
A Secure, Constraint-Aware Role-Based Access
Control Interoperation Framework

Nathalie Baracaldo, Amirreza Masoumzadeh, and James Joshi
School of Information Sciences

University of Pittsburgh
Email: [nab62@, amirreza@sis., jjoshi@sis.] pitt.edu

Abstract—With the growing needs for and the benefits of
sharing resources and information among different organiza-
tions, an interoperation framework that automatically integrates
policies to facilitate such cross-domain sharing in a secure way
is becoming increasingly important. To avoid security breaches,
such policies must enforce the policy constraints of the individual
domains. Such constraints may include temporal constraints that
limit the times when the users can access the resources, and
separation of duty (SoD) constraints. Existing interoperation
solutions do not address such cross-domain temporal access
control and SoDs requirements. In this paper, we propose a
role-based framework to facilitate secure interoperation among
multiple domains by ensuring the enforcement of temporal and
SoD constraints of individual domains. To support interoperation,
we do not modify the internal policies, as most of the current
approaches do. We present experimental results to demonstrate
our proposed framework is effective and easily realizable.

I. INTRODUCTION

Nowadays, sharing computing and information resources
between organizations is becoming more and more important.
In fact, several businesses base their competitive advantage
on being able to share relevant information and resources with
their partners. Unfortunately, security concerns are responsible
for the reluctance of some organizations to join such envi-
ronments [6]. In multi-domain environments, it is necessary
that each of the domains involved can control the extent to
which it wants to share its resources with other domains.
It is important that the internal policy of each organization
is not violated during interoperation. If such violations oc-
cur, vital information might be lost, modified or disclosed
through unauthorized accesses. Therefore, when two or more
domains want to interoperate, an interoperation policy should
be created. In existing approaches (e.g. [13]), an interoperation
policy is usually created manually, which is cumbersome and
error-prone. It is desirable to create interoperation policies
automatically to avoid security breaches introduced by human
mistakes while reducing the amount of time required to enable
the sharing activities.

A secure interoperation policy follows the principles of
autonomy and security [16]. The principle of autonomy states
that accesses permitted within a domain before the integration
should still be allowed after the integration. On the other
hand, the principle of security says that accesses forbidden
within a domain before the integration should still be forbidden
after the integration. To ensure these, the policy constraints
of individual domains need to be enforced when sharing
resources with external domains. Among the constraints that
should be enforced are the separation of duty constraints [5],
least privilege constraints [12] and temporal constraints [9].

Role Based Access Control (RBAC) [4] has been shown to
encompass discretionary and mandatory access control models
and support organization or user-specific requirements [10].
Because of the benefits offered by RBAC, it is considered
as a promising approach for expressing domain policies; in
this paper, we assume that all the involved domains employ
extended RBAC models. To facilitate cross domain accesses
in such a multidomain environment, it is first necessary to
establish role to role mappings between domains, so that
users from a domain can acquire the desired permissions from
other domains[3]. Several algorithms have been proposed to
solve the role mapping problem [16], [3], [22], [2], [21], [17].
However, these solutions have three key limitations. The first
limitation is the limited capability to handle Static SoD (SSoD)
constraints. In [18], a role mapping algorithm that respects
SSoD of the internal policy was proposed. However, this ap-
proach assumes that the policies of both domains are static and
are completely known to each other before the interoperation
takes place. This assumption is too strong, as the policies
of the domains involved can change at any time and some
organizations may not trust their partners enough to reveal
their policies. The second limitation is related to handling
temporal constraints while creating an interoperation policy.
The role mapping algorithm proposed in [14] attempts to
minimize the number of roles to be mapped to a given request.
However, it does not consider the temporal constraints. As a
result, mapped roles may not be available at desired times.
The third limitation of existing work consists of requiring that
the roles selected by the role mapping algorithm only have