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Abstract—Modulation recognition (modrec) seeks to identify the modulation of a transmitter from coresponding spectrum scans. It is
an essential functional component of future spectrum sensing with critical applications in dynamic spectrum access and spectrum
enforcement. While predominantly studied in single-input single-output (SISO) systems, practical modrec for multiple-input
multiple-output (MIMO) communications requires more research attention. Existing MIMO modrec impose stringent requirements of
fully- or over-determined sensing front-end, i.e. the number of sensor antennas should exceed that at the transmitter. This poses a
prohibitive sensor cost even for simple 2x2 MIMO systems and will severely hamper progress in flexible spectrum access.
We design a MIMO modrec framework that enables efficient and cost-effective modulation classification for under-determined settings
involving fewer sensor antennas than those used for transmission. Our key idea is to exploit the inherent multi-scale self-similarity of
MIMO modulation IQ constellations, which persists in under-determined settings. Our framework, called SYMMeTRy (Self-similaritY for
MIMO ModulaTion Recognition), designs domain-aware classification features with high discriminative potential by summarizing
regularities of symbol co-location in the MIMO constellation. To this end, we summarize the fractal geometry of observed samples to
extract discriminative features for supervised MIMO modrec. We evaluate SYMMeTRy in a realistic simulation and in a small-scale
MIMO testbed. We demonstrate that it maintains high and consistent performance across various noise regimes, channel fading
conditions and with increasing MIMO transmitter complexity. Our efforts highlight SYMMeTRy’s high potential to enable efficient and
practical MIMO modrec in spectrum sensing infrastructures with mixed-complexity sensors.

Index Terms—MIMO modulation recognition, under-determined spectrum sensing, machine learning, fractal dimension features, SVM
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1 INTRODUCTION
Dynamic Spectrum Access (DSA) is projected as a key capa-
bility in 5G mobile networks, seeking to address the short-
age of radio resources by opportunistic frequency reuse.
While DSA promises improved network performance, it
hinges on robust and affordable spectrum measurement in
support of technology, policy and enforcement. For exam-
ple, future spectrum enforcement [3] will need to automati-
cally scan and track rogue transmitters without prior knowl-
edge of their technology. Furthermore, emerging spectrum
coexistence scenarios, such as in the CBRS and 6GHz
bands [38], will require proactive and predictive transmitter
sensing and profiling [39] to inform resource allocation [40].
An essential component of a transmitter’s fingerprint is
its modulation. This brings automatic modulation recogni-
tion (modrec) in the research spotlight [7], [33]. Tradition-
ally, modrec was designed for cooperative signal decoding,
and assumed prior knowledge of transmitter characteris-
tics (e.g. signal shaping, bandwidth, central frequency and
antenna complexity). However, emerging spectrum sensing
systems [1], [24], [37], [44] that perform blind, sweep-based
sensing, and the corresponding applications [3], [38], [40]
that cannot hold prior assumptions of transmitter tech-
nology, inherently cannot cater to such stringent sensing
requirements. Thus, in order to enable emerging spectrum
applications we have to design novel modrec approaches for
spectrum analytics without prior transmitter information.

While traditionally modrec has been tackled in the SISO
context [2], [8], [12], [13], [22], [29], [41], [48], the ubiquity

of MIMO technology requires the design of robust and
cost-efficient MIMO modrec with practical applicability to
emerging spectrum sensing platforms [1], [24], [37]. The
problem of MIMO modrec is more challenging than the
SISO case since (i) the number of symbols in the IQ con-
stellation grows exponentially with the number of trans-
mit antennas and (ii) the channel state parameters grow
quadratically with the number of antennas. To overcome
these challenges, MIMO modrec requires the sensing in-
frastructure to be either fully- or over-determined, that is
the number of antennas on the sensor should be equal or
double that of the target transmitter [5], [18], [27], [51]. These
requirements pose prohibitive cost for an individual sensor
and present a major road-block to affordable and ubiquitous
spectrum sensing. In addition, fully- and over-determined
sensing generates large volumes of spectrum data posing
high bandwidth, storage and computation requirements
and further hampering spectrum analytics at scale.

To put this into perspective, Tbl. 1 presents a breakdown
of the cost and data footprint of spectrum sensing when
using a USRP B210 sensor at $1, 216 per board, collecting a
short 10-second scan at 1MSps. A USRP B210 can support
up to 2x2 MIMO operation with its embedded capabilities.
We assume the use of an Octoclock-G CDA-2990 at $1, 927
for higher order MIMO setups. It is evident that both the
monetary cost and the data footprint scale super-linearly
with the MIMO complexity. For the worst case of over-
determined sensing of a 4x4 MIMO setup the cost for a
single sensor is $11, 655 generating 80GB of data for 10 sec-
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Cost, ($) Storage, (GB)

U F O U F O

SISO 1,216 1,216 2,432 10 10 20

MIMO 2x2 1,216 2,432 6,791 10 20 40

MIMO 4x4 1,216 6,791 11,655 10 40 80

TABLE 1: Monetary cost and data footprint of a 10-second MIMO trace with
under- (U), fully- (F) and over-determined (O) sensing using a USRP B210 at a
sampling rate of 1MSps and an Octoclock-G.
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Fig. 1: Illustration of MIMO self-similarity for a 2x2 QPSK MIMO signal.

onds. These costs are just for the radio hardware and would
further be amplified if the host computer is accounted for.

In order to address this prohibitive cost we propose to
utilize under-determined spectrum sensing, whereby a multi-
antenna transmitter is scanned by a sensor with fewer than
the transmitter’s antennas. While this has the potential to
keep the monetary and data cost of MIMO sensing in
check, it raises fundamental challenges for characterization.
Existing MIMO modrec [5], [18], [27], [51] requires fully-
or over-determined sensing as it typically relies on invari-
ant statistical properties of the sample constellations. Thus,
standard MIMO modrec cannot be readily-applied in the
under-determined scenario. To address this, we propose a
MIMO modrec framework called SYMMeTRy (Self-similaritY
for MIMO ModulaTion Recognition) that enables robust
recognition for under-determined sensing. SYMMeTRy ex-
plores the self-similar geometric patterns in the MIMO con-
stellation to extract domain-informed classification features.
The key insight behind SYMMeTRy is that MIMO constel-
lations exhibits self-similarity at different scales, which is
well-preserved in under-determined settings and can be
employed as a modrec feature. Fig. 1 illustrates the concept
of self-similarity via an example 2x2 MIMO QPSK modu-
lated signal.1 A SISO QPSK constellation (top left corner of
Fig. 1) contains a group of four clusters, one for each of
the QPSK symbols. In the 2x2 MIMO QPSK case (bottom
left), four new QPSK symbol groups “hatch” around each of
the existing SISO positions. Therefore, for 2x2 QPSK MIMO
there are at most 42 constellation symbols. Such templated
replication behavior leads to a fractal-like self-similar orga-
nization of the MIMO constellation. The 2x2 QPSK MIMO
constellation can, thus, be thought of as a 2-tier hierar-
chical representation (Fig. 1(right)), whereby at the first
level, we observe the actual constellation composed of four
SISO QPSK groups, while at the second level, we observe
a meta-constellation that is determined by the centroids
of each group at layer 1 and resembles a scaled version
of a SISO QPSK constellation. This self-similar multi-scale
organization can be observed for higher order modulations,
whereby, the number of meta-constellation levels increases

1. For clarity, most of our examples focus on simple settings, such as
2x1 MIMO sensing of QPSK modulation. We note that our evaluation
explores higher order modulations and more complex MIMO systems.
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Fig. 2: System model for under-determined sensing. The right pane illustrates a
2x2 QPSK MIMO system. Exisitng MIMO modulation recognition requires fully-
or over-determined sensing, meaning that the sensor antennas have to be equal
or double these of the transmitter. We conceptualize under-determined sensing,
as illustrated in the left pane of the figure, whereby a MIMO link is sensed with
fewer antennas than these at the transmitter.

to log(M) − 1 for increasing modulation order up to M .
Furthermore, this self-similarity persists even when a scan
is under-determined and is at the center of our design of
modulation classification features. To capture the relative co-
location of symbols within the constellation we extend tools
from fractal geometry [11], [21]. We combine features based
on the above patterns with higher order cumulants [14], [41]
in our overall feature design.

