undo log to convert an action consistent snapshot
(created in the middle of a transaction) into a transaction
consistent one.

The forked child process obtains an exact copy of the parent
processes address space, as exemplified in Figure 2 by the
overlayed page frame panel. This virtual memory snapshot that
is created by the fork()-operation will be used for executing
a session of OLAP queries – as indicated on the right hand
side of Figure 2.

The snapshot stays in precisely the state that existed at
the time the fork() took place. Fortunately, state-of-the-
art operating systems do not physically copy the memory

1Nevertheless, we are currently devising an optimistic lock-less concurrency
scheme for long-running transactions being executed in our system.
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segments right away. Rather, they employ a lazy copy-on-
update strategy – as sketched out in Figure 3. Initially,
parent process (OLTP) and child process (OLAP) share the
same physical memory segments by translating either virtual
addresses (e.g., to object a) to the same physical main memory
location. The sharing of the memory segments is highlighted in
the graphics by the dotted frames. A dotted frame represents a
virtual memory page that was not (yet) replicated. Only when
an object, like data item a, is updated, the OS- and hardware-
supported copy-on-update mechanism initiate the replication
of the virtual memory page on which a resides. Thereafter,
there is a new state denoted a′ accessible by the OLTP-process
that executes the transactions and the old state denoted a, that
is accessible by the OLAP query session. Unlike the figure
suggests, the additional page is really created for the OLTP
process that initiated the page change and the OLAP snapshot
refers to the old page – this detail is important for estimating
the space consumption if several such snapshots are created
(cf. Figure 4).

Another intuitive way to view the functionality is as follows:
The OLTP process operates on the entire database, part of
which is shared with the OLAP module. All OLTP changes
are applied to a separate copy (area), the Delta – consisting of
copied (shadowed) database pages. Thus, the OLTP process
creates its working set of updated pages on demand. This is
somewhat analogous to swapping pages into a buffer pool –
however, the copy on demand of updated pages is three to
four orders of magnitude faster as it takes only 2 µs to copy a
main memory page instead of 10 ms to handle a page fault in
the buffer pool. Every “now and then” the Delta is merged
with the OLAP database by forking a new process for an
up-to-date OLAP session. Thereby, the Delta is conceptually
re-integrated into the (main snapshot) database. Unlike any
software solution for merging a Delta back into the main
database, our hardware-supported virtual memory merge (fork)
can be achieved very efficiently in subseconds.

The replication (into the Delta) is carried out at the granular-
ity of entire pages, which usually have a default size of 4 KB.
In our example, the state change of a to a′ induces not only the
replication of a but also of all other data items on this page,
such as b, even though they have not changed. This is the price
we opt to pay in exchange for relying on the very effective
and fast virtual memory management by the OS and the
processor, such as ultra-efficient VM address transformation
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via TLB caching and copy-on-write enforcement. Also, it
should be noted that the replicated pages only persist until the
OLAP session terminates – usually within seconds or minutes.
Traditional shadowing concepts in database systems are based
on pure software mechanisms that maintain shadow copies at
the page level [30] or shadow individual objects [11].

Our snapshots incur storage overhead proportional to the
number of updated pages by the parent process (i.e., the OLTP
request executing process). It replicates the Delta (correspond-
ing to the changed pages) between the memory state of the
OLTP process at the time when the fork() created the
snapshot and the current memory state of the OLTP process.
The OLAP processes never change the shared pages – which
would of course be unproblematic because of the copy-on-
update mechanism. However, to increase performance they
should allocate their temporary data structures in non-shared
main memory areas. If the main memory capacity is scarce,
the OLAP query engine can employ secondary storage devices
(e.g. disks), thereby trading main memory capacity for longer
execution time. Sorting a relation by creating disk-based runs
is one prominent example. All OLAP queries, denoted by
the ovals, in the “OLAP Queries” queue access the same
consistent snapshot state of the database. We call such a group
of queries a Query Session to denote that a business analyst
could use such a session for a detailed analysis of the data by
iteratively querying the same state to, e.g., drill down to more
details or roll up for a better overview.

