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ABSTRACT
Communities are essential building blocks of complex networks
enjoying significant research attention in terms of modeling and de-
tection algorithms. Common across models is the premise that node
pairs that share communities are likely to interact more strongly.
Moreover, in the most general setting a node may be a member
of multiple communities, and thus, interact with more than one
cohesive group of other nodes. If node interactions are observed
over a long period and aggregated into a single static network,
the communities may be hard to discern due to their in-network
overlap. Alternatively, if interactions are observed over short time
periods, the communities may be only partially observable. How
can we detect communities at an appropriate temporal resolution
that resonates with their natural periods of activity?

We propose LARC, a general framework for joint learning of
the overlapping community structure and the periods of activity of
communities, directly from temporal interaction data. We formulate
the problem as an optimization task coupling community fit and
smooth temporal activation over time. To the best of our knowledge,
the tensor version of LARC is the first tensor-based community
detection method to introduce such smoothness constraints. We
propose efficient algorithms for the problem, achieving a 2.6x qual-
ity improvement over all baselines for high temporal resolution
datasets, and consistently detecting better-quality communities for
different levels of data aggregation and varying community overlap.
In addition, LARC elucidates interpretable temporal patterns of
community activity corresponding to botnet attacks, transporta-
tion change points and public forum interaction trends, while be-
ing computationally practical—few minutes on large real datasets.
Finally, LARC provides a comprehensive unsupervised parameter
estimation methodology yielding high accuracy and rendering it
easy-to-use for practitioners.
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1 INTRODUCTION
Mapping the community structure of a network is essential for
understanding its underlying system and processes. Social circles,
gene pathways and cliques of scientific collaborators are all ex-
amples of functional units in large networks that can be modeled
as overlapping communities. Common approaches for community
detection rely on a static network [22, 49, 50], however, tempo-
ral interaction data is becoming increasingly available and, thus,
holds the potential to inform better community detection methods.
Consider, for instance, a community among professionals in the
workplace, in which communication is likely to occur during work
hours and in week days. If we attempt to detect work groups from
communications within this network, we would have to discover
and take into account this community activation pattern. The prob-
lem becomes even more challenging when a node communicates
with connections in other (non-professional) circles, e.g. family
members and friends, within the same communication medium and
with varying intensity and temporal resolution. How can we exploit
the timings of these interactions by enforcing appropriate smoothness
on their time course to tease apart overlapping communities and their
activity periods?

An illustrative example of communities and their activity de-
tected by our methods in bike trips data from Boston, MA is pre-
sented in Fig. 1(a). Nodes in this network are bike rental stations and
trips between stations (check-out to drop-off) are modeled as tem-
poral interactions. We detect the overlapping structure of groups
of stations with heavy within-group traffic in contiguous intervals.
The moving activation average over almost 2 years (top-right in
Fig. 1(a)) reveals an important change point of expanding the bike
rental service from downtown Boston (red) to the outskirts resulting
in two previously inactive communities: green—rides within down-
town and popular new stations (Harvard and MIT); and blue— rides
including the outskirts. Such an analytic tool can inform activity-
aware improvements by city planners as well as resource provi-
sioning for the the bike rental service provider. Other real-world
applications abound: resource provisioning in computer networks,
botnet detection and activity analysis, and time-aware advertising
within social network communities to name a few. Our methods

https://doi.org/10.1145/3219819.3220118
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Figure 1: (a) A visualization of 3 color-coded groups of bike rental
stations in Boston that observe strong within-group traffic in con-
tiguous intervals of time detected by our algorithm LARC. Beyond
the overlapping community structure, we identify interpretable
community activity profiles (visualized top-right) elucidating a
timepoint of the service expansion as well as university break dips.
(b) LARC’s quality in detecting ground truth (GT) communities is
consistently and up to 2.6x superior to baselines (lower divergence
(DIV) is better) when the temporal interactions are heterogeneously
spread in time—simulating data sampled at high temporal resolu-
tion (V=200,T=100. . . 20k).

are designed to handle the temporal activity heterogeneity, and
thus consistently outperform baselines in detecting ground truth
communities Fig. 1(b) with an increasing gap (up to 2.6x) when
community interaction events are spread randomly over increasing
intervals (high temporal resolution).

Our goal in this paper differs from evolutionary clustering [7, 30]
where the objective is to study the long-term evolution (growth,
splits, merges) of network clusters. Instead, we focus on the short-
term (repeated) activity within relatively stationary communities,
a setting in which the interactions within the communities are
much more common than changes in the overall community struc-
ture. Considering temporal information, however, is a knife that
cuts both ways. If aggregated inadequately, temporal network data
can reveal unrealistic patterns [13, 14, 17, 45]. Furthermore, the
appropriate window for aggregation may not be uniform for the
whole timeline [18]. Hence, in order to capitalize on temporal net-
work information, it is important to jointly learn an appropriate
temporal resolution of the data as well as the actual community
structure. Community detection is notoriously hard under multiple
popular measures including conductance [17], modularity [19] and
ratio cut [47]. Allowing for overlap among communities makes the
search space even larger [49]. Furthermore, employing the dynamic
interaction behavior—our goal in this paper—adds yet another di-
mension to the already computationally challenging problem.

We propose a general framework for Learning Activity-Regularized
Communities (LARC) which detects jointly the overlapping commu-
nity structure and the activity periods of communities, directly from
temporal network data. Our framework simultaneously optimizes
community fit and activation profiles that are close to piece-wise
constant functions, thus ensuring interpretability, resilience to noisy
interactions, and temporal oversampling. To quantify community
fit we consider both reconstruction and generative models and de-
rive efficient solvers for the resulting optimization problems. In

addition, we derive unsupervised solutions for automatic selection
of the number of communities based on activation-aware core con-
sistency diagnostic as well as for parameter learning based on the
minimum description length (MDL) principle. Our solutions scale
to large real-world instances and can be employed in a variety of
applications.