Our paper makes the following key contributions:
• We conceptualize under-determined MIMO spectrum
sensing and modulation classification.
• We are the first to formalize and utilize the self-similarity
of MIMO constellations into an adaptive framework called
SYMMeTRy, for robust feature design in support of under-
determined MIMO modrec.
• We investigate the effects of the MIMO channel on the con-
stellation self-similarity and recognition accuracy and show
that SYMMeTRy is robust to changing channel conditions.
• Using realistic simulation and a testbed, we show that
SYMMeTRy maintains high and consistent performance
across various channel conditions, training scenarios and
with increasing MIMO complexity.
• We evaluate SYMMeTRy’s runtime performance, demon-
strating that the combination of feature extraction and classi-
fier training takes in the order of several seconds (depending
on instance size). Thus, SYMMeTRy has potential to support
near-real-time modrec applications.

2 BACKGROUND

We introduce the general MIMO signal model and under-
determined MIMO sensing. We detail the geometric self-
similarity of MIMO constellations to provide intuition be-
hind our methodology. We also analyze the relationship
between MIMO channel properties such as (i) signal to noise
ratio (SNR), (ii) coherence and (iii) pairwise antenna gain,
and the geometric properties of the observed constellation.

2.1 MIMO signal and system models

The MIMO system is composed of Nt transmitting antennas
and Nr receiving antennas [6], [26]. Fig. 2 (right) illustrates
a 2x2 MIMO link (i.e. Nr = 2 and Nt = 2) using QPSK
modulation. At any given instant, the signals r(n) ∈ CNr

on the receiving side can be represented as a linear combi-
nation of the transmitted baseband signals s(n) ∈ CNt and
instantaneous additive Gaussian noise w(n) ∈ CNr :

r(n) = H s(n) + w(n), (1)
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where H = [hij ] ∈ CNr×Nt is the channel matrix specifying
the pairwise channel response hij for each transmit-receive
antenna pair (i, j). The channel noise is modeled as sampled
from a 0-mean normal distribution w(n) ∈ N (0, σ2INr

)
with 0 co-variance terms, i.e., E[w(n)w(n)H ] = σ2INr

,
where INr

is the identity matrix of size Nr and w(n)H

denotes the conjugate transpose of the row vector w(n).
Depending on how application data is divided over the

individual transmitter streams Nt and how each stream
is modulated, there are several different ways to realize
a MIMO transmitter [34]. In terms of application data as-
signment we have (i) MIMO with spatial diversity and (ii)
MIMO with spatial multiplexing. The former passes redun-
dant application data on each transmitter antenna allowing
the receiver to decode the minimal-error stream. This redun-
dancy leads to lower throughput in comparison with spatial
multiplexing, but enables high probability of successful data
decoding at the receiver. In spatial multiplexing MIMO each
transmitter stream handles a unique portion of the appli-
cation data resulting in increased throughput at the cost of
higher sensitivity to poor channel conditions.

We also differentiate between direct-mapped and precoded
MIMO, based on the power and modulation assignment
across transmit streams. The former allocates the same
power and modulation to all streams without considering
the channel conditions, while the latter performs channel
estimation and adaptively assigns power and modulation
to each stream to maximize throughput. Thus, the choice
between direct-mapping and precoding offers a trade-off
between throughput and implementation complexity.

In this paper, we explore MIMO modulation recognition
in all of the above MIMO realizations.

2.2 Limitations of existing MIMO modrec approaches
Modulation recognition can be viewed as a classification
task: given a set of N IQ samples (an “instance”) the
goal is to determine the modulation from which the ob-
servations are sampled. Classifiers used in such tasks are
trained in a supervised manner, i.e. they require annotated
instances in order to learn to recognize modulations (called
classes). Most existing MIMO modrec algorithms require
prior knowledge of the channel conditions [5], [16], [18],
[27], [30]. In the context of the MIMO signal model (Eq. (1)),
this means that existing approaches require prior knowl-
edge of the channel response matrix H . Once this infor-
mation is available, the paths are considered individually
and common features (e.g. cumulants) are employed for
classification. There are two critical limitations that hamper
the applicability of these approaches in under-determined
MIMO modrec: (i) cumulants dispersion, which deteriorates
their discriminative power and (ii) inability for channel
estimation, as H is under-determined.
Cumulants dispersion. Fig. 3 illustrates the effects of under-
determined sensing on state-of-the-art MIMO modrec that
uses cumulants [28]. We consider 200 instances of QPSK
and 200 of 16-QAM, and for each instance we calculate
a feature vector comprised of the seven cumulants used
in prior work: [C40, C41, C42, C60, C61, C62, C63]. We then
adopt principle component analysis (PCA) [17] to reduce
the dimensionality of instances to two dimensions and plot
them in Fig. 3 for increasing determination of the sensing

2x1 2x2 2x4

Fig. 3: Discriminative power of cumulants extracted from under- (2x1), fully-
(2x2) and over-determined (2x4) sensing. Red is 16-QAM, while blue, QPSK. The
discriminative power of cumulants deteriorates with under-determined sensing.

system. The figure presents scatter plots of these projections
for QPSK (blue) and 16-QAM (red) and the respective
density “iso”-lines for each of the classes. From right to
left we have over-, fully- and under-determined signal. The
increasing overlap of the classes demonstrates qualitatively that
the discriminative power of cumulants deteriorates in under-
determined settings. In § 4 we quantify the effect of under-
determined sensing on modrec accuracy.
Inability for channel estimation. If the channel informa-
tion is not apriori known, which often occurs in a non-
cooperative cognitive radio sensing, existing modrec al-
gorithms adopt an additional step to estimate H via In-
dependent Component Analysis (ICA) [5] or Expectation
Maximization (EM) [51]. Such approaches, however, require
over-determined sensing, and thus, impose prohibitive cost on
the number of receiving antennas. Furthermore, these meth-
ods are not directly applicable with under-determined MIMO
modrec, as they would trigger channel estimation with fewer
receiving than transmitting antennas, which is unfeasible.

2.3 Under-determined MIMO sensing

To alleviate the problem of high cost, we consider under-
determined MIMO sensing, whereby the number of re-
ceiver antennas is lower than that of the transmitter. Fig. 2
(left) depicts schematically the system model for under-
determined MIMO sensing, where the example 2x2 MIMO
link is sensed with a single-antenna sensor. We call this 2x1
sensing. Intuitively, a 2x1 sensing of a 2x2 MIMO system
will gain a single observation of the MIMO constellation.

Our signal model for under-determined sensing follows
the same definition as in Eq. (1): H = [hij ] ∈ CNr×Nt is the
channel matrix with i ∈ [1, Nr], j ∈ [1, Nt] and Nr < Nt.
For example, as illustrated in Fig. 2 (left) for the 2x1 sensing
case, the H matrix is a 2x1 vector of the form H = [h11h12],
where each hij is a complex number: hij = aij + ibij ,

A MIMO constellation is comprised of 2M×Nt individ-
ual symbols, where M is the modulation order (e.g. M=2
for QPSK, M=3 for 8-PSK, etc.) and Nt is the number of
transmitter antennas. Since we will use the geometry of the
constellation as a predictive “fingerprint” of the modulation,
the spread and overlap of symbols and the tightness of a
symbol’s cluster will play an important role. The spread
and overlap of constellation symbols depend on the channel
gain and fading, whereas the tightness of individual clusters
depends on the SNR. In what follows, we explore each of
these in the context of our signal model and illustrate their
effects on the constellation geometry and self-similarity.
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Fig. 4: 2x1 QPSK constellations at SNR 20dB (left), 10 (middle) and 5dB (right).
As SNR decreases the geometry of the constellation is less-pronounced.