C. Multiple OLAP Sessions

So far we have sketched a database architecture utilizing two
processes, one for OLTP and another one for OLAP. As the
OLAP queries are read-only they could easily be executed in
parallel in multiple threads that share the same address space.
Still, we can avoid any synchronization (locking and latching)
overhead as the OLAP queries do not share any mutable data
structures. Modern multi-core computers which typically have
more than ten cores can certainly yield a substantial speed up
via this inter-query parallelization.

Another possibility to make good use of the multi-core
servers is to create multiple snapshots. The HyPer architecture
allows for arbitrarily current snapshots. This can simply be
achieved by periodically (or on demand) fork()-ing a new
snapshot and thus starting a new OLAP query session process.
This is exemplified in Figure 4. Here we sketch the one and
only OLTP process’es current database state (the front panel)
and three active query session processes’ snapshots – the oldest
being the one in the background. The successive state changes
are highlighted by the four different states of data item a
(the oldest state), a′, a′′, and a′′′ (the youngest transaction
consistent state). Obviously, most data items do not change in
between different snapshots as we expect to create snapshots
for most up-to-date querying at intervals of a few seconds –
rather than minutes or hours as is the case in current separated
data warehouse solutions with ETL data staging. The number
of active snapshots is, in principle, not limited, as each “lives”
in its own process. By adjusting the priority we can make sure

OLTP Requests /Tx

O
LAP

Session

O
LAP

Session

O
L

a’
c

Virtual Memory

a’’’

b

d

c’
a’’

b

a’

b

a

b

d

c

Fig. 4. Multiple OLAP Sessions at Different Points in Time

that the mission critical OLTP process is always allocated a
core – even if the OLAP processes are numerous and/or utilize
multi-threading and thus exceed the number of cores.

A snapshot will be deleted after the last query of a session
is finished. This is done by simply terminating the process
that was executing the query session. It is not necessary to
delete snapshots in the same order as they were created.
Some snapshots may persist for a longer duration, e.g., for
detailed stocktaking purposes. However, the memory overhead
of a snapshot is proportional to the number of transactions
being executed from creation of this snapshot to the time
of the next younger snapshot (if it exists or to the current
time). The figure exemplifies this on the data item c which
is physically replicated for the “middle age” snapshot and
thus shared and accessible by the oldest snapshot. Somewhat
against our intuition, it is still possible to terminate the middle-
aged snapshot before the oldest snapshot as the page on which
c resides will be automatically detected by the OS/processor
as being shared with the oldest snapshot via a reference
counter associated with the physical page. Thus it survives
the termination of the middle-aged snapshot – unlike the page
on which a′ resides which is freed upon termination of the
middle-aged snapshot process. The youngest snapshot accesses
the state c′ that is contained in the current OLTP process’es
address space.

D. Multi-Threaded OLTP Processing

We already outlined that the OLAP process may be config-
ured as multiple threads to better utilize the multiple cores
of modern computers. This is also possible for the OLTP
process, as we will describe here. One simple extension is
to admit multiple read-only OLTP transactions in parallel. As
soon as a read/write-transaction is at the front of the OLTP
workload queue the system is quiesced and transferred back
into sequential mode until no more update-transactions are
at the front of the queue. In realistic applications we expect
many more read-only transactions than update transactions –
therefore we can expect to obtain some level of parallelism,
which could even be increased by (carefully) rearranging the
OLTP workload queue.
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There are many application scenarios where it is natural to
partition the data. One very important application class for this
is multi-tenancy – as described in [22]. The different database
users (called tenants) work on the same or similar database
schemas but do not share their transactional data. Rather, they
maintain their private partitions of the data. Only some read-
mostly data (e.g., product catalogs, geographical information,
business information catalogs like Dun & Bradstreet) is shared
among the different tenants.

Interestingly, the TPC-C benchmark exhibits a similar par-
titioning as most of the data can be partitioned horizontally
by the Warehouse, to which it belongs. The only exception is
the Items table, which corresponds to our read-mostly, shared
data partition.

In such a partitioned application scenario HyPer’s OLTP
process can be configured as multiple threads – to increase
performance even further via parallelism. This is sketched out
in Figure 5. As long as the transactions access and update
only their private partition and access (not update) the shared
data we can run multiple such transactions in parallel – one
per partition. This is shown in the figure where each oval
(representing a transaction) inside the panel corresponds to one
such partition-constrained transaction executed by a separate
thread.