Our contributions in this work are as follows:
•Novel Problem Formulation: We propose the novel problem of
jointly learning the overlapping community structure and smooth
activation profiles from dynamic interaction data.
• FlexibleOptimization Framework:We develop a general frame-
work LARC for the problem imposing fused lasso regularization on
the activation profiles and demonstrate that it can be coupled with
both generative and reconstruction models for community fit.
• Real-World Utility: Our extensive evaluation on synthetic and
real-world data demonstrates LARC’s 2.6x quality improvement
over baselines in high temporal resolution, and superior quality
with temporal aggregation and varying community overlap. LARC
also reveals botnet attack activity and transportation change points.
It remains practical—completes in minutes—for large datasets.

LARC’s implementation, data generator and evaluation datasets
are available at http://www.cs.albany.edu/~petko/lab/code.html.

2 BACKGROUND AND RELATEDWORK
Static communities: Our work is different from static (overlap-
ping) community detection [21, 22, 34, 49, 51] in that we consider
dynamic interactions to improve the quality and also provide an
interpretable temporal activation profile for each community. Fur-
thermore, our goal is complementary to static community detection
approaches, as objective functions from the static setting can be
generalized within our framework to the dynamic one. We demon-
strate this for the affiliation generative model in [50]. In addition,
we compare to static methods by aggregating the temporal interac-
tions and demonstrate that utilizing the temporal information is
advantageous for recovering ground truth communities.
Temporal communities: Various temporal subgraph detection
methods have also been considered in the literature: communi-
ties [17, 25], dense subgraphs [15, 24, 42, 43], heavy-weight sub-
graphs [8, 37] and persistent subgraphs [3, 36]. Many of these meth-
ods detect one subgraph over one “active interval” at a time, as op-
posed to recurring activation of multiple subgraphs [3, 8, 17, 36, 37].
These methods do not consider overlap, cannot ensure stable com-
munity membership if iteratively run to extract multiple communi-
ties, and are sensitive to the temporal resolution (aggregation) of
the interaction data. Other methods enforce user-defined consis-
tency by introducing parameters such as number of occurrences
and time span [43] or some notion of persistence (e.g. time-to-live
interval) for interaction edges [3, 15, 24, 42]. Different from all the
above, we detect multiple overlapping communities over time and
let the data define the natural periods of activity which may vary
with communities, application and across time. Finally, Gauvin
et al. [25] detect both overlapping and data-driven dynamics of
communities using tensor factorization (TF), however, as we show
in our evaluation, employing TF without activity regularization is
sensitive to the temporal resolution, and thus, results in sub-par
quality.

http://www.cs.albany.edu/~petko/lab/code.html
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Evolving communities: The goal in evolutionary clustering [7,
30] and evolving community and heavy subgraph detection [16,
38] is different from ours as they characterize how community
membership changes in the long term. Insteadwe focus on detecting
the stationary overlapping community structure in a short time
frame in which membership is relatively stable.
Tensor methods: Tensor factorization (TF) has also been em-
ployed to detect communities from temporal [4, 25, 35] and multi-
view [27, 40] network data.To the best of our knowledge, this is the
first work that enforces temporal smoothness constraints in the
factorization model, in order to uncover more accurate communi-
ties. We demonstrate how tensor-based reconstruction error can
be used as a goodness-of-fit metric in our framework and further
extend tensor factorization approaches to handle our activity reg-
ularization objective. We compare LARC-TF experimentally with
popular TF approaches, and demonstrate its superior performance.

3 PROBLEM FORMULATION
We next formalize the problem of joint detection of communities
and their activity profiles. We expect that, as time progresses, com-
munities (i) exhibit relatively stationary membership and (ii) alter-
nate between active (multiple internal interactions) and inactive
states. Thus, interactions in time can be utilized to improve de-
tection as communities will be more discernible at an appropriate
temporal scale as opposed to in a fully-aggregated graph.

We represent the observed symmetric interactions among a finite
node setV , |V | = n over a finite interval of discrete time steps [1,T ]
as a 3-way tensor X ∈ Rn×n×T

≥0 , where each element is a value
modeling the number of interactions between a pair of nodes at
a given time. The tensor face of observed interactions at time t
is denoted as X (t ) and can be viewed as a weighted undirected
network snapshot for that time. Let C ∈ Rn×k

≥0 be a community
matrix specifying the strength of affiliation of nodes to each of k
communities. Let also A ∈ Rt×k

≥0 be an activation matrix, modeling
the activation profiles of communities over time. A high value of
Atk denotes high level of activity of community k at time t , i.e.
many internal interactions.

Let J (X,C,A,k ) be an error-of-fit function for k communities for
given C and A matrices. Our goal is to minimize J while enforcing
contiguous active and inactive periods for each community. To this
end, we impose a smoothness regularization on the community
activation profiles, i.e. the columns of A. In particular, we incorpo-
rate a fused lasso [46] regularizer, which has been shown effective
for piece-wise constant signal approximations [28]. In our setting
we enforce shrinkage by an L1 penalty on the activation matrix A
and total-variation denoising by an L1 penalty on the difference of
consecutive values inA’s columns. Formally, our regularization has
the following matrix form:

R (A) = λc | |A| |1 + λd | |DA| |1, (1)

where D is a row-wise difference matrix with Di,i = −1,Di,i+1 = 1
and 0 for all other elements, and λc and λd are regularization param-
eters controlling the importance of the regularization objectives.