2.3.1 Impact of noise on the constellation geometry
The SNR of a MIMO channel affects how tightly-clustered
are the IQ samples around each constellation symbol. The
lower the SNR, the more dispersed the samples and the
harder it is to recognize the modulation or demodulate
the signal. This effect is illustrated in Fig. 4 which depicts
the constellation shape of 2x1 sensing of a QPSK signal
at an SNR of 20dB (left), 10dB (middle) and 5dB (right).
As the SNR decreases the geometry of the constellation is
characterized with a decreasingly-pronounced clusters.

2.3.2 Impact of channel gain on constellation geometry
The gain |hij | of a MIMO path (i, j) is defined as:

|hij | =
√︂
a2ij + b2ij , (2)

where aij and bij are the channel coefficients. We introduce
the channel gain sum (GS) and the channel gain ratio (GR)
which jointly control the MIMO constellation shape, where

GS =
∑︂
ij

|hij |, (3)

controls the spread of the MIMO constellation symbols. High
GS allows easier MIMO decoding and modrec. The channel
gain ratio GR, defined as:

Gp
R =

L(p)
L(p+ 1)

=
|hp−1

ij |
|hp

ij |
, 0 ≤ Gp

R ≤ 1, (4)

controls the overlap of constellation symbols. Here the in-
dividual paths |hij | are considered in decreasing order
L = [|hp

ij |], where p ∈ [1, P − 1] and P = Nt × Nr is
the total number of individual paths (i, j).

To put the notion of Gp
R into context, let us consider

our running example of 2x1 sensing from Fig. 2. Fig. 5
demonstrates the effects of Gp

R on the geometry of the
constellation. In the left of the figure, we see an example
of 2x1 QPSK sensing with Gp

R = 0.1. This means that the
channel gain |h12| of the second link is much smaller than
that of the first link. As a result the centroids of each sub-
constellation are far apart (due to the high gain on the first
link |h11|), whereas the symbols in each sub-constellation
are very close (due to the low gain on the second link |h12|).
Thus, the geometry of the overall constellation following
2x1 sensing of a MIMO channel with Gp

R = 0.1 resembles
a QPSK SISO constellation. Next, we consider the constel-
lation of 2x1 sensing with Gp

R = 0.5, which is illustrated
in the middle pane of Fig. 5. Gp

R = 0.5 means that the
gain of the stronger channel is twice that of the weaker (i.e.
|h11| = 2×|h12|). For this setting, we get a “fully-unfolded”
MIMO constellation with the maximum of 2M×Nt non-
overlapping symbols, which in the case of 2x1 QPSK sensing
is 22×2 = 16. Finally, for Gp

R = 1, |h11| = |h12|, the distance
between sub-constellation symbols is the same as that be-
tween the sub-constellation centroids. As a result, some of

Fig. 5: Effects of Gp
R on the MIMO constellation geometry. For Gp

R = 0.1 (left),
where the link is dominated by one of the paths, the modulation constellation
resembles SISO. For Gp

R = 0.5 (middle) we have a fully-unfolded MIMO
constellation. For Gp

R = 1 (right) we have a partially-unfolded constellation.
Different colors indicate meta groups.

the symbols in the sub-constellations overlap, as illustrated
in the right pane of Fig. 5. This results in a partially-unfolded
MIMO constellation with a total of nine non-overlapping
symbols. Based on this qualitative analysis, we expect that
the channel sum and ratio will affect the informativeness
of geometric features for modrec; a hypothesis we confirm
experimentally in §4.

2.3.3 Channel fading impact on under-determined modrec
Channel fading is a random process that models the change
of the channel gain over time as a result of multipath
signal propagation. In the context of modrec, of specific
interest are the channel model and the coherence time, which
jointly determine to what extent and how often does the
channel change. Channel fading introduces time-variance
in the sensed data and subsequently distorts the shape of a
MIMO constellation. This, in turn, may affect the accuracy
of supervised modulation classification, such as the one
performed by SYMMeTRy.

Thus, we set forth to understand the effects of chan-
nel fading on our method (results in §4.4). Several well-
established models capture the fading of wireless chan-
nels [34], including the Rayleigh model, typical for multi-
path environments; and the Rician model, for channels
with strong Line-Of-Sight path. The channel gain |hij | =√︂
a2ij + b2ij is said to be a Rayleigh random variable, if aij ∈

N (µaij
, σH) and bij ∈ N (µbij , σH), such that µaij

= µbij =
µij [34]. Similarly, |hij | is said to be a Ricean random variable
if aij ∈ N (µaij

, σH) and bij ∈ N (µbij , σH), such that
µaij

̸= µbij [34]. Our evaluation (§4) adopts these realistic
models, whereby we control the channel gain by setting
µaij

and µbij , the severity of the fading by controlling
σH and the rate of the fading by controlling the number
of consecutive samples K , for which the channel remains
unchanged. We demonstrate that SYMMeTRy is robust to
distortions introduced by realistic time-varying channels.

3 METHODOLOGY

The key insight behind SYMMeTRy is that the geometry of
MIMO constellations exhibits nested self-similarity, which
can be exploited as a classification feature. We summarize
this self-similar structure into a discriminative fingerprint
which can then be employed for supervised feature-based
modulation recognition. We design our novel features lever-
aging the Minkowski-Bouligang fractal dimension [19]. We
combine these features with traditional higher order cumu-
lants [41] and evaluate their individual and joint accuracy
for under-determined MIMO modrec. We demonstrate that
the combined features are robust to various signal condi-
tions and enable improvements over cumulants alone.
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3.1 Preliminaries
We first present a short introduction to higher order cu-
mulants [41] and fractal dimensions [19]. While cumulants
have been previously employed in modrec, fractal analysis,
which helps summarize self-similarity in IQ sample constel-
lations, has not been considered for modrec before.
Higher Order Cumulants are a successful family of features
used in the modrec literature [14], [41]. Cumulants summa-
rize the statistical properties of IQ samples, arising from a
complex-valued stationary random process x(n) [41]. The
k-th order cumulant is a polynomial function of moments:

Ckv =
∑︂

(∪q
p=1Ip)=I

[(−1)q−1(q − 1)!

q∏︂
p=1

Mk̂v̂, ] (5)

where Mkv = E[x(n)k−vx∗(n)v] are the empirical esti-
mates of the moments associated with the stationary pro-
cess from which the IQ samples are drawn, and x∗(n)
denotes the complex conjugation of x(n). The summation
extends over all partitions {I1, ..Iq}, q ∈ {1, ..k}. Each
partition consists of q sets and k̂ and v̂ are the number
of complex and conjugation terms in set p of partition Ip.
Some commonly used cumulants in the literature [41] are
defined as follows in terms of moments: C21 = M21 and
C42 = M41 − (M20)

2 − 2(M21)
2. In practice, fourth- and

sixth-order cumulants have received most attention, and to
remove the effect of the signal scale on cumulants, they are
typically normalized by C21 [41]. In addition, since some
cumulants are complex numbers, their L2 norm is adopted
as a real-valued feature in classification.
Fractal Dimensions. The intrinsic (or fractal) dimension of a
finite set of points is a widely adopted descriptor to quantify
fractals’ self-similarity [19]. Fractal dimensions have been
employed in dimensionality reduction and feature selection
in machine learning [43], to optimize the utility of spatial
index structures [9] and to analyze biological images [23].
While there are different kinds of dimensions that character-
ize fractals [36], we focus on the Minkowski-Bouligand (AKA
box-counting) dimension, which was successfully employed in
data analysis applications due to efficient implementations
and relatively low-computational complexity [11], [21].