However, transactions reading across partitions or updating
the shared data partition require synchronization. For the
VoltDB partitioned database two synchronization methods
were analyzed in [21]: a lock-based approach and an optimistic
method that may necessitate cascaded roll-backs.

In our current HyPer-prototype cross-partition transactions
request exclusive access to the system – just as in our initial
purely sequential approach. This is sufficiently efficient in
a central system where all partitions reside on one node.
However, if the nodes are distributed across a compute
cluster, which necessitates a two-phase commit protocol for
multi-partition transactions, more advanced synchronization
approaches are beneficial. The synchronization aspects are
further detailed in Section IV-C.

OLAP snapshots can be forked as before – except that
we have to quiesce all threads before this can be done in a
transaction consistent manner. Again, we refer to Section IV-F
for a relaxation of this requirement by transforming action
consistent snapshots into transaction consistent ones via the

undo log. The OLAP queries can be formulated across all
partitions and the shared data, which is even needed in multi-
tenancy applications for administrative purposes.

The partitioning of the database can be further exploited
for a distributed system that allocates the private partitions to
different nodes in a compute cluster. The read-mostly, shared
partition can be replicated across all nodes. Then, partition-
constrained transactions can be transferred to the correspond-
ing node and run in parallel without any synchronization
overhead. Synchronization is needed for partition-crossing
transactions and for the synchronized snapshot creation across
all nodes.

IV. TRANSACTION SEMANTICS AND RECOVERY

Our OLTP/OLAP transaction model corresponds most
closely to the multiversion mixed synchronization method, as
described by Bernstein, Hadzilacos and Goodman [31] (Sec-
tion 5.5). In this model, updaters (in our terminology OLTP
transactions including the read-only OLTP transactions) are
fully serializable and read-only queries (our OLAP queries)
access the database in a “frozen” transaction consistent state
that existed at a point in time before the query was started.

Recently, such relaxed synchronization methods have re-
gained attention as full serializability was, in the past, con-
sidered too costly for scalable systems. HyPer achieves both:
utmost scalability via OLAP snapshots and full serializabil-
ity for OLTP processing. A variation of the multiversion
synchronization is called snapshot isolation and was first
described in [32]. It currently gains renewed interest in the
database research community – see, e.g., [33], [34]. Herein,
the snapshot synchronization is not constrained to read-only
queries but also to the read requests in update transactions.

A. Snapshot Isolation of OLAP Query Sessions
In snapshot isolation a transaction/query continuously sees

the transaction consistent database state as it existed at a point
in time (just) before the transaction started. There are different
possibilities to implement such a snapshot – while database
modifications are running in parallel:

Roll-Back: This method, as used in Oracle, updates the
database objects in place. If an older query requires an older
version of a data item it is created by undoing all updates on
this object. Thus, an older copy of the object is created in a
so-called roll-back segment by reversely applying all undo log
records up to the required point in time.

Versioning: All object updates create a new timestamped
version of the object. Thus, a read on behalf of a query
retrieves the youngest version (largest timestamp) whose
timestamp is smaller than the starting time of the query. The
versioned objects are either maintained durably (which allows
time travelling queries) or temporarily until no more active
query needs to access them.

Shadowing [30]: Originally, shadowing was invented to
obviate the need for undo logging as all changes were written
to shadows first and then installed in the database at transaction
commit time. However, the shadowing concept can also be
applied to maintaining snapshots.
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Virtual Memory Snapshots: Our snapshot mechanism
explicitly creates a snapshot for a series of queries, called a
query session. In this respect, all queries of a Query Session
are bundled to one transaction that can rely on the transaction
consistent state preserved via the fork()-process.

B. Transaction Consistent Archiving

We can also exploit the VM snapshots for creating backup
archives of the entire database on non-volatile storage. This
process is sketched on the lower right hand side of Figure 6.
Typically, the archive is written via a high-bandwidth network
of 1 to 10 Gb/s to a dedicated storage server within the same
compute center. It is beneficial to use an rDMA interface (e.g.,
Myrinet or Infiniband) in order to unburden the server’s CPU
from the data transmission task. To maintain this transfer speed
the storage server has to employ several (more than 10) disks
for a corresponding aggregated bandwidth.

C. OLTP Transaction Synchronization

In the single-threaded mode the OLTP transactions do not
need any synchronization mechanisms as they own the entire
database.