Definition 3.1. Dynamic Overlapping Communities: Given
a dataset X, number of communities k , λc and λd , solve:

min
A,C

J (X ,C,A,k ) + R (A). (2)

The error fit function J can be instantiated based on different
models reflecting how “good overlapping comunities” should mani-
fest in terms of inter-node interactions. Next, we demonstrate two
possible realizations for J based on (i) tensor factorization (TF) and
(ii) a temporal extension of the affiliation generative model (GM).

3.1 Tensor factorization model (TF)
Since the observed interaction data X in our setting is a tensor,
tensor factorization models are a natural fit for learning the com-
munitiesC and temporal profiles A as corresponding tensor factors.
We focus on CANDECOMP/PARAFAC [11], which decomposes a
tensor into a sum of rank-one tensors X ≈

∑
k ck ◦ c

′
k ◦ ak , which

we also denote in matrix form as X ≈ [[C,C ′,A]], where C ′ is
equivalent to our community matrix C and A holds the temporal
dimension factors corresponding to our activation matrix. Note that
since temporal snapshots X (t ) are symmetric matrices, solutions
for community factor matrices will be equivalent C ≈ C ′, and thus.
we further simplify the reconstruction notation to X ≈ [[C,A]].
PARAFAC minimizes the factorization reconstruction error for a
fixed number of factors k , which we adopt as error-fit function:

JT F (X,C,A,k ) = | |X − [[C,A]]| |2F . (3)

3.2 Affiliation generative model in time (GM)
Probabilistic affiliation generative models (GM) [10, 32] provide an
alternative to reconstruction (TF) models. In static network GMs,
nodes have affiliations to communities C which drive randomly
observed connections among affiliated nodes [50]. Here, we extend
this model to overlapping communities over time, arriving at an
alternative error-of-fit function JGM . Specifically, we define the
probability of observing an edge (i, j ) at time t due to community k
as: Pk (i, j, t ) = 1−e−CikAtkCjk . Note, that if the temporal profile of
the community is fixedA:k = 1, the likelihood of interaction reduces
to that in the static affiliation model [50]. The temporal profile A
acts as a selector enabling interactions when the community is
active (Atk > 0) and inhibiting them during periods of inactivity.
The probability of interaction due to any community is then:

P (i, j, t ) = 1 −
∏
k

(1 − Pk (i, j, t )) = 1 − e−CiA(t )C
T
j , (4)

where A(t ) = diaд(At :) is a diagonal matrix of community activa-
tion states at time t . Assuming independence of interactions, the
conditional likelihood L(X |C,A) of observing X is then:

L(X |C,A) =
∏
t

∏
X(i, j,t ),0

P (i, j, t )
∏

X(i, j,t )=0
[1 − P (i, j, t )]. (5)

Note that the basic probabilistic affiliation model, unlike the re-
construction model (TF), assumes binary data, i.e. interactions are
either 1 or 0. To make it applicable to non-binary data, one can con-
sider thresholding schemes. We define the GM error-of-fit function
based on the log-likelihood LL(X |C,A) of observed interactions:

JGM (X,C,A,k ) = −LL(X |C,A) =

−
∑
t

[ ∑
X(i, j,t )=0

log (1 − e−CiA(t )C
T
j ) −

∑
X(i, j,t ),0

CiA(t )C
T
j

]
.
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4 ALGORITHMS
In this section, we propose solvers that minimize the two objectives
corresponding to the error-of-fit functions JT F and JGM combined
with the same fused lasso regularization term R (A). As we demon-
strate experimentally, both models show comparable quality in
recovering ground truth communities that is superior to baselines
due to their shared regularization approach which explicitly mod-
els smooth active/inactive community behavior. We further derive
estimators for (i) the optimal number of communities k and (ii) the
regularization parameters λc and λd .

4.1 Regularized Tensor Factorization LARC-TF
The objective for our reconstruction model is as follows:

min
C,A
| |X − [[C,A]]| |2F + λc | |A| |1 + λd | |DA| |1. (6)

It can be viewed as a regularized tensor factorization problem in
which we have imposed a fused lasso penalty R (A) to enforce
piecewise-constant and sparse solution for the time path A:i of
each community. Furthermore, in our solutions for Eq. 6 we seek
to obtain non-negative factors C and A as they model affiliation
and temporal activation respectively, thus ensuring interpretability
within our problem. We extend a commonly-used non-negative fac-
tor method for solving the PARAFAC problem, namely alternating
least squares (ALS) with non-negative factors [11]. An ALS solution
for PARAFAC keeps two factors fixed, and takes advantage of the
convexity and existence of a closed-form analytical solution for the
third. Iterative updates for any factorU1, assuming the remaining
twoU2 andU3 are fixed, have the following form:

U1 ← arg min
U
| |X (1) − (U3 ⊙ U2)U | |

2
F , (7)

where X (1) is the tensor unfolding on the updated dimension, the
factorsUi correspond to our communityC or activationAmatrices,
and ⊙ is the Khatri-Rao product [29]. We cannot use this framework
directly as we need to incorporate the fused lasso regularization
R (A). Our formulation, however, retains some of the advantageous
properties allowing an ALS-like solution, namely simplicity of up-
dates and convexity.

