Trie Based Subsumption and Improving the pi-Trie Algorithm

Andrew Matusiewicz, Neil V. Murray, Erik Rosenthal

August 25, 2010
What are prime implicates and why care?

- Smallest, simplest disjunctions implied by a statement
What are prime implicates and why care?

- Smallest, simplest disjunctions implied by a statement
- Knowing all prime implicates, clausal implication is easy
What are prime implicates and why care?

- Smallest, simplest disjunctions implied by a statement
- Knowing all prime implicates, clausal implication is easy
- Used in non-monotonic and abductive reasoning
What are prime implicates and why care?

- Smallest, simplest disjunctions implied by a statement
- Knowing all prime implicates, clausal implication is easy
- Used in non-monotonic and abductive reasoning
- Dual, prime implicants, used for circuit minimization
What are prime implicates and why care?

- Smallest, simplest disjunctions implied by a statement
- Knowing all prime implicates, clausal implication is easy
- Used in non-monotonic and abductive reasoning
- Dual, prime implicants, used for circuit minimization
- Research partner uses in code gen. for embedded systems (Sandeep Shukla, Virginia Tech.)
Propositional Clauses

- Propositional variables v_1, v_2, \ldots are either true or false
- Connectives \land (and), \lor (or), \neg (not).
- A literal ℓ is a negated or non-negated variable: v_i, $\neg v_i$

- A clause is an “or” of literals:

$$ (v_1 \lor \neg v_3 \lor v_2 \lor v_9) = \{v_1, \neg v_3, v_2, v_9\} $$
Prime Implicates

A clause C is an “implicate” of a formula \mathcal{F} iff the statement

$$\mathcal{F} \Rightarrow C$$

is a tautology.
Prime Implicates

A clause C is an "implicate" of a formula \mathcal{F} iff the statement

$$\mathcal{F} \Rightarrow C$$

is a tautology.

C is a "prime implicate" of \mathcal{F}, written

$$C \in \mathcal{P}(\mathcal{F})$$

iff C is an implicate of minimal length.
The Prime Implicate Production Problem

Given: A boolean formula F.

Produce: The set $\mathcal{P}(F)$ of all prime implicates of F.
Algorithm Scheme

To calculate $\mathcal{P}(\mathcal{F})$ from \mathcal{F},

1. Split \mathcal{F} by substitution of 0, 1 for ν, yielding $\mathcal{F}_0, \mathcal{F}_1$.

To calculate $\mathcal{P}(\mathcal{F})$ from \mathcal{F},

1. Split \mathcal{F} by substitution of 0, 1 for ν, yielding $\mathcal{F}_0, \mathcal{F}_1$.
2. By recursion obtain $\mathcal{P}_0 = \mathcal{P}(\mathcal{F}_0)$ and $\mathcal{P}_1 = \mathcal{P}(\mathcal{F}_1)$.

To calculate $P(F)$ from F,

1. Split F by substitution of 0, 1 for v, yielding F_0, F_1.
2. By recursion obtain $P_0 = P(F_0)$ and $P_1 = P(F_1)$.
3. Combine P_0, P_1 with splitting formula to obtain $P(F)$.

Base cases are boolean constants.
To calculate $P(F)$ from F,

1. Split F by substitution of 0, 1 for v, yielding F_0, F_1.
2. By recursion obtain $P_0 = P(F_0)$ and $P_1 = P(F_1)$.
3. Combine P_0, P_1 with splitting formula to obtain $P(F)$.

Base cases are boolean constants.
Subsumption Classes of Primes

Let $x \in \{0, 1\}$
Subsumption Classes of Primes

Let \(x \in \{0, 1\} \)

\[\mathcal{P}_x = \mathcal{P}(\mathcal{F}[x/v]) \quad \text{— Prime implicates of } \mathcal{F}_0, \mathcal{F}_1 \]
Subsumption Classes of Primes

Let $x \in \{0, 1\}$

$\mathcal{P}_x = \mathcal{P}(\mathcal{F}[x/\nu])$ — Prime implicates of $\mathcal{F}_0, \mathcal{F}_1$

$\mathcal{P}_x = \mathcal{P}_x^2 \cup \mathcal{P}_x^\infty$ — Split \mathcal{P}_x into disjoint clause sets
Subsumption Classes of Primes