In the multi-threaded mode (cf. Section III-D) we distin-
guish two types of transactions:
• partition-constrained transactions can read and update

the data in their own partition as well as read the data in
the shared partition. However, the updates are limited to
their own partition.

• partition-crossing transactions are those that, in addi-
tion, update the shared data or access (read or update)
data in another partition.

Partition crossing transactions should be rare as updates
to shared data seldom occur and the partitioning is derived
such that transactions usually operate only on their own data.
The classification of the stored procedure transactions in the
OLTP workload is done automatically based on analyzing
their implementation code and their invocation parameters. If,
during execution it turns out that a transaction was erroneously
classified as “partition constrained” it is rolled back and re-
inserted into the OLTP workload queue as “partition crossing.”

The HyPer system admits at most one partition constrained
transaction per partition in parallel. Therefore, there is no need
for any kind of locking or latching as the partitions have non-
overlapping data structures and the shared data is accesses
read-only.

A partition crossing transaction, however, has to be admitted
in exclusive mode. In essence, it has to preclaim an exclusive
lock (or, in POSIX terminology, it has to pass a barrier before
being admitted) on the entire database before it is admitted.
Thus, the execution of partition crossing transactions is rela-
tively costly as they have to wait until all other transactions
are terminated and for their duration no other transactions are
admitted. Once admitted to the system, the transaction runs
at full speed as the exclusive admittance of partition crossing
transactions again obviates any kind of locking or latching
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synchronisation of the shared data partition or the private data
partitions.

D. Durability

The durability of transactions requires that all effects of
committed transactions have to be restored after a failure.
To achieve this we employ classical redo logging in HyPer.
This is highlighted by the gray/pink ovals emanating from the
serial transaction stream leading to the non-volatile Redo-Log
storage device in Figure 6. We employ logical redo logging
[35] by logging the parameters of the stored procedures that
represent the transactions. In traditional database systems
logical logging is problematic because after a system crash the
database may be in an action-inconsistent state. This cannot
happen in HyPer as we restart from a transaction consistent
archive (cf. Figure 6). It is only important to write these logical
log records in the order in which they were executed in order
to be able to correctly recover the database. In the single
threaded OLTP configuration this is easily achieved. For the
multi-threaded system only the log records of the partition
crossing transactions have to be totally ordered relative to all
transactions while the partition constrained transactions’ log
records may be written in parallel and thus only sequentialized
per partition.

High Availability and OLAP Load Balancing via Secondary
Server: The redo log stream can also be utilized to maintain
a secondary server. This secondary HyPer server merely exe-
cutes the same transactions as the primary server. In case of
a primary server failure the transaction processing is switched
over to the secondary server. However, we do not propose
to abandon the writing of redo log records to stable storage
and to only rely on the secondary server for fault tolerance.
A software error may – in the worst case – lead to a
“synchronous” crash of primary and secondary servers.

The secondary server is typically under less load as it needs
not execute any read-only OLTP transactions and, therefore,
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has less OLTP load than the primary server. This can be
exploited by delegating some (or all) of the OLAP querying
sessions to the secondary server. Instead of – or in addition
to – forking an OLAP session’s process on the primary server
we could just as well use the secondary server.

The usage of a secondary server that acts as a stand-by
for OLTP processing and as an active OLAP processor is
illustrated in Figure 7. Not shown in the figure is the possibility
to use the secondary server instead of the primary server for
writing a consistent snapshot to a storage server’s archive.
Thereby, the backup process is delegated from the primary
to the less-loaded secondary server.

Optimization of the Logging: The write ahead logging
(WAL) principle may turn out to become a performance
bottleneck as it requires to flush log records before committing
a transaction. This is particularly costly in a single-threaded
execution as the transaction – and all succeeding ones – have
to wait.

Two commonly employed strategies that were already de-
scribed by DeWitt et. al. [36] and extended in the recent paper
about the so-called Aether system [25] are possible: Group
commit or asynchronous commit.