For a set of points in Euclidean space X = {xi}, xi ∈ Rd

and a space partitioning in a grid of resolution ϵ (i.e. ϵ is
the size of a hyper-cube voxel in the grid), let the box count
N(X, ϵ) denote the number of voxels required to cover the
points in X . The box counting dimension is defined as the
logarithmic rate of increase of the box count N(X, ϵ) as a
function of the log of the resolution 1/ϵ in the limit:

Dbox(X) := lim
ϵ→0

logN(X, ϵ)

log(1/ϵ)
. (6)

This quantity is typically estimated numerically by varying
ϵ starting from a fixed maximal resolution and estimating
a linear fit for the log-log plot of N(X, ϵ) as a function
of 1/ϵ. In this work we are not interested in the actual
dimension size, but instead in the discriminative power of
the cover set growth functions as features characterizing the
constellations of observed IQ samples.
3.2 SYMMeTRy Overview
As other supervised classification tasks, SYMMeTRy, which
is illustrated in Fig. 6 has two phases: training and testing.

Labeled scans

2x
1 

Q
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K

Box-counting (Sec. 3.3)
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Feature extraction (Sec. 3.3)
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Fig. 6: Overview of SYMMeTRy. Blue arrows represent the training process,
whereas red depict the modulation classification (i.e. testing) process.

Fig. 7: Pipeline of converting IQ samples to a binary matrix for box-counting.

Training, depicted with blue solid arrows, begins with the
collection of a labeled training dataset of target modula-
tions. Step 1 feeds the data into the box-counting algorithm
(§ 3.3), which first converts the constellation into an ϵ-sized
histogram of sample occurrences, and then thresholds it to
determine which of the histogram bins are full and which
empty. In step 2 (§ 3.3) we take the raw constellation and
the binary histogram from step 1 and use these to extract
the classification features. SYMMeTRy uses a combination of
high order cumulants (§3.1) and fractal dimensions (§3.3).
In step 3 we train a L1-norm SVM classifier (§3.4), which is
then used for runtime modulation recognition.

The runtime modulation classification, illustrated with
red dashed arrows, begins with the collection of an unla-
beled spectrum trace. Step 1 passes the trace to the box-
counting algorithm, which then feeds into the feature ex-
traction in step 2. Step 3 uses the pre-trained classifier for
runtime recognition of the underlying transmitter modula-
tion. In what follows, we detail each of these steps in turn.

3.3 Extracting Fractal Features
Our goal is to employ fractal dimensions to extract signa-
tures of modulation-specific IQ samples. Thus, we summa-
rize the self-similar hierarchical structure of MIMO constel-
lations using the box-counting dimension approximation.
Informally, our key idea is that samples from the same modulation
will exhibit discriminative box counting growth patterns which
differ from those corresponding to other modulations.

We represent the complex IQ samples within an instance
as 2-dimensional real points X based on their real and
imaginary parts. Since we will consider the box counts N(ϵ)
starting from a fixed ϵmin resolution, we first pre-compute
the number of points in each box at the highest resolution.
We then aggregate the point counts at decreasing box res-
olution. This aggregation helps us (i) keep the complexity
of subsequent steps fixed regardless of the number of IQ
samples and (ii) allows us to filter noise in low-occupancy
bins early in the feature extraction process.

This process is demonstrated in Fig. 7 for a 2x2 QPSK
MIMO signal. We first normalize the IQ samples. We then
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Fig. 8: An illustrative comparison of the fractal feature vectors for four
modulations in 2-transmitter MIMO using exponential (left) and linear (right)
resolution schedules T . X-axis is the box size ϵ.

impose a square grid at resolution ϵmin over the IQ con-
stellation and compute a histogram of point counts in each
box (Fig. 7 middle). Finally, we binarize the histogram into
full/empty (i.e. 1/0) boxes to obtain a set of coordinates
containing samples (Fig. 7 right). The simplest approach
to this binarization is to declare any cell with at least
one point as full. In order to minimize the effect of noise,
we consider a more general frequency thresholding which
effectively declares “near-empty” cells as empty. We adopt
Otsu’s method commonly used to binarize histograms [32].
The result of the above pre-processing is a binary matrix
Y k×k, yij ∈ {0, 1} used as an input to the box-counting.

Representing an observed IQ constellation by its esti-
mated fractal dimension Dbox may result in loss of discrim-
inative power. Instead we compute the empirical decrease
of N(Y, ϵ) as we increase ϵ from ϵmin to a value ϵmax which
covers the entire Y matrix with a single box. Let T ∈ Rm

be a schedule of increasing box sizes and N(Y, Ti) denote
the number of boxes at resolution Ti needed to cover all
non-empty cells of our binarized matrix representation of
the IQ samples Y . Our fractal features are comprised of the
m-dimensional vector fFRA = [N(Y, T1), . . . , N(Y, Tm)].
Resolution schedule T. In methods approximating the frac-
tal dimension via box-counting, consecutive ϵ values are
increased exponentially as the goal is to estimate the slope
of an exponential fit of N(X, ϵ). Assuming a fixed ϵmin

corresponding to a size-k quantization in Y , the consecutive
sizes of boxes in an exponential schedule have the following
form T = (ci) for an integer c > 1. In order to extract a
more detailed, and potentially more discriminative, shape
of the N(Y, ϵ), we also consider linear schedules of the form
T = (ci) for integer values of c > 1. A comparison of the
average extracted shapes using exponential T = (2i) (left)
and linear T = (i) (right) schedules is presented in Fig. 8.
The data for this figure includes four modulations (BPSK,
QPSK, 8PSK and 16QAM) assuming AWGN channel with
100 instances for each class and 300 IQ samples per instance.
The x-axis presents the increasing box size ϵ, while the y-
axis is the average and standard deviation of the box count
across the 100 instances at a given epsilon resolution. The
curves, present the box count slopes for the four modula-
tions and illustrate (i) their discriminative power and (ii)
the increased detail due to the linear schedule.
Handling phase variation. While the fractal features are
invariant to changes in the amplitude within the same
modulation (because we re-scale IQ samples to have a
fixed maximal norm), variations in the phase, which effec-
tively “rotate” the constellation, may result in significantly
different features fFRA from the same modulation. We
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Fig. 9: 2x2 QPSK MIMO with a phase rotation ϕ = 0 (left) and ϕ = π/4 (right).
The fractal dimensions of changing phase rotations could appear different (right).
In the right figure, x-axis indicates the index of all grid size enumerations (using
exponential growth) and the y-axis indicates the extracted slopes.

demonstrate this sensitivity to rotation in Fig. 9. The left
and middle pane show the same constellation with a phase
offset of π/4, while the right pane shows the corresponding
box-counting profiles N(Y, ϵ). The reason for the differences
is that covering boxes are axis-aligned, while clusters in the
constellation may have irregular shapes which under rota-
tion may require different number of boxes to be covered at
the same resolution. To overcome this challenge, we rotate
an observed sample at different phase offset and summarize
offset-specific feature variants: fϕ

FRA.
It is important to note that noise-free (theoretical) MIMO

constellations have a rotational symmetry of order 4 [45],
and hence, considering phase offsets outside of [0, π/4]
would not yield additional discriminative power. Hence, it
is reasonable to consider rotations in this interval, where
more rotations will potentially add discriminative power at
the cost of more features. Our evaluation presented in §4.11
shows that simply adding a π/4 rotation provides an accu-
racy boost while further rotations add negligible improve-
ments. Thus, our fractal features in all experiments are the
concatenation of these two angles fFRA = (fϕ=0

FRA, f
ϕ=π/4
FRA ).