Let \(x \in \{0, 1\} \)

\[P_x = \mathcal{P}(\mathcal{F}[x/v]) \] — Prime implicates of \(\mathcal{F}_0, \mathcal{F}_1 \)

\[P_x = P_x^\sqcup \cup P_x^\triangleleft \] — Split \(P_x \) into disjoint clause sets

\[P_x^\sqcup \] — Clauses in \(P_x \) subsumed by some clause in \(P_{(1-x)} \)
Subsumption Classes of Primes

Let \(x \in \{0, 1\} \)

\[\mathcal{P}_x = \mathcal{P}(\mathcal{F}[x/v]) \] — Prime implicates of \(\mathcal{F}_0, \mathcal{F}_1 \)

\[\mathcal{P}_x = \mathcal{P}_x^\supseteq \cup \mathcal{P}_x^\subseteq \] — Split \(\mathcal{P}_x \) into disjoint clause sets

\[\mathcal{P}_x^\supseteq \] — Clauses in \(\mathcal{P}_x \) subsumed by some clause in \(\mathcal{P}_{1-x} \)

\[\mathcal{P}_x^\subseteq \] — Remainder of \(\mathcal{P}_x \), i.e. those not subsumed in \(\mathcal{P}_{1-x} \)
Splitting Formula for Primes

Given $\mathcal{P}_0, \mathcal{P}_1$, we find subsumption classes $\mathcal{P}_0 \trianglerighteq, \mathcal{P}_1 \trianglerighteq, \mathcal{P}_0 \pitchfork, \mathcal{P}_1 \pitchfork$.

From this:

$$
\mathcal{P}(F) = \left(v \lor \mathcal{P} \pitchfork \right) \cup \left(\neg v \lor \mathcal{P} \trianglerighteq \right) \cup U
$$

Where U is the maximal subsumption-free subset of $\mathcal{P}_0 \cup \mathcal{P}_1 \cup \{ \mathcal{C} \cup \mathcal{D} | \mathcal{C} \in \mathcal{P} \pitchfork, \mathcal{D} \in \mathcal{P} \trianglerighteq \}.$
Splitting Formula for Primes

Given $\mathcal{P}_0, \mathcal{P}_1$, we find subsumption classes $\mathcal{P}_0^\triangleright, \mathcal{P}_1^\triangleright, \mathcal{P}_0^\ll, \mathcal{P}_1^\ll$.

From this:

$$\mathcal{P}(F) = (v \lor \mathcal{P}_0^\ll) \cup (\neg v \lor \mathcal{P}_1^\ll) \cup \mathcal{U}$$

Where \mathcal{U} is the maximal subsumption-free subset of

$$\mathcal{P}_0^\triangleright \cup \mathcal{P}_1^\triangleright \cup \{C \cup D \mid C \in \mathcal{P}_0^\ll, \ D \in \mathcal{P}_1^\ll\}$$
What data structure?

How to represent clause sets so our splitting formula may be realized efficiently?
Tries – Compact String Storage

▶ Dictionary data structure using rooted, labeled trees.

\{\text{bear, beer, act, brain}\} =

▶ Originated by E. Fredkin (1960)
Clauses as Strings

Clauses translate to strings over the language \{+,-,0\}.

- + at index \(i\) — Positive occurrence of literal \(v_i\)
- - at index \(i\) — Negative occurrence of literal \(v_i\)
- 0 at index \(i\) — \(v_i\) not in clause

Trailing 0s are implicit.

\[
\{v_1, \neg v_3\}
\]
Clauses as Strings

Clauses translate to strings over the language \{+, -, 0\}.

- + at index i — Positive occurrence of literal v_i
- - at index i — Negative occurrence of literal v_i
- 0 at index i — v_i not in clause

Trailing 0s are implicit.

\[
\{v_1, \neg v_3\} \rightarrow v_1 \lor 0 \lor \neg v_3
\]
Clauses as Strings

Clauses translate to strings over the language \(\{+, -, 0\} \).

- \(+ \) at index \(i \) — Positive occurrence of literal \(v_i \)
- \(- \) at index \(i \) — Negative occurrence of literal \(v_i \)
- \(0\) at index \(i \) — \(v_i \) not in clause

Trailing 0s are implicit.

\[
\{v_1, \neg v_3\} \rightarrow v_1 \lor 0 \lor \neg v_3 \rightarrow +0-\
\]
Clause Sets as Ternary Tries

\{\{v_1, \neg v_3\}, \{\neg v_1, v_2\}, \{v_2, \neg v_3\}, \{\neg v_1, v_3\}\}
Clause Sets as Ternary Tries

\{\{v_1, \neg v_3\}, \{\neg v_1, v_2\}, \{v_2, \neg v_3\}, \{\neg v_1, v_3\}\}
\{0+\neg, -+, 0+-, -0+\}
Each branch represents a clause. Assume clause sets prefix-free.
Advantages of Trie Representation

- Compact — common prefixes are shared
- Compressible into DAG form for storage
- Recursive structure allows efficient manipulation by recursive algorithms

Others, such as Stephan Schulz (2004), have used tries to represent sets of clauses.
Clause Tries

Construct trie recursively as:

```
+ - 0
P ⊙ ◁
0 P ⊙ ◁
1 U
```

What operations on tries are needed?