Group commit is, for example, configurable in DB2 or MS
SQL Server. A final commit of a transaction is not executed
right after the end of a transaction. Rather, log records of
several transactions are accumulated and flushed in a batched
mode. Thus, the acknowledgment of a commit is delayed.
While waiting for the batch of transactions to complete and

their log records being flushed all their locks are already
freed. This is called early log release (ELR) and does not
jeopardize the serializability correctness. In our non-locking
system this translates to admitting the next transaction(s) for
the corresponding partition – viewing admission as granting
an exclusive lock for the entire partition. Once the log buffer
is flushed for the group of transactions, their commit is
acknowledged to the client.

Another, less safe, method can be configured in Oracle
and PostgreSQL. It relaxes the WAL principle by avoiding
to wait for the flushing of the log records. As soon as the log
records are written into the volatile log buffer the transaction
is committed. This is called asynchronous commit. In the case
of a failure some of these log records may be lost and thus
the recovery process will miss those committed transactions
during restart.

E. Atomicity

The atomicity of transactions requires being able to elimi-
nate any effects of a failed transaction from the database. We
only have to consider explicitly aborted transactions, called
the R1-recovery. The so-called R3-recovery that demands that
updates of “loser”-transactions (those that were active at the
time of the crash) are undone in the restored database is
not needed in HyPer, as the database is in volatile memory
only and the logical redo logs are written only at the time
when the successful commit of the transaction is guaranteed.
Furthermore, the archive copy of the database that serves as
the starting point for the recovery is transaction consistent
and, therefore, does not contain any operations that need to
be undone during recovery (cf. Figure 6). As a consequence,
undo logging is only needed for the active transaction (in
multi-threaded mode for all active transactions) and can be
maintained in volatile memory only. This is highlighted in
Figure 6 by the ring buffer in the top left side of the page
frame panel. During transaction processing the before images
of any updated data objects are logged into this buffer. The
size of the ring buffer is quite small as it is bounded by the
number of updates per transaction (times the number of active
transactions in multi-threaded operation).

F. Cleaning Action Consistent Snapshots

Undo-logging can also be used to create a transaction
consistent snapshot out of an action-consistent VM snapshot
that was created while some transactions were still active. This
is particularly beneficial in a multi-threaded OLTP system as
it avoids completely quiescing transaction processing. After
forking the OLAP process including its associated VM snap-
shot the undo log records are applied to the snapshot state –
in reverse chronological order. As the undo log buffer reflects
all effects of active transactions (at the time of the fork) – and
only those – the resulting snapshot is transaction-consistent
and reflects the state of the database before initiation of the
transactions that were still active at the time of the fork.
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G. Recovery after a System Failure

The recovery process is based on the durable storage of
the database archive and the redo log – cf. Figure 6. During
recovery we can start out with the youngest fully written
archive, which is restored into main memory. Then the redo
log is applied in chronological order – starting with the first
redo log entry after the fork for the snapshot of the archive.
As the archive can be restored at a bandwidth of up to 10
Gb/s (limited by the network’s bandwidth from the storage
server) and the redo log can be applied at transaction rates
of 100,000 per second the fail-over time for a typical large
enterprise (e.g., 100 GB database and thousands of tps) is in
the order of one to a few minutes only – if backup archives
are written on an hourly basis. If this fail-over time cannot be
tolerated it is also possible to rely on replicated HyPer-servers
– as sketched in Figure 7. In the case of a failure a simple
switch-over restores the OLTP system very quickly.

V. EVALUATION

We base our performance evaluation of the HyPer prototype
on a benchmark we call TPC-CH to denote that it is a “merge”
of the two standardized TPC benchmarks (www.tpc.org): The
TPC-C benchmark was designed to evaluate OLTP database
system performance and the TPC-H benchmark for analyzing
OLAP query performance. Both benchmarks “simulate” a
sales order processing (order entry, payment, delivery) system
of a merchandising company. The benchmark constitutes the
core functionality of such a commercial merchandiser like
Amazon.

A. The TPC-CH-Benchmark

The database schema of the TPC-CH benchmark is shown
in Figure 8 as an Entity-Relationship-Diagram with cardinal-
ity indications of the entities and the (min,max)-notation to
specify the cardinalities of the relationships. The cardinalities
correspond to the initial state of the database when the
TPC-C benchmark is started and increase (in particular, in
number of Orders and Order-Lines) during the benchmark
run. The initial database state can be scaled by increasing the
number of Warehouses – thereby also increasing the number
of Customers, Orders and Order-Lines, as each Customer has
already submitted one Order with 10 Order-Line, on average.
The original TPC-C schema, that we kept entirely unchanged,
consists of the 9 relations in non-bold type face.