To solve the updates efficiently, we adopt the Alternating Di-
rection Method of Multipliers (ADMM) which has recently been
employed in a number of high-dimensional large-scale problems for
efficiently utilizing batch updates typically occurring in ALS [9]. In
particular, we devise anAlternatingOptimizationADMM (AOADMM)
which combines the alternating least squares and the ADMM frame-
work [29]. Intuitively, the main idea is to divide the problem into
simpler-to-update blocks before reconciling these partial solutions.
We enforce a non-negativity constraint on the updates of both com-
munity factors C,C ′ and design a custom update for the activation
factor A that handles the fused lasso penalty and also enforces non-
negativity. The objective in our ADMM update for A is to solve the
following convex sub-problem (adding R (A) maintains convexity):

min
A,Ã
| |X (3) − C̆Ã| |

2
F + λc | |A| |1 + λd | |DA| |1 s.t. A = ÃT ,A ≥ 0, (8)

whereX (3) is the tensor unfolding on the third temporal dimension,
C̆ = C ′⊙C is the Khatri-Rao product of the community factors and Ã
is an auxiliary ADMM variable used to updateA. The minimization

Algorithm 1 LARC-TF
Require: Tensor X, number of factors k , regularization parameters λc , λd
Ensure: Community C ≈ C ′ and activation A matrices.
1: Initialize C, C ′, A randomly
2: Initialize residual matrices RC , RC′, RA to 0
3: while The factors C, C ′, A have not converged do
4: for Each factor H in {C, C ′, A} do
5: Let RH and dim (H ) be the residual and tensor dimension of factor H
6: Let H1 and H2 be the other two fixed factors
7: H̆ ← H1 ⊙ H2
8: ρ ← tr (H̆T H̆ )

9: L ← Lower Cholesky decomposition of (H̆T H̆ + ρI )
10: F =MTTKRP(X, H̆, dim (H ))
11: while Not converged do
12: H̃ ← (LT )−1L−1 (F + ρ (H + RH )) ▷ Optimized Eq. 9
13: H ← proxOpp (H, H̃, RH , ρ, dim (H ))

14: RH ← RH + H − H̃T ▷ Eq. 11
15: end while
16: end for
17: end while
18: return C, C ′, A

can be solved by iterating over the following update sequence:

Ã← (C̆T C̆ + ρI )−1 (C̆TX (3) + ρ (A + RA )
T ) (9)

A← arg min
A

λc | |A| |1 + λd | |DA| |1 + ρ/2| |RA +A − ÃT | |2F (10)

RA ← RA +A − Ã
T , (11)

where ρ = tr (C̆T C̆ ) is the trace of the Khatri-Rao product of the
community factors and its transpose and RA is a running residual
matrix for factor A. The first “fit” update (Eq. 9) and third “residual”
update (Eq. 11) are common for all factors (i.e. C and C ′ as well as
A) and there exist fast solutions for them based on Lower Cholesky
decomposition and Matricized Tensor Times Khatri-Rao Product
(MTTKRP) in non-regularized ADMM methods [29] detailed fur-
ther in the Alg. 1. The second “regularization update” (Eq. 10) is also
referred to as the proximity operator (proxOpp) of the trace-scaled
regularization function 1/ρR (A). While it involves minimization
of a convex function of A, there is no closed-form analytic solu-
tion for it, so we employ coordinate descent with a non-negativity
constraint for this step.

Algorithm 1 shows the steps of our AOADMM approach LARC-
TF for fused lasso tensor factorization. After initialization of the
factors and their corresponding residual matrices (Steps 1,2), we
iteratively update the factors one at a time while keeping the other
two fixed (Steps 3-17) until convergence. In the ADMM update step
for each factor H (Steps 4-16) we first pre-compute several matrices
and scalars that let us speed up the fit update from Eq. 9. Namely,
the Khatri-Rao product of the fixed factors H̆ (Step 7); the trace ρ
(Step 8); a lower Cholesky decomposition of the first inverted matrix
(H̆T H̆ + ρI ) of Eq. 9 (Step 9), and the MTTKRP (Step 10). Note, that
all the above are constant during the repeated updates of H , H̃ ,RH ,
and thus precomputing them only once saves time. In the updates
of H (Step 13) we employ the appropriate proximity operator for
each factor. For factors C,C ′, since we enforce non-negativity the
proximity operator simply replaces negative elements with 0, i.e.
element-wisemax (H , 0). If the update is for the activity factor A,
however, we need to solve the minimization problem in Eq. 10.
To this end, we perform a coordinate descent with line search to
determine an appropriate learning rate β , where the main update
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is along the gradients for each timestep:

∂/∂At = λc1 + λd (sдn(At −At−1) − sдn(At+1 −At ))

+ρ (RA +At − Ãt ),

where At is a short hand for the t-th row of A, and sдn() is the
element-wise sign function setting elements to {+1,−1} depending
on their sign. Non-negative projection, similar to those for C and
C ′, is also applied at the end of the gradient descent for A.

The gradient descent in Step 13 has the highest computational
footprint, being nested in two convergence loops and further de-
pending on T to ensure smoothness of A’s columns. However, all
operations preserve sparsity and, thus, are expected to scale almost
linearly with the sizes of the input. Additionally, allowing a fixed
update size instead of a full line search results in significant speedup
at minimal quality expense. Our experimental evaluation reveals
that with increasingT the number of iterations forA’s convergence
grows slightly, however, the overall running time remains practical
for our largest instances.

4.2 Affiliation Model Solver LARC-GM
To minimize the objective fGM = JGM (X ,A,C,k ) + R (A), we con-
sider block coordinate descent methods. The gradient with respect
to a community membership vector Ci is:

∂ fGM
∂Ci

=
∑
t

( ∑
X(i, j,t )=1

CjA(t )
e−CiA(t )C

T
j

1 − eCiA(t )C
T
j
−
∑

X(i, j,t )=0
CjA(t )

)
.