- Set Union
- Set Minus — $\mathcal{P}_x^\boxright = \mathcal{P}_x \setminus \mathcal{P}_x^\boxleft$.
- Subsumption — Determine $\mathcal{P}_0^\supseteq, \mathcal{P}_1^\supseteq$
- Clause Union — Like Cartesian product with union instead of pairing.
Subsumption operators

On two clause sets A, B,

$Subsumed(A, B) = \{ C \in A \mid C \text{ is subsumed by some clause in } B \}$

e.g. $\mathcal{P}^3_x = Subsumed(\mathcal{P}_x, \mathcal{P}_{(1-x)})$
Subsumption operators

On two clause sets A, B,

$$\text{Subsumed}(A, B) = \{ C \in A \mid C \text{ is subsumed by some clause in } B \}$$

e.g. $\mathcal{P}_x \supseteq \text{Subsumed}(\mathcal{P}_x, \mathcal{P}_{(1-x)})$

$$\text{SubsumedStrict}(A, B)$$

— Variant where subsumption is strict, i.e. \subsetneq
Pairwise Clause Union

On two clause sets A, B,

$$Unions(A, B) = \{ C \cup D \mid C \in A \text{ and } D \in B \}$$

e.g.

$$U = \mathcal{P}_0 \cup \mathcal{P}_1 \cup Unions(\mathcal{P}_0, \mathcal{P}_1)$$

$$\mathcal{U} = U \setminus SubsumedStrict(U, U) \text{ (remove subsumed clauses)}$$
Implementation

- “∪”, “\”, “Subsumed”, “SubsumedStrict”, and “Unions” are implemented on clause tries.
Implementation

- “∪”, “\”, “Subsumed”, “SubsumedStrict”, and “Unions” are implemented on clause tries.
- These drive prime implicate generation system written in Java.
Implementation

- "∪", "\", "Subsumed", "SubsumedStrict", and "Unions" are implemented on clause tries.
- These drive prime implicate generation system written in Java.
- Recursive implementation yields significant speedup over our previously published method.
Implementation

- “∪”, “\”, “Subsumed”, “SubsumedStrict”, and “Unions” are implemented on clause tries.
- These drive prime implicate generation system written in Java.
- Recursive implementation yields significant speedup over our previously published method.
- Old method iterates over pairs \((C, D), C \in \mathcal{P}_0, D \in \mathcal{P}_1\)
Old/new runtime comparison

Old vs New pi-trie Algorithms on 15 var 3-CNF
Recursive Subsumption on Tries

Algorithm 1: Subsumed(A,B)

if \(A = \emptyset \) or \(B = \emptyset \) then

\[T \leftarrow \emptyset; \]

else if \(B = \{\{\}\} \) then

\[T \leftarrow A; \]

else

\[T^+ \leftarrow \text{Subsumed}(A^+, B^+) \cup \text{Subsumed}(A^+, B^0); \]
\[T^- \leftarrow \text{Subsumed}(A^-, B^-) \cup \text{Subsumed}(A^-, B^0); \]
\[T^0 \leftarrow \text{Subsumed}(A^0, B^0); \]

return \(T \);

Runtime for clause sets that are internally subsumption-free is difficult to pin down analytically.
Algorithm 2: NaiveSubsumed(A,B)

$H \leftarrow \emptyset$;

for $C \in A$, $D \in B$ do

if D subsumes C then $H \leftarrow H \cup \{C\}$;

return H;

▶ Iterates over pairs — quadratic runtime.
Subsumption with Shared Prefixes

$A = \{ \{ v_1, v_2, \neg v_3 \}, \{ v_1, v_2, v_4 \} \}$

$B = \{ \{ v_1, v_4 \} \}$

$Subsumed(A, B) = ?$
Subsumption with Shared Prefixes

\[A = \{\{v_1, v_2, \neg v_3\}, \{v_1, v_2, v_4\}\} \]
\[B = \{\{v_1, v_4\}\} \]