In addition, we included three relations (highlighted in bold
type face) from the TPC-H benchmark in order to be able to
formulate all 22 queries of this benchmark in a meaningful
way. These relations are:
• Supplier: There are 10000 Suppliers that are referenced

via a foreign key of the Stock relation. Thus, there is
a fixed, randomly selected Supplier per Item/Warehouse
combination.

• Nation and Region: These relations model the geographic
location of Suppliers and Customers. There are 62 Na-
tions and 5 Regions.
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Fig. 8. Entity-Relationship-Diagram of the TPC-C&H Database

The TPC-C OLTP transactions include entering and deliver-
ing orders, recording payments, checking the status of orders,
and monitoring the level of stock at the warehouses. All these
transaction, including the read-only transaction Order-Status
and Stock-Level were executed in serializable semantics via
HyPer’s OLTP workload queue.

In order to compare our results with the dedicated pure
OLTP-system VoltDB we used their setup, which includes
some modification of the benchmark. We cite their benchmark
description [37]:

The VoltDB benchmark differs from the official TPC-C
benchmark in two significant ways. Operationally, the
VoltDB benchmark does not include any wait times, which
we feel are no longer relevant. It also does not include
fulfillment of orders submitted to one warehouse, with
items from another warehouse (approximately 10% of the
new order transactions in the official benchmark). Each
benchmark was run with 12 warehouses (partitions) per
node.

The latter modification is only relevant for HyPer’s multi-
threaded OLTP processing on partitions which benefits from
the exclusion of partition-crossing transactions. For the single-
threaded process this simplification is irrelevant, i.e., there is
no performance difference.

The transaction mix of the benchmark is such that the
three update transactions (New-Order, Payment, and Delivery)
reflect typical business procedures. The system maintains a
balanced database state, i.e., every order is eventually paid and
delivered. As the Delivery transaction processes ten orders in
a batch it is scheduled only 1/10-th as frequently as the other
two.

The performance of a system is usually specified in number
of New-Order transactions that are processed – while, of
course, all the other transactions have to be processed. To
compare our results to other systems we will also report the
aggregate count of all five transactions per second (tps).

B. OLAP Queries

For the comprehensive OLTP&OLAP Benchmark we
adapted the 22 queries of the TPC-H benchmark for the TPC-
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HyPer configurations MonetDB VoltDB
one query session (stream) 8 query sessions (streams) 3 query sessions (streams) no OLTP no OLAP

single threaded OLTP single threaded OLTP 5 OLTP threads 1 query stream only OLTP
OLTP Query resp. OLTP Query resp. OLTP Query resp. Query resp. results from
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Q3 66 78 73 75
Q4 194 257 226 6003
Q5 1276 1768 1564 5930
Q6 9 19 17 123
Q7 1151 1611 1466 1713
Q8 399 680 593 172
Q9 206 269 249 208
Q10 1871 2490 2260 6209
Q11 33 38 35 35
Q12 156 195 170 192
Q13 185 272 229 284
Q14 122 210 156 722
Q15 528 1002 792 533
Q16 1353 1584 1500 3562
Q17 159 171 168 342
Q18 108 133 119 2505
Q19 103 219 183 1698
Q20 114 230 197 750
Q21 46 50 50 329
Q22 7 9 9 141

Fig. 9. Performance Comparison: HyPer OLTP&OLAP, MonetDB only OLAP, VoltDB only OLTP

CH schema of Figure 8. In the re-formulation we made sure
that the queries retained their semantics (from a business point
of view) and their syntactical structure. The OLAP queries
do not benefit from database partitioning as they all require
scanning the data across all partition boundaries. For example,
Query Q5 of the TPC-H benchmark lists the revenue achieved
through local suppliers and is re-formulated on our TPC-CH
schema as follows:

select n_name, sum(ol_amount) as revenue
from Nation join Customer on ... join Order on ...

join Order-Line on ... join Stock on ...
join Supplier on ... join Region on ...

where su_nationkey=n_nationkey /* Cu and Su in the */
and r_name=’Europe’ /* same N of this R */
and o_entry_d>= ...

group by n_name
order by revenue desc;

C. Performance of Different HyPer Configurations

All benchmarks were carried out on a TPC-C-setup with
12 Warehouses. Thus, the initial database contained 360,000
Customers with 3.6 million order lines – totalling about 1
GB of net data. For reproducability reasons all query sessions
were started (fork-ed) at the beginning of the benchmark (i.e.,
in the initial 12 Warehouse state) and the 22 queries were run
in – altered, to exclude caching effects – sequence five times
within each query session. Thus, each OLAP session/process
was executing 110 queries sequentially. We report the median
of each query’s response times. These query sessions were
executed in parallel to a single- or multi-threaded OLTP
process – see Figure 9.