Similarly, differentiating with respect to Atk , we get:

∂ fGM
∂Atk

=
∑

X(i, j,t )=1

CikCjke
−CiA(t )CT

j

1 − e−CiA(t )C
T
j
−

∑
X(i, j,t )=0

CikCjk

−λs − λd (sдn(Atk −A(t+1)k ) − sдn(A(t+1)k −Atk )),

which can be combined into a single update for the blockAt :. Direct
coordinate or gradient descent will not scale for large instances X,
hence we seek to scale our solutions by avoiding re-computation of
the full gradient. Particularly, similar to the static network affiliation
model solutions [50], only a small number of elements are updated
in the unobserved edges component. Hence, one can re-write the
no-edge portion of the update as:∑

Xi, j,t=0
CjA(t ) =

∑
j
CjA(t ) −CiA(t ) −

∑
j ∈N t

i

CjA(t ), (12)

where N t
i is the set of neighbors of i (i.e. nodes with which i in-

teracted) at time t . We can thus, compute and store
∑
j A(t )Cj at

each iteration (over all i), leading to faster updates of Ci over the
much smaller set of neighbors. A similar approach can be adopted
to speed upA’s gradient as well. First, we notice that we can update
either entire faces (fixed t ) or communities (fixed k) at a time. In the
first case, the

∑
i, j<X (t ) CikCjk term can be similarly decomposed

by storing
∑
j Cjk in vector form for all k , as CΣ =

∑
j Cj . We can

then iterate over i (instead of i, j) and compute:
∂ fGM
∂A(t )

= −λs I − λd ∗ (sдn(A(t ) −A(t − 1)) − sдn(A(t + 1) −A(t )))

+diaд
(∑

i

( ∑
j ∈N t

i

Ci ◦Cje
−CiA(t )Cj

1 − e−ciA(t )Cj
−Ci ⊙ (CΣ −Ci −

∑
j ∈N t

i

Cj )
))
,

Algorithm 2 LARC-CCD: Detect k∗ with Time-Warped CCD
Require: Tensor X, factorization [C, C ′, A] produced by LARC
Ensure: Activity-aware optimal k∗
1: [U , Σ, V ]← SV D (A)
2: for r=1: k do
3: Πr = U (:, 1 : r ) ∗U (:, 1 : r )T
4: Xr = X ×3 Πr
5: Ar = Πr ∗ A
6: c(r) = efficient_corcondia(Xr ,C, C

′
, Ar ,1k )

7: end for
8: k∗ = AutoTen(max(c))
9: return k∗

where ◦ denotes the Hadamard (element-wise) product of the two
matrix rows, and diaд() is the diagonal matrix of the argument
vector. LARC-GM then iterates between coordinate descent steps
on for C and A using also a line search for an appropriate learning
rate. The update optimizations in LARC-GM increase its speed
compared to direct coordinate descent significantly, however, as
we show experimentally LARC-TF scales much better than than
LARC-GM, while they both produce better quality communities
compared to baselines.

4.3 Learning the number of communities k
An important question when analyzing a new dataset is how to set
k . We extend TF consistency approaches to our activity regularized
objectives and develop a method LARC-CCD for selecting k which
outperforms regularization-oblivious alternatives. Finding the rank
of a tensor is a NP-hard problem, however, there exist heuristic mod-
els such as the Core Consistency Diagnostic (CCD) algorithm [12, 41].
Given a tensor X and its PARAFAC factorization [C,C ′,A], CCD
provides a number indicative of the factorization quality, thus al-
lowing for selection of maximum number of good-quality commu-
nities [39]. In our case, however, using CCD as a black-box may
lead to bad estimates of k as our solution’s factorization [C,C ′,A]
is a product of an activity smoothness regularization, which as
we demonstrate experimentally, is different from no-regularization
PARAFAC factorization.

In order to make CCD amenable to our regularization, we need to
“compress” the temporal mode of the tensor in a way that respects
the temporal smoothness discovered by LARC. If A yields very
smooth latent factors, we aim to compress the temporal mode
accordingly, so that we adjust the tensor to that smoothness. The
key to that compression is the row space of the activity matrix A: if
there exists a subspace of that row space which, when we project
both the tensor and matrix A, yields a higher core consistency
than simply using the computed factors and the uncompressed
tensor, we choose that subspace to generate the core consistency
that characterizes the quality of our solution.

Algorithm 2 summarizes our method for learning k called LARC-
CCD. Given X and a candidate decomposition [C,C ′,A], we first
compute the the Singular Value Decomposition (SVD) ofA = U ΣVT ,
whereU is a basis for A’s row space. Then we quantify the activity-
aware CCD c (r ) for all r ≤ k (Steps 2-8) and maintain the r that
maximizes c (r ). For each r we create a projector matrix Πr for the
subspace defined by the dominant r singular values of A. We use
Πr to compress the tensor X by taking its 3-mode product ×3 with
Πr (Step 4). The n-mode product multiplies a tensor and a matrix
that match on the n-th mode of the tensor, in the same fashion as
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Statistics k % Deviation LARC-TF TF [25] NMF [33] BigCLAM [50]
Dataset |V| T nnz k LARC-CCD AutoTen[39] DIV NMI time DIV NMI time DIV NMI time DIV NMI time
Synthetic 200 20k 61k 5 32% 71% 0.24 1 62 0.61 0.24 5 0.72 0.13 8 0.58 0.09 2
Football 115 2k 17k 12 13% 42% 0.08 0.91 38 0.14 0.77 28 0.64 0.1 1 0 1 1
Reality Min. 94 8k 0.1m 5 12% 56% 0.62 0.03 30 0.66 0.03 6 0.66 0.03 1 0.80 0.08 1
Reddit-sports 120k 267 1.1m 15 27% 57% 0.53 0.27 57 0.62 0.11 41 0.67 0.19 131 .90 0.02 40
Reddit-news 140k 267 0.7m 5 21% 40% 0.35 0.26 13 0.36 0.21 10 0.48 0.22 54 0.77 0.14 16
Bike Rides 145 628 0.8m - 11%∗ 45%∗ - - 14 - - 14 - - 1 - - 1
Botnet 20k 6k 0.5m - 20%∗ 20%∗ - - 10 - - 1 - - 1 - - 3

Table 1: Dataset statistics (cols 1-5) and success in the estimation of k in datasets with ground truth (GT) communities (cols 6-7). Comparison
of quality (DIV and NMI) and running time in seconds for all competing methods and datasets (cols 8-19). Note that, due to the lack of GT
communities in the Bike Rides and Botnet datasets, only running time and variance in the estimation of k is reported.

matrix-matrix multiplication. We similarly compressA to obtainAr
(Step 5) and compute the core consistency of Xr using [C,C ′,Ar ],
employing efficient_corcondia [41] (Step 7). The highest core con-
sistency value c (r ) is supplied to AutoTen [39] which estimates the
rank k∗, which reveals the number of communities in the data (Step
9). While the optimal k detection is tensor-oriented, one can easily
adopt it for GM and other error-of-fit models, relying on a fixed
natural number of communities in the data.