3.4 Sparsity Regularized Classification
Our feature vector is constructed by concatenating cumu-
lant and fractal features f = [fCUM , fFRA]. The features
obtained may have redundant information over multiple
dimensions due to multi-perspective projection during the
geometric feature extraction. Therefore we utilize an 1-norm
linear SVM for classification [50]. It replaces the standard
ridge penalty with a lasso penalty, which enforces sparsity
of coordinates for the the separation hyperplane, and thus,
performs feature selection along with classification. Note
that this simple classifier is not a mandatory component
of our framework and can be replaced by standard feature
selectors followed by any classification approach, including
deep learning models.

4 EXPERIMENTAL EVALUATION

We evaluate SYMMeTRy in a realistic simulation and a small-
scale MIMO USRP testbed. Our results show that CUM and
FRA features exhibit complimentary performance. Their
combination, however, maintains high and consistent per-
formance across all noise regimes, fading conditions and
with increasing MIMO transmitter complexity. These trends
are retained both in simulation and with over-the-air exper-
iments and demonstrate the high potential of SYMMeTRy to
enable low-cost under-determined MIMO modrec.

4.1 Experimental setup
Implementation. Our box counting pipeline is implemented
in MATLAB and executed on Ubuntu 14 PC. We employ
liblinear’s [10] implementation of SVMs and one-vs-rest [4]
training and evaluation for multi-class classification.
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Data. We use data from a realistic simulation and from
an over-the-air experiment in a 2x1 MIMO USRP testbed.
Our synthetic datasets are generated with the MATLAB
Communications System Toolbox and include four modula-
tions: BPSK, QPSK, 8PSK and 16QAM, which are typically
considered in prior modrec literature [42], [51]. Training and
testing instances contain 512 IQ samples each.
Evaluation strategy. Our goal is to evaluate SYMMeTRy
across varying constellation shapes and channel conditions.
To control the constellation shapes, we vary the channel
gain sum GS (Eq. (3)) and the channel gain ratio GR

(Eq. (4)). To control the rate and severity of fading, we set the
number of consecutive samples K that experience constant
channel and the variance σH of each individual path gain
|hij | ∈ N (µij , σH). We also consider varying SNR levels.
Unless otherwise noted, we use 2x1 MIMO sensing. In §4.5
we also perform evaluation in more complex settings.

In experiments with fixed (GS , GR) combinations, we
obtain individual channel coefficients aij and bij (Eq. (2.3))
and (2)) by solving a linear system of equations (3) and (4),
which for a 2x1 sensing setup with |h11| > |h12| gives us

|h11| = GS ∗GR/(1 +GR) and |h12| = GS/(1 +Gr) (7)

Since this system is under-determined w.r.t. aij and bij ,
we further assume equall real and imaginary components:
aij = bij . Thus, as per Eq. (2), aij = |hij |/

√
2. Finally,

to evaluate SYMMeTRy with time-variant channels while
controlling GR and GS , we draw the path gains |hij | from a
normal distribution N (hij , σH). For a 2x1 setup, we set h11

and h12 according to Eq.(7) and vary σH .
In all experiments we compare the accuracy of

SYMMeTRy, defined as the fraction of correctly-predicted
instances over all instances. We compare the accuracy across
three different feature configurations: cumulants (CUM)
which are employed in all classification-based prior modrec
work, fractals (FRA) and their combination (CUM+FRA).

4.2 SYMMeTRy on a time-invariant channel

We first evaluate the performance of SYMMeTRy in time-
invariant channels, i.e. H is fixed in all instances. Our results
indicate that CUM and FRA alone have complementary ad-
vantages in different gain/noise regimes. The combination
of the two features maintains consistently advantageous
performance across all experimental regimes.

4.2.1 Effects of channel gain ratio GR

We first evaluate the effects of symbol overlap controlled by
GR. As detailed in §2, with a small GR the MIMO constella-
tion is folded, converging to its SISO equivalent. Mid-range
GR produces a fully-unfolded MIMO constellation, while
GR close to 1 produces a partially-unfolded constellation,
whereby some constellation symbols overlap. These effects
of GR on the constellation geometry directly affect the
discriminative power of our features. To quantify this, we
fix the channel noise w(n) (Eq. (1)) and scale GR from 0 to 1
in increments of 0.1 in a 2x1 sensing setup. Figs. 10a, 10b
present our results comparing the accuracy in mid-noise
(10dB) and high noise (5dB) settings, respectively. The per-
formance of cumulants deteriorates as GR increases. This
is expected, as cumulants are robust with SISO modrec (i.e.
when GR is low) and deteriorate as the MIMO constellations
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Fig. 10: Accuracy over varying channel gain ratio GR with time-invariant
channel at medium SNR of 10dBm (a) and low SNR of 5dBm (b). Cumulants
are robust in SISO-like cases (i.e. at low GR, whereas fractals perform better in
MIMO-like cases (mid to high GR). Thus, the combination of the two features
leads to robust performance classification across constellation shapes

unfold with increasing GR. The fractal features retain stable
and high performance across all GR settings for SNR=10dB,
which demonstrate the robustness of the feature to channel
variations. With lower SNR of 5dB, cumulants outperform
fractals at low GR and switch at high GR. The CUM+FRA
combination retains a stable and high performance across
all ratios even when the SNR is 5dB. These results indicate
the robustness of the combined feature CUM+FRA to noise
and constellation shape changes.

4.2.2 Effects of channel gain sum GS

The sum of individual path gains affects the spread of the
MIMO constellation: the higher the gain, the more spread
the symbols are, the easier will be to classify a signal’s
modulation. Thus, we set out to evaluate the effects of GS

on SYMMeTRy’s performance. We vary GS from 0.2 to 2 in
increments of 0.2 for 2x1 sensing. Figs. 11a, 11b present our
results for mid-noise (10dB) and high noise (5dB) regimes.
Across all regimes, FRA and the combined CUM+FRA
features outperform cumulants alone. For low gain regimes
all counterparts suffer deteriorated performance, which re-
bounds as the sum gain increases beyond 1. These trends
are consistent across SNR regimes.
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Fig. 11: Accuracy over varying channel gain sum GS with time-invariant
channel at medium SNR of 10dBm (a) and low SNR of 5dBm (b). FRA and
CUM+FRA features outperform CUM across all GS . Performance is consistent
across SNR regimes.

4.2.3 Effects of SNR

We now seek to evaluate the effects of channel noise on
SYMMeTRy’s performance. We vary the SNR from 0 to
20dB in increments of 5dB for two channels H1 and H2
(GH1

S > GH2
S ). The channels were generated with the

MATLAB comm.MIMOchannel block and their respective
channel responses were H1 = [1.17−0.32i, 1.03+0.36i] and
H2 = [0.74+0.17i, 0.75−0.13i]. Our results are presented in
Figs. 12a 12b. FRA and FRA+CUM outperform CUM across
all SNR regimes for both channel conditions. With high-gain
channels, (i.e. H1 in Fig. 12a), the performance of FRA and
CUM+FRA over CUM is further emphasized.
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Fig. 12: Accuracy with varying SNR for two channels H1 (a) and H2 (b). The
channel gain sum GS for H1 is larger than that for H2 (i.e. constellations from
H1 are spread out and easier to detect than H2). FRA and FRA+CUM outperform
CUM across all SNR regimes. High-gain channels (H1), further emphasize the
advantage of FRA and CUM+FRA over classical CUM.