Subsumed \((A, B) = ?\)

As strings,
\[A = \{++-, ++0+\} \]
\[B = \{+00+\} \]
Subsumption with Shared Prefixes

\[A = \{ \{ v_1, v_2, \neg v_3 \}, \{ v_1, v_2, v_4 \} \} \]
\[B = \{ \{ v_1, v_4 \} \} \]
\[\text{Subsumed}(A, B) =? \]

As strings,
\[A = \{ ++-, ++0+ \} \]
\[B = \{ +00+ \} \]

++- Are either
++0+ of these
+00+ subsumed by this?
Subsumption with Shared Prefixes

\[A = \{\{v_1, v_2, \neg v_3\}, \{v_1, v_2, v_4\}\} \]
\[B = \{\{v_1, v_4\}\} \]
\[\text{Subsumed}(A, B) =? \]

As strings,
\[A = \{++-, ++0+\} \]
\[B = \{+00+\} \]

++- \quad \{v_1, v_2, \neg v_3\}
++0+ \quad \{v_1, v_2, v_4\}
+00+ \quad \{v_1, v_4\}
Subsumption with Shared Prefixes

\[A = \{\{v_1, v_2, \neg v_3\}, \{v_1, v_2, v_4\}\} \]
\[B = \{\{v_1, v_4\}\} \]

Subsumed \((A, B) = ?\)

As strings,
\[A = \{++-, ++0+\} \]
\[B = \{+00+\} \]

++-

\(\{v_1, v_2, \neg v_3\}\)

++0+

\(\{v_1, v_2, v_4\}\)

+00+

\(\{v_1, v_4\}\)
Subsumption with Shared Prefixes

\[A = \{ \{ v_1, v_2, \neg v_3 \}, \{ v_1, v_2, v_4 \} \} \]
\[B = \{ \{ v_1, v_4 \} \} \]

Subsumed(\(A, B\)) = ?

As strings,
\[A = \{ \text{+++}, \text{++0+} \} \]
\[B = \{ \text{+00+} \} \]

+++ \(\{ v_1, v_2, \neg v_3 \} \)
++0+ \(\{ v_1, v_2, v_4 \} \)
+00+ \(\{ v_1, v_4 \} \)
Subsumption with Shared Prefixes

\[A = \{\{v_1, v_2, \neg v_3\}, \{v_1, v_2, v_4\}\} \]
\[B = \{\{v_1, v_4\}\} \]

\(\text{Subsumed}(A, B) = ? \)

As strings,
\[A = \{++-, ++0+\} \]
\[B = \{+00+\} \]

++− \(\{v_1, v_2, \neg v_3\} \) Not subsumed
++0+ \(\{v_1, v_2, v_4\} \)
+00+ \(\{v_1, v_4\} \)
Subsumption with Shared Prefixes

\[A = \{\{v_1, v_2, \neg v_3\}, \{v_1, v_2, v_4\}\} \]
\[B = \{\{v_1, v_4\}\} \]

\textit{Subsumed}(A, B) = ?

As strings,
\[A = \{+++ , ++0+\} \]
\[B = \{+00+\} \]

\[+++ \quad \{v_1, v_2, \neg v_3\} \text{ Not subsumed} \]
\[++0+ \quad \{v_1, v_2, v_4\} \text{ Subsumed} \]
\[+00+ \quad \{v_1, v_4\} \]
Subsumption with Shared Prefixes

\[A = \{ \{ v_1, v_2, \neg v_3 \}, \{ v_1, v_2, v_4 \} \} \]
\[B = \{ \{ v_1, v_4 \} \} \]

\[\text{Subsumed}(A, B) = ? \]

As strings,
\[A = \{++-, ++0+\} \]
\[B = \{+00+\} \]

\[\text{Subsumed}(A, B) = \{++0+\} = \{ \{ v_1, v_2, v_4 \} \} \]
Surprising Efficiencies 1

- The naïve, iterative subsumption routine is $O(n^2)$.
- Experiments and analysis suggest that the recursive and iterative subsumption routines differ asymptotically.
Below lemma reinforces the hypothesis of differing asymptotic runtime.

Lemma

Subsumed, when applied to two full ternary tries of depth h and combined size $n = 2\left(\frac{3^{h+1} - 1}{2}\right)$, runs in time $O\left(n^{\frac{\log 5}{\log 3}}\right) \approx O(n^{1.465})$.

Surprising Efficiencies 2
The End

Thanks much for listening. Questions?