4.4 Learning λc and λd using MDL
The regularization parameters λc , λd control the relative impor-
tance of the fused lasso regularization in our objective functions.
Thus, it is important to set them appropriately to balance the con-
tributions of J and R (A). We propose to set λc and λd based on
the Minimum Description Length (MDL), where we aim to mini-
mize the number of bits needed to encode errors due to the fit and
the number of “switches” between active and inactive community
states in A. Intuitively, the higher the deviation of each element of
X(i, j, t ) from its reconstruction, the more bits are needed to encode
this error in a lossless compression employing the characterization.

For the case of LARC-TF, we formalize the average bits to encode
the the error of reconstruction as:

B
{λc ,λd }
T F = − log

(
| |X −X {λc ,λd } | |

2
F

)
/|X |, (13)

whereX {λc ,λd } is the reconstruction obtained by employing LARC-
TF with parameters set to λc and λd , and |X | is the number of
elements of the tensor. Similarly we define the average bits to
encode error due to LARC-GM as:

B
{λc ,λd }
GM = − log

( ∑
i, j,t

[X(i, j, t ) − P {λc ,λd } (i, j, t )]
2)/|X |, (14)

where P {λc ,λd } (i, j, t ) is the probability of observing an edge ac-
cording to the model learned by LARC-GM using λc and λd .

The second part of ourMDL encoding is the number of “switches”
between active and inactive community states which we quantify
as ∆{λc ,λd } = − log( | |DA {λc ,λd } | |

2
F )/|A {λc ,λd } |, where A {λc ,λd } is

the community activation matrix learned using the correspond-
ing regularization parameters by either of the models. To find the
parameters, we then minimize the total number of bits:

{λc , λd } = arg minB {λc ,λd } + ∆{λc ,λd }, (15)

where B {λc ,λd } ∈ {B {λc ,λd }GM ,B
{λc ,λd }
T F }. Minimizing the objective

depends on invoking LARC-TF or LARC-GM, thus, we perform a
grid search over possible values and pick the configuration that
minimizes MDL. We demonstrate that in a variety of synthetic and

real datasets setting the parameters according to the MDL principle
results in optimal quality of detecting ground truth communities.

A similar heuristic can be utilized to learn a variety of parameters,
including our rank. In that case, however, we would need a more
complex encoding to account for the additional information held
by an increased rank; we therefore prefer the more established rank
method above.

5 EXPERIMENTAL EVALUATION
We evaluate the quality, scalability, and real-world utility of LARC
on both real and synthetic datasets. All experiments are for single
core execution of our methods implemented in Matlab. For tensor
manipulations we use the Tensor Toolbox for Matlab [5, 6].

5.1 Data
We summarize the datasets used for evaluation in Table 1.
Synthetic: We generate the community structure and a smooth
temporal activation. |V | nodes are randomly assigned to k overlap-
ping communities C while fixing the average community overlap
(Jaccard similarity). Piece-wise constant activation profiles A:k are
sampled from a Markov chain with active 1 and inactive 0 states for
length T and state-change probability of p = 0.2. We next generate
temporal interactions for each snapshot X (t ) using A,C and based
on the GM specified in Sec 3.2. We also “stretch” the temporal di-
mension of instances in a controlled fashion to simulate temporal
oversampling and varying rates of interactions within communities
across time. We map each original time step t to s ∼ Poisson(λst )
time steps, where the the interactions in X (t ) are uniformly dis-
tributed across the s new snapshots. This makes recovering the
original profile and communities increasingly challenging.
Real-world:We employ several real-world datasets from different
domains: Football [44]; Reality Min. [20] captures the temporal inter-
actions (calls, texts, BT proximity) among students and faculty with
self-reported friendship relations which we use to get ground truth
communities employing BigCLAM [50]; Reddit datasets contain
exchanges between users (posts and replies) on reddit.com, where
the ground truth communities are based on subset of sports and
news subreddits and their participants [2]; Bike Rides consists of
rides between bike rental stations in Boston, MA over 2 years [1];
and Botnet contains inter-IP flows of university normal and bot-
net machines and includes several time-annotated DDoS attacks
involving traffic of 10 bot and 1 victim IP [23].
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Figure 2: Comparison of LARC-TF’s quality with that of competing techniques for varying levels of temporal aggregation on synthetic
(V=200,T=20000)(a), and Reality Min. (b) datasets. Quality comparison for increasing community overlap (measured in Jacccard Similarity)
on synthetic data (V=200,T=2500) (c). Comparison of scalability with increasing V and fixed nnz=const (T=50) (d), increasing V and nnz=1%
(T=50) (e), and increasing T (V=100) (f). Quality of estimating the GT number of communities k for increasing average stretch on synthetic
(T=1k,V=100) (g). DIV and MDLfrom Eq. 15 as a function of the regularization parameters λc and λd (h).