HyPer can be configured as a row store or as a column store.
For OLTP we did not experience a significant performance

difference; however, the OLAP query processing was signifi-
cantly sped up by a column-wise storage scheme. Therefore,
we only report the OLTP and OLAP performance of column
store configurations.

The HyPer benchmark as well as the MonetDB query
benchmark were run on a commodity server, with the fol-
lowing specifications:
• Dual Intel X5570 Quad-Core-CPU, 8MB Cache
• 64GB RAM
• 16 300GB SAS-HD (not used in benchmarks)
• Linux operating system RHEL 5.4
• Price: 13,886 Euros (discounted price for universities)
The OLTP performance of VoltDB we list for comparison

was not measured on our hardware but extracted from the
product overview brochure [18] and discussions on their web
site [37]. The VoltDB benchmark was carried out on similar
hardware (dual-quad Xeon CPU Dell R610 servers). The major
difference was that the HyPer benchmark was run on a single
server whereas VoltDB was scaled out to 6 nodes. In addition,
the HyPer benchmark was carried out with redo logging to
another storage server while VoltDB was run without any
logging or replication.

HyPer’s throughput results obtained on a single commod-
ity server correspond to the published throughput results of
VoltDB [18] on a 6-node cluster. As the VoltDB publications
point out [18], these throughput numbers correspond to the
very best published TPC-C results for high-scaled disk-based
database configurations. The HyPer OLTP throughput numbers
were even achieved while one, eight, or three parallel OLAP
processes were continuously executing the OLAP queries in
parallel to the OLTP workload (cf. Figure 9 from left to right).
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The VoltDB system cannot support the parallel session(s) of
OLAP queries. The performance results reveal that the left-
most HyPer configuration under-untilizes the 8-core server
while the middle configuration with 9 processes (1 OLTP, 8
OLAP) overloads the 8-core server. The lesson learned from
this configuration is that the mission-critical OLTP process
should be prioritized – which we did not in the experiment.
The right-most configuation of 5 OLTP threads and 3 OLAP
processes fully utilizes the server.

The query response times of HyPer in comparison with
MonetDB reveal that the two query execution engine essen-
tially have the same performance. For those outlier queries
where the response times vastly vary we simply failed to
”tweak” MonetDB (e.g., by hints or query rewrites or query
unnesting) to execute the same logical plan as HyPer. Fur-
thermore, the out-of-the-box MonetDB installation we used
does not appear to employ the advanced ”cracking” technique
that horizontally partitions the columns on demand to optimize
similar queries executed in sequence. MonetDB was run as a
dedicated OLAP engine as we could not effectively execute the
OLTP workload on MonetDB – the lack of indexes prevents
any reasonable throughput on the TPC-C benchmark.

D. Memory Consumption

In these experiments we monitored the memory consump-
tion to assess the overhead imposed by the copy-on-write
mechanism that maintains the consistency of the forked OLAP
sessions. To isolate the effect of snapshot maintenance from
the transient query execution’s memory consumption, the
OLAP processes remained idle while the OLTP process was
executing and maintaining the snapshot via the implicit copy-
on-write. The lower curve (A) of Figure 10 shows the mem-
ory footprint of the pure OLTP system without any OLAP
snapshot. The memory footprint increases proportional to the
volume of newly generated transactional data. The steps in this
curve are due to resizing the data structures due to reaching
the capacity of pre-allocated column vectors. The upper curve
(B) shows the memory consumption of the system in which
we forked an OLAP snapshot/process at the beginning of the
OLTP transaction processing. We see that initially the OLTP
process builds up its working set of replicated pages. The
size of this working set – once created – does not increase
much during the continuous benchmark run as the updates
concern mostly newly generated data – therefore the curves
A and B run largely parallel. The “zig-zag”-curve (C) shows
the memory footprint of the system consisting of an OLTP
process and an OLAP process that is initially forked and then
at intervals of 500,000 transactions refreshed, i.e., terminated
and reforked. The memory consumption of this configuration
oscillates between the pure OLTP system and the configuration
with one “long duration” OLAP snapshot. The spikes (above
the other OLTP&OLAP configuration, B) are due to artifacts
of the storage allocation for increased vector sizes and process
forking overhead (the memory footprint was measured at the
OS level in number of physically allocated pages).
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E. Scaling to Very Large Main Memory Sizes