4.3 SYMMeTRy on a time-varying channel
In reality, channels vary with time depending on changes in
a link’s environment. Hence, we next evaluate the effects of
time-varying channels on SYMMeTRy’s performance. In our
model (§2.3.3), we control fading by setting the variance σH

of the path gain, and the speed at which the channel varies,
by setting the number of consecutive samples K for which
the channel is time-invariant. We begin by evaluating the
effects of σH and K on SYMMeTRy’s performance. We then
evaluate performance with changing constellation geometry
(i.e. GR and GS). Finally, we examine the effects of SNR. Our
findings show that the performance of both FRA and CUM
alone deteriorates with a time-varying channel, however,
the combined feature maintains high performance across
varying constellation shapes, fading rates and noise level.
4.3.1 Effects of channel fading
We now set GR to 0.8, GS to 3 and K to 1 and evaluate
accuracy while increasing the path gain variance σH from
0.1 to 1 in increments of 0.1. Figs. 13a, 13b show our results
for SNR 10dB(left) and 5dB(right). FRA outperforms CUM
at lower channel variance, whereas the contrary holds with
high variance. The combined feature consistently outper-
forms either of the features alone in both SNR regimes.
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Fig. 13: Accuracy with increasing channel fading as controlled by σH for
mid-SNR 10dBm (a) and a low-SNR 5dBm (b) settings. FRA+CUM consistently
outperforms CUM/FRA alone across all fading and SNR regimes.

4.3.2 Effects of channel coherence time
The channel coherence time captures the duration for which
the channel response remains unchanged. In our simulation,
we control this by setting K , which determines the number
of consecutive instances during which the channel remains
constant. We define an instance as a vector of 512 IQ
samples. Figs. 14a, 14b present SYMMeTRy’s accuracy at SNR
10 and 5dB as K increases from 1 to 11 in increments of 1.
GR is 0.8, GS is 1.5 and σH is 0.1. The combined feature
FRA+CUM outperforms the other two features consistently
in both SNR regimes. The performance does not change
significantly, as K increases, indicating that SYMMeTRy will
perform robustly in both fast- and slow-fading channels.
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Fig. 14: Accuracy with increasing channel coherence time for a mid-SNR 10dBm
(a) and low-SNR 5dBm (b) setting. Performance is consistent across K and SNR,
indicating that SYMMeTRy is robust in both fast- and slow-fading channels.

4.3.3 Effects of the constellation geometry
We now evaluate the effects of the constellation shape.
As before, we control the overlap of constellation symbols
with GR and the spread of the constellation with GS .
Figs. 15a, 15b present our results for varying GR with
GS = 3, K = 1 and σH = 0.1. FRA outperforms CUM
at SNR=10dB, while CUM outperform FRA for GR lower
than 0.5 at SNR=5dB. The combined feature leads to high
and consistent performance across both SNR regimes and all
GR settings. In addition, Figs. 15c, 15d evaluate the effects of
constellation spread (as controlled by GS) on performance.
We vary GS from 0.2 to 2 in steps of 0.2. GR is 0.8, K is 1
and σH is 0.1. The combined CUM+FRA feature marginally
outperforms the other two. The accuracy is affected by both
the channel gain sum and the SNR, however, for a gain
higher than 1 across both SNR regimes SYMMeTRy achieves
high classification performance.
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Fig. 15: Effects of constellation geometry as controlled by the channel gain
ratio GR (controlling symbol overlap) and the channel gain sum GS (controlling
symbol spread) in time-variant channels. (a), (b) show accuracy as a function of
GR for mid- and low-SNR. (c), (d) show accuracy as a function of GS for mid-
and low-SNR. FRA+CUM outperforms counterparts across all settings.

4.4 SYMMeTRy with realistic channel conditions
In this section, we remove any constraints on the constella-
tion geometry and fading (i.e. all of GR, GS , σH and K are
uncontrolled) and evaluate the performance of SYMMeTRy.
We adopt two realistic and commonly-used channel mod-
els: Rician and Rayleigh, and evaluate the performance
as a function of the channel SNR. We use the MATLAB
comm.MIMOchannel toolbox for our implementation with
the default parameter setting of the function. In brief, we
assume a flat fading channel and also do not consider the
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Doppler effect (i.e. the sensor and transmitter were consid-
ered stationary). We assume the path delay is zero and the
averaged power of the path gains is normalized to 0 dB
across realizations. We generate one dataset using Rayleigh
fading distribution model and another one using Rician
model. The channel for each instance is independently
generated using the aforementioned MATLAB function.
Figs. 16a, 16b show the results of this analysis. CUM and
FRA alone have distinct regimes of high performance across
both channel models. We hypothesize this is due to the
complimentary nature of the two features. Inherently, FRA
captures the shape of the constellation (symbols’ location
and empty spaces) with underdetermined sensing, however
it faces challenges due to constellation dispersion with chan-
nel effects. CUM, on the other hand, are less discriminative
with underdetermined sensing, however, they are more
robust to real channel conditions. Thus, the combination
of the two brings the best of both worlds: capturing the
constellation shape with underdetermined sensing, while
being robust to channel conditions.

So far, our results considered same-channel training and
testing. We now explore the effects of cross-channel train-
ing on SYMMeTRy’s performance, focusing on four cases
(Fig. 16c): (i) training on Rayleigh and testing on Rician
(green), (ii) training on Rician and testing on Rayleigh
(blue), (iii) training on an equal mix of Rayleigh and Ri-
cian and testing on Rician (orange) and (iv) training on
the aforementioned mix and testing on Rayleigh (red).
SYMMeTRy with cross-channel training results in high and
consistent performance, commensurate with that of same-
channel training. Modulation classification under Rayleigh
conditions remains slightly more challenging than Rician
conditions. Finally, the method is robust to both single- and
mix-channel training, which demonstrates that SYMMeTRy is
not sensitive to changing channel conditions from training
to testing, and thus, the training process does not need to
capture diverse channel conditions.
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Fig. 16: Accuracy with increasing SNR over a Rayleigh (a) and Rician (b)
channel with 2x1 sensing. SYMMeTRy with the combined CUM+FRA features
outperforms counterparts across all SNR regimes in both channel conditions.
(c) Accuracy of the CUM+FRA feature with cross-channel training. SYMMeTRy’s
performance remains high and consistent with the same-channel training.

4.5 SYMMeTRy with increasing transmitter antennas
We now set out to examine SYMMeTRy’s performance with
increasing transmitter complexity. For this experiment, we
use the same data generation setup as discussed in the pre-
vious section (§4.4). We increase the number of transmitter
antennas Nt to 3 and 4, while maintaining a single antenna
on the sensor. Figs. 17a-17d demonstrate our results. Across
all SNR levels and both channel models, the combined
feature CUM+FRA maintains the best performance. The
performance improves in high SNR regimes. Finally, even
though the complexity of the transmitter affects the modrec
accuracy, SYMMeTRy with CUM+FRA feature is able to

achieve an accuracy of over 0.8 at SNR 10dB and 0.9 at
SNR 20dB for the most challenging case of 4x1 MIMO sens-
ing. This demonstrates SYMMeTRy’s performance to support
modrec of complex MIMO systems even when the sensor is
only equipped with a single antenna.
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Fig. 17: Accuracy across SNR and channel models with increasingly-complex
MIMO transmitter. (a) and (b) present results for 3x1 sensing, while (c) and (d) for
4x1 sensing. The combined CUM+FRA feature is able to retain high performance
even when a 4-antenna transmitter is sensed with a single-antenna sensor.