5.2 Experimental Setup
Baselines: We evaluate our methods’ quality in retrieving ground
truth (GT) overlapping communities and running time in compari-
son to three baselines. TF is a tensor factorization method proposed
for overlapping temporal community detection by Gauvin et al. [25]
and can also be viewed as a special case of our LARC-TF, where
regularization in time is turned off. BigCLAM is the state-of-the-
art method for overlapping community detection based on the
affiliation generative model, which we extend to time to obtain
LARC-GM [50]. Non-negative matrix factorization (NMF) is another
popular approach for overlapping communities [33]. Since they
operate on static graphs, we employ both BigCLAM and NMF on
an aggregated temporal interactions static graph.
Metrics: For datasets with GT, we compare the level of agreement
between GT and learned communities by all competing techniques.
The Kullback—Leibler divergence (KL-Div) has been previously used
to evaluate overlapping cluster solutions [26], where both GT and
learned communities are treated as distributions over the nodes
and the measure quantifies the differences between them. KL-Div is,
however, not symmetric and also not defined when the distributions
have regions of 0 density. Hence, we apply a metric alternative
Jansen-Shannon divergence (DIV) [48] that handles 0 probabilities
and varies between 0 (no divergence) and 1. We also adopt the
normalized mutual information (NMI) [31] to compare learned and
GT communities, where higher NMI corresponds to better detection
of GT. This measure requires 0/1 membership, hence, we threshold

community vectors using values ranging in [10−3, 1] in order to
obtain the best NMI score for each method.

5.3 Quality, scalability, and parameter selection
Quality. The main advantage of LARC is in its treatment of time:
enforcing solutions in which communities alternate between ac-
tive/inactive in contiguous periods. To test this experimentally, we
simulate temporal oversampling by stretching a smooth instance
with expected on/off behavior by “stretching” it in time and spread-
ing a given time slice’s temporal interactions to several new time
slices controlled by an average stretch parameter. Fig. 1(b) (Sec. 1)
shows a quality comparison in terms of Divergence (DIV) from GT
communities of all competing techniques for increasing average
stretch of a Synthetic dataset. For small stretch, i.e. a well-behaved
smooth instance, LARC-TF and LARC-GM outperform TF by a
small margin and static methods (NMF and BigCLAM) by a factor
of 3 in DIV. For increasing stretch, LARC-TF maintains a near con-
stant quality, while TF deteriorates to the quality level of BigCLAM
(2.6x deterioration). This behaviour is due to regularization forcing
LARC-TF to continue considering a temporal segmentation of time
at which communities are most discernible, while TF is affected by
only observing partially the interactions of a community in indi-
vidual timeslices and not employing any smoothness in time. At
the same time, static methods suffer from an opposite extreme -
over-aggregation in which the communities become also hard to
discern. While LARC-GM performs very well in terms of quality, it
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does not scale to long timelines due to its reliance on coordinate
descent methods for both A and C .

Since communities are elusive to the baseline methods, at both
high and low (full aggregation) temporal resolution, we next inves-
tigate the feasibility of varying regular aggregations to get better
communities in a synthetic Fig. 2(a) and the Reality Mining Fig. 2(b)
datasets. The trends in both figures reveal the aforementioned chal-
lenges at both ends of aggregation and a slightly better performance
for TF for medium aggregation. LARC, however, maintains a con-
sistently better quality than the baselines at high resolutions (on
synthetic) and as the aggregation coarsens deteriorates to the per-
formance of TF as at these levels the useful temporal information is
lost. Note, that in Reality mining (Fig. 2(b)), at the highest resolution
even LARC suffers from fragmented communities in time and reg-
ularization cannot really attain the best quality at some reasonable
small aggregation level. Note also that the GT in Reality mining
relies on BigCLAM-extracted overlapping communities from the
user-reported friendship graph and thus may not be ideal, resulting
in relatively high DIV values. Comparison to LARC-GM is again
omitted due to limited scalability for high temporal resolutions and
similar to LARC-TF’s performance for low-resolutions.

Naturally, the quality of community detection deteriorates with
the amount of overlap among communities as evident in Fig. 2(c).
However, thanks to the timing of interactions coupled with smooth-
ness regularization LARC-TF consistently outperforms all baselines.
Interestingly, the temporal information loses its utility when there
is very small overlap and BigCLAM performs on par with LARC-
TF although using fully aggregated as opposed to temporal data.
As demonstrated in previous studies, NMF performs consistently
worse than BigCLAM and thus all other competing methods.
Scalability.While exhibiting good quality on small instances LARC-
GM does not scale well with both V : Figs. 2(d), 2(e) and T : Fig. 2(f)
due to its reliance on coordinate methods for both A and C . LARC-
TF, on the other hand, scales similar to TF and both of them slightly
slower than the static baselines for increasing V while keeping the
number of non-zeroes (nnz) in the input constant Fig. 2(d). NMF and
BigCLAM’s time increases on par with the TF methods when the
nnz is kept at 1% of the tensor size for increasing V Fig. 2(e), since
the resulting aggregate graphs densify with the nnz. As expected,
since LARC-TF performs smoothing via a descent method on the
activation profiles A, its running time increases faster than that
of TF—computational time invested to enable its superior quality
performance. It, nevertheless, completes within a few minutes on
our largest real-world and synthetic datasets Tbl 1 and Fig. 2(f). It
is worth to note that since it is an AOADDMmethod, it is amenable
to parallel and distributed implementations, which can enable its
feasible adoption for analysis of even larger timelines.
Parameter selection. We evaluate the ability of our estimation
approach LARC-CCD to recover the GT number of communities
kGT and compare it to a regularization-oblivious approach from the
literature AutoTen [39]. Since both approaches require a maximum
kmax to probe, we set this value to 2kGT for both methods in
synthetic data and kmax = 20 for all real-world datasets. Fig. 2(g)
shows the comparison of the two competing methods, where the
quality measure on the vertical axis is the percent deviation of
the estimated kEST from the GT one: |kEST −kGT |kGT

. We report the

average of 10 increasing average stretch of a synthetic dataset.
LARC-CCD outperforms AutoTen consistently by at least a factor
of 2 in terms deviation. The reason for this performance is the
regularization-enabled compression we perform on the input tensor
detailed in Alg. 4.3. This superior performance in estimating the
number of communities is also evident in real-world datasets as
reported in columns 6 and 7 of Tbl. 1.