Technological advances will soon allow main memory sizes
of several TB capacity. For a default page size of 4 KB, a TB
database has to manage a page table with 250 mil entries,
summing up to 4 GB in size. For such ultra-large scale main
memory databases the fork-execution can be optimized in
several ways:

1) Use lazy page table copying as devised by [38]. Only
the top levels of the hierarchically structured page table
are eagerly copied whereas the lowest level with the so-
called pte-entries is copied on demand.

2) Fork only the secondary server and while forking, buffer
the incoming log records.

3) Increase the page size of segments of data objects that
are most likely to be immutable.

Current operating systems and processors can accommodate
different page sizes: For example, 4 KB as a default size
and 2 MB for large segments. We propose to partition the
data into two partitions: a so-called cold and a warm partition
which are maintained in self-organized fashion. An update of
a cold tuple will initiate the exchange of this tuple with an
aged (“cooled down”) tuple from the hot partition. The cold
partition is stored on large 2MB-pages and the hot partition
which incurs the replication costs due to snapshot maintenance
is stored on default small 4KB-pages. The subsequent table
demonstrates the costs of forking a main memory database of
various sizes under the two different page sizes:

small pages (4 KB) large pages (2 MB)
DB size fork . . . per fork . . . per

in MB duration 1 MB DB duration 1 MB DB
409.6 7ms 17µs 0.087ms 0.21µs
819.2 14ms 17µs 0.119ms 0.15µs

1638.4 28ms 17µs 0.165ms 0.10µs
4096 34ms 8µs 0.300ms 0.07µs
8192 69ms 14µs 0.529ms 0.06µs

16384 136ms 8µs 0.958ms 0.06µs
32768 271ms 8µs 1.863ms 0.06µs
40960 344ms 8µs 2.702ms 0.06µs

VI. SUMMARY

Our HyPer architecture is based on virtual memory sup-
ported snapshots on transactional data for multiple query
sessions. Thereby, the two workloads – OLTP transactions
and OLAP queries – are executed on the same data without
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interfering with each other. The snapshot maintenance and the
high processing performance in terms of OLTP throughput
and OLAP query response times is achieved via hardware
supported copy on demand (= write) to preserve snapshot con-
sistency. The detection of shared pages that need replication
is done efficiently by the OS with Memory Management Unit
(MMU) assistance. The concurrent transactional workload and
the BI query processing use multi core architectures effectively
without concurrency interference – as they are separated via
the VM snapshot.

In this way, HyPer achieves the query performance of
OLAP-centric systems such as SAP’s TREX and MonetDB
and, in parallel on the same system, retains the high trans-
action throughput of OLTP-centric systems, such as Oracles’s
TimesTen, SAP’s P*Time, or VoltDB’s H-Store. As the OLAP
snapshot can be as current as desired by forking a new
OLAP session we are convinced that HyPer’s virtual memory
snapshot approach is a promising architecture for real-time
business intelligence systems.

While the current HyPer prototype is a single server scale-
up system, the VM snapshotting mechanism is orthogonal to
a distributed architecture that scales out across a compute
cluster – as we will demonstrate in the future. The snapshot
mechanism could also be used in a data warehouse configu-
ration where the transaction workload queues corresponds to
a continuous refresh stream emanating from one or several
OLTP systems. Then, the “data-owning” process corresponds
to the installer of these updates while the OLAP queries can
be executed in parallel against consistent snapshots.

We thank Florian Funke and Michael Seibold for helping
with the performance evaluation. We acknowledge the many
colleagues with whom we discussed HyPer’s virtual memory
snapshot architecture.
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