4.6 SYMMeTRy with diversity coding MIMO
As discussed in the background section §2.1, depending on
how data is mapped across transmitter streams, a MIMO
transmitter can be realized with spatial diversity or spatial
multiplexing. So far, all our experiments consider MIMO
with spatial multiplexing, whereby a unique portion of the
data stream is transmitted through each antenna. In this sec-
tion, we evaluate the efficiency of SYMMeTRy with spatial di-
versity coding whose purpose is to exploit data redundancy
across transmitter streams to improve the reliability of data
transfer. We use Alamouti’s code to implement MIMO trans-
mitters with spatial diversity coding. Fig. 18 presents our
results across SNR regimes for two realistic channel settings:
Rayleigh (18a) and Rician (18b). SYMMeTRy with combined
CUM+FRA features consistently outperforms counterparts
across all SNR regimes and with both realistic channel
settings. Furthermore, the performance is very similar to
that for a MIMO system with spatial multiplexing (Fig. 16).

4.7 SYMMeTRy with MIMO precoding
As detailed in §2.1, MIMO can be either direct-mapped or
precoded, depending on how transmit power and modu-
lation are assigned to the individual transmitter streams.
So far, our evaluation focused on direct-mapped MIMO,
whereby each antenna stream uses the same transmit power
and modulation. In this section, we evaluate SYMMeTRy’s
performance with precoded MIMO; that is each stream is
assigned a different modulation (power remains fixed across
streams). We explore three combinations for a 1x2 MIMO
sensing setup across SNR: BPSK+QPSK, QPSK+8PSK and
8PSK+16QAM, where training and testing are performed on
the same combination (i.e. training is combination-aware).
Fig. 19 presents our results for a Rayleigh and Rician fad-
ing channels. SYMMeTRy’s performance with the combined
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Fig. 18: Accuracy with increasing SNR over a Rayleigh (a) and Rician (b) chan-
nel with 2x1 sensing. The MIMO transmitter uses spatial diversity coding with
Alamouti’s code. SYMMeTRy with the combined CUM+FRA features outperforms
counterparts across all SNR regimes in both channel conditions.
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Fig. 19: Accuracy for MIMO with precoding with increasing SNR over a
Rayleigh (a) and Rician (b) channel with 2x1 sensing. We explore three realizations
of a 2x2 MIMO transmitter with precoding: BPSK+QPSK, QPSK+8PSK and
8PSK+16QAM. SYMMeTRy with the combined CUM+FRA features outperforms
counterparts across all SNR regimes in both channel conditions.

CUM+FRA feature remains high, albeit slightly deteriorated
in comparison with direct-mapped MIMO (Fig. 16a, 16b).

While these results demonstrate SYMMeTRy’s power in
classifying just any possible MIMO realization, it is impor-
tant to note that with MIMO precoding, the training space
explodes combinatorially with the transmitter complexity
(i.e. the number of transmitter antennas) and the number
of target modulation classes. This may pose prohibitive
overhead in training data collection, which can be tackled
through alternative classification frameworks (e.g. transfer
learning). We leave such an exploration for future work.

4.8 SYMMeTRy with increasing modulation complexity

All experiments so far employ BPSK, QPSK, 8PSK and
16QAM with increasing transmitter complexity. We now set
forth to evaluate SYMMeTRy’s performance with complex
modulations. To this end, we consider three higher-order
modulations: 32-, 64- and 128QAM. Fig. 20 presents average
accuracy across the three classes for 2x1 under-determined
sensing. Our results show a deterioration in the average
classification performance in comparison with simpler mod-
ulations. A closer look at the confusion matrices (not shown
in interest of space) indicates that SYMMeTRy confuses 32
and 128QAM, whereas 64QAM retains high performance.
Classifying higher order modulations is challenging as their
constellations are extremely dense (e.g. a 2x2 MIMO setup
using 128QAM can result in up to 512 constellation points
depending on channel conditions). This explains, in part,
the slightly lower performance of the combined CUM+FRA
feature compared to the CUM-only counterpart, as fractals
are likely becoming sensitive to this extreme constellation
density. We note that further exploration of SYMMeTRy’s
parameters (e.g. grid resolution) with high-order modu-
lations could gain improved performance. We leave such
exploration for future work.

0 10 20

SNR

0

0.2

0.4

0.6

0.8

1

A
c
c
u
ra

c
y

CUM

FRA

CUM+FRA

(a) Rayleigh

0 10 20

SNR

0

0.2

0.4

0.6

0.8

1

A
c
c
u
ra

c
y

CUM

FRA

CUM+FRA

(b) Rician
Fig. 20: Accuracy with increasing SNR over a Rayleigh (a) and Rician (b)
channel for high-order modulations (32/64/128QAM).
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Fig. 21: Accuracy across SNR and channel models with increasingly-
complex MIMO receivers.

4.9 SYMMeTRy in determined/over-determined sensing

We now set forth to evaluate the performance of SYMMeTRy
in determined and over-determined sensing scenarios. We
seek to understand whether additional sensor antennas add
any performance gain in comparison with single-antenna
sensing. Similar to the under-determined experiment setup
in 4.4, we evaluate the performance in MATLAB simulation
with realistic channel models. We use feature concatenation
to combine features extracted from scans from individual
receiver streams. Notice that although the determined set-
ting would allow it, we did not do signal recovery/channel
estimation pre-processing. Instead we use the raw signal
on the receiver as the input, as we want to retain the low
complexity of the framework pipeline.

Figure 21 shows our results. The figure presents clas-
sification accuracy over increasing SNR for two realistic
channel conditions (Rayleigh and Rician) with determined
(Fig. 21a and 21b) and over-determined (Fig. 21c and 21d)
sensing. CUM+FRA and FRA are two variants of SYMMeTRy
using the combined cumulant and fractal feature and frac-
tals only, respectively. As with the prior evaluation, CUM is
a counterpart from the literature, which uses cumulants only
as a feature. For the determined 2x2 setting, the combined
CUM+FRA feature still holds a noticeable advantage over
the CUM one across all SNR regimes and both channel mod-
els. As the number of sensor antennas grows to four (over-
determined sensing), the CUM feature and SYMMeTRy with
the CUM+FRA feature have equivalent performance. In all
settings, SYMMeTRy with the FRA feature alone is signifi-
cantly disadvantaged in determined and over-determined
settings compared to CUM+FRA and CUM.
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Rx Gain CUM FRA CUM+FRA

20 in. 40 dB 0.51 0.55 0.62

50 dB 0.62 0.74 0.80

60 in. 40 dB 0.51 0.67 0.73

50 dB 0.48 0.71 0.77

TABLE 2: Evaluation in a 2x1 MIMO USRP testbed

Considering all results so far (§4.2-§4.9), we note that
our novel fractal feature gains significant advantage over
existing cumulant-based counterparts in under-determined
MIMO sensing, even when the number of transmitter an-
tennas is four times greater than these at the sensor. At
the same time, it does not lead to deteriorated classifica-
tion performance in fully-determined and over-determined
sensing scenarios considered in prior work. These results
show that SYMMeTRy with the combined FRA+CUM feature
can be used in an universal MIMO modulation classification
framework towards cost-efficient and agile recognition with
mixed-complexity spectrum sensors.

4.10 SYMMeTRy in real-world under-determined sensing

We evaluate the performance of our method in real over-
the-air transmissions from a USRP-based testbed. We use
a transmitter comprised of a USRP B210 attached to an
Intel i7-5600U CPU host2, and a receiver comprised of a
USRP B210 with an Intel i7-6700 CPU host. Both hosts
are running on low-latency Linux kernel. We establish a
2x1 sensing setup by transmitting on both Tx channels
and receiving on only on Rx channel. Using GNURadio,
the transmitter generates a MIMO signal modulated with
BPSK, QPSK, 8PSK and 16QAM. We record 3000 samples
for each modulation. We use one third of the samples as
the testing set and the rest for classifier training. The two
USRP devices are located in line-of-sight. We evaluate two
different scenarios: one where the transmitter/sensor are 20
inches apart and another where they are 60 inches apart.
For each distance, we collect two traces while setting the
sensor’s Rx gain to 40 and 50dB.