We also evaluate the utility of our MDL approach for automati-
cally selecting the regularization parameters λc and λd Fig. 2(h). In
this experiment, we vary the two parameters in exponential steps
and compare the shape of the DIV surface and that for MDL cost,
employing the TF bit cost B {λc ,λd }T F . Since the global minima of both
functions are attained for the same region of values of the parame-
ters, MDL can successfully be employed as a proxy for parameter
estimation in conjunction with calls to LARC. We observe similar
behavior on other datasets as well. It is worth noting that while
DIV has multiple local minima, MDL is much more smooth, hence
line-search approaches can be adopted to speed-up the estimation
without covering the full grid of parameters.
Overall evaluation and discussion. A comparison of the quality
and running time for all datasets is presented in Tbl. 1. Here we
show two measures of quality: DIV and NMI, and report all run-
ning times in seconds. In terms of LS divergence (DIV), LARC-TF
outperforms baselines on all datasets with ground truth except for
the Football dataset on which BigCLAM and NMC perform slightly
better. The reason for this behavior is the very low overlap between
communities in this dataset rendering temporal interactions dis-
advantageous compared to a full aggregation. Similar behavior is
observed in our quality with increasing overlap experiment Fig. 2(c)
where for the minimum overlap BigCLAM similarly performs on
par with LARC-TF. The pattern is similar for NMI with the excep-
tion of the Reality mining dataset, where BigCLAM has a slightly
higher, though very close to 0 NMI. As we discussed earlier, the
ground truth for this dataset is based on static overlapping friend-
ship communities detected by BigCLAM, which may not align well
with the multi-mode user interactions observed in the data, thus
resulting in relatively low quality on all datasets.

In terms of running time, while LARC-TF is slower than alter-
natives, its running time exceeds 1 min only on the long (T = 20k)
synthetic instance, making it practical to employ on large real-world
datasets. An important observation here is that while the aggre-
gate methods are typically much faster than TF and LARC-TF, their
running time increases even beyond that of the temporal methods
on the Reddit datasets due to the aggregate matrix they operate on
being significantly denser than the individual time snapshots on
which TF and LARC-TF operate.

LARC-GM’s running time increases faster with the input size
(Figs. 2(d),2(e),2(f)) due to the more expensive gradient solver. How-
ever, its quality on small instances is promising (see first two points
in Fig. 1(b)) due to the same temporal regularization we employ in
LARC-TF. Better solvers (e.g. stochastic alternatives) for JGM may
render it a better fit for some datasets in practice. In addition, alter-
native error-of-fit functions for communities (i.e., beyond JT F and
JGM ) may also be advantageous within our general regularization
framework. We plan to investigate the above questions in future
research.
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Figure 3: An activation profile of a Reality Mining community

5.4 LARC at work
Beyond our analysis of the temporal changes in the Bike Rides
dataset in Fig. 1(a), we also consider a sample community activity
profile from the Reality mining dataset in Fig. 3. Weekday mid-
nights are marked by grey lines, while the weekend is enclosed
between red vertical lines. Outside of a Saturday morning spike,
variance in activity seems lower overall during theweekend, though
interpretation of this pattern may require more thorough commu-
nity information. The diversity of potential options for ground
truth and interaction types in the Reality Mining data (friendships,
work, and external contacts; proximity and calls) makes assigning
definitive communities and behaviors difficult, which may explain
relatively higher DIV values. While these patterns are more or less
expected, the activity profiles may be employed to detect abnor-
mal activity movements, thus enabling anomaly detection at the
community level. We detected such a big change in the bike service
data in Fig. 1(a) which coincided with the geographical expansion
of the service. The activity profiles can also be used to inform ap-
propriate temporal aggregations of network data which can then be
employed for other tasks: e.g. temporal link prediction, partitioning
and others.

While we do not have an exact GT community structure for
the Botnet data, the meta-data specifies the set of bot IPs and that
of the victim which is flooded by packets several times during
the trace in coordinated DDoS attacks. We employ LARC-TF on
this dataset, setting k = 3, (based on the recommendation from
our k estimation approach LARC-CCD) and examine the resulting
communities. The entire botnet and the victim are consistently
included in one of the reported communities. While in terms of
total number of network flows, the botnet traffic does not stand out
in this trace, the coordinated timings of the attack allow LARC-TF
to group participants in the attack, demonstrating its potential as a
network traffic analysis tool for security professionals.

6 CONCLUSION
We proposed LARC, a novel dynamic overlapping community de-
tection framework to learn jointly the community structure and
the temporal community activity profile. It enforces interpretable
piece-wise constant activity profiles via a temporal smoothness
regularization. We demonstrated that our framework can success-
fully accommodate different measures of community fit. Our pro-
posed algorithms, by virtue of effectively leveraging the temporal
aspect of the data, demonstrate 2.6× quality improvement over
state-of-the-art baselines on data with ground truth communities.
We demonstrate the importance of regularizing time when dealing
with dynamic networks, and suggest that similar or alternative
regularizations can be implemented on top of other community

detection methods. Furthermore, LARC produced interpretable and
intuitive results when applied “in thewild”, to a variety of real-world
scenarios (botnet attacks, change points in urban transportation
patterns, and public forum interaction trends), demonstrating its
wide applicability and practicality as a data mining tool. In addi-
tion to our optimization techniques, we provided a comprehensive
set of tools for choosing estimating all method parameters in an
unsupervised manner, rendering LARC useful for researchers and
practitioners alike.
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