Table 2 shows the results. For all settings, FRA outper-
form CUM by a margin of 0.04 (at 20in/40dB) to 0.23 (at
60in/50dB). The combined features maintain the maximum
performance across all measurement scenarios with the
highest of 0.797 at 20in and 50dB gain.

4.11 Effects of parameter selection

We now evaluate the impact of input parameters on per-
formance. Three parameters are worth noting: the finest
grid resolution M for box-counting, the number of angles
ϕ used in handling phase variations (§3.3) and the sparcity
regularization parameter C of the SVM classifier (§3.4).

Grid resolution for fractal dimension extraction.
Fig. 22(left) present accuracy results for SYMMeTRy using the
FRA feature across changing M . We use three settings for
M (M = {32, 64, 128}). As the figures show, SYMMeTRy’s
performance is not influenced by the selection of M .

Number of angle projections. As mentioned before, we
use multiple angle projections to construct the fractal feature

2. Note that USRP B210 can support up to 2-transmitter MIMO with
its internal capabilities. Further increase of the transmitter complexity
requires additional B210 boards and an external GPSDO for time sync.
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Fig. 22: Effects of parameter setting on SYMMeTRy’s performance. (left)
Impact of initial grid granularity (i.e. number of grid cells on each edge)
on accuracy. (middle) Impact of the number of angle rotations. (right)
Impact of the SVM regularization parameter setting for 2x1 sensing
with increasing SNR and Rician fading.

in order to make the feature model robust to unknown rota-
tions of the IQ constellation. We evaluate the impact on per-
formance with increasing number of angle projections. We
start from 1 angle (0 degrees) and gradually add π

2 ,
π
3 ,

π
4 ,

π
5

degrees and so on. We then observe the classification accu-
racy of SYMMeTRy using the FRA feature. Figure 22 (middle)
presents classification accuracy with increasing number of
angle projections in three SNR regimes. For all SNR regimes,
increasing the number of angle projections beyond 3 does
not offer additional performance improvement.

Fine-tuning the SVM regularization parameter C.
Learning an SVM model, such as the one used by
SYMMeTRy, involves a trade-off between training error and
the margin width of the classifier which translates to gen-
eralization and lower testing error. The regularization pa-
rameter C controls this trade-off and has to be set prior
to classifier training. Larger values of C penalize the loss
function (i.e. the testing error), whereas smaller values of C
penalize the regularization function (i.e. the training error).
In this experiment, we explore the effect of C setting on
SYMMeTRy’s classification performance. To this end, we
compare the accuracy for C = 1 and that of an optimal
C selected by grid-search over an exponentially-increasing
set of C values from 0.01 to 100. Fig. 22 (right) presents
classification accuracy comparison of SYMMeTRy with the
FRA features over increasing SNR with a realistic Ricean
channel. The green line presents results for fixed C , whereas
the blue presents results for optimal grid-search-based C
at a given SNR. The results show that both fixed and
optimal C parameter settings lead to similar performance,
indicating that SYMMeTRy is not sensitive to the setting in
different SNR regimes. As a result we perform all remaining
experiments using a fixed C = 1

4.12 Runtime evaluation

In this section we evaluate SYMMeTRy’s runtime overhead
focusing on feature extraction and classifier training as a
function of the instance size. For each of our target mod-
ulations (BPSK, QPSK, 8PSK and 16QAM), we generate
an increasing number of instances from 1 to 1024 on an
exponential schedule. Each instance consists of 512 IQ sam-
ples. Fig. 23 presents the aggregate runtime across the four
modulations for feature extraction (left) and SVM classifier
training (right). The runtimes were obtained with our single-
thread MATLAB implementation on a Linux machine with
a 2GHz Intel Xeon processor. The feature extraction time is
in the order of seconds, whereas the classifier training is in
the order of milliseconds. Both runtimes grow linearly as
the number of instances increases. The maximum incurred
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Fig. 23: SYMMeTRy runtime for feature extraction (left) and classifier training
(right). Both feature extraction and classifier training time grow exponentially
with the instance size.

time for feature extraction and training combined is 88.092s
with 1024 instances. Our evaluation employs 1000 instances.
Although we have not evaluated this quantitatively, we
believe that the number of input instances can be further
reduced without negative implications on the classification
performance, which will speed up the execution. These
results illustrate SYMMeTRy’s potential to support near-real-
time modulation recognition.

5 RELATED WORK

Modrec without channel estimation. Most previous MIMO
modrec work requires channel estimation [5], [16], [18], [27],
[30], and hence the constraint of high number of receivers
to ensure that the linear system at the core of channel
estimation techniques is not under-determined. [14] stand
out from the above, as they evaluated the utility of high
order statistics as features without channel estimation and
established that these features are not robust to noise and
the channel mixing effect. Tian et Al. [42] employed a shape-
constrained clustering approach within a likelihood based
framework. This work, however, incurs a very high com-
putational cost which further grows with the constellation
order. In addition, different from us, all above methods
require over-determined sensing, and thus, high overhead
on the sensing hardware.
Fractal Geometry. Fractal dimension analysis, which is
at the core of our novel features, has been successfully
employed in digital image processing with applications
to medical image analysis. [15] extracts fractal dimension
features from pathological images and employs it for cancer
classification. In [20], an automatic scar quantification ap-
proach based on segmentation-based fractal texture analysis
has been presented that provides accurate and consistent
results for MRI scan sequences. Different from the above,
our fractal features framework goes beyond the fractal di-
mension (Dbox) and employs the detailed rate of decrease of
the box counts N(ϵ) as a modulation classification feature.
Sparsity and classification. Our fractal features are in a
sense exhaustive and in order to focus on the most discrim-
inate ones we employ sparsity-promoting classifiers. The
merits of sparsity on features selection have been studied
extensively [46]. We adopt an L1-norm regularized linear
SVM [49]. Other modrec approaches have also recently
employed feature selection for exhaustive features such as
order statistics [47]. The recent success of deep learning
techniques across application domains have also inspired
approaches for modrec in the communications domain [25],
[31], [35]. Our work is complementary with advanced clas-
sification approaches as it introduces geometry-aware dis-
criminative features which can be employed in any classifi-
cation scheme, including deep learning approaches.

6 DISCUSSION AND CONCLUSION

In this paper we were the first to consider the challenging
problem of supervised MIMO modulation recognition for
under-determined spectrum sensing infrastructures. Our key
idea is to exploit the inherent multi-scale self-similarity
of MIMO modulation IQ constellations, which persists in
under-determined settings. We set out with a careful char-
acterization of the various effects of the channel on the
the constellation organization which informed our feature-
extraction framework exploiting self-similarity patterns in
MIMO constellations. Our framework is rooted in the rich
methodology of fractal geometry. We performed an exten-
sive evaluation in a realistic simulation and in a USRP
testbed, and demonstrated high and persistent performance
across various SNR regimes, channel fading conditions and
with increasing complexity of the MIMO transmitter. These
results were also confirmed through under-determined
MIMO sensing in a small-scale USRP testbed. Our analysis
focuses on under-determined modrec of a direct-mapped
MIMO link, i.e., a link in which each stream is transmitted
with the same modulation. We expect that SYMMeTRy will
have similar advantages in precoded MIMO links as well; a
direction we plan to explore in the future. Our exploration
and analysis paints a clear and feasible path to practical
and cost-efficient sensing with few receiver antennas—an
essential component of future Dynamic Spectrum Access
technology, policy and enforcement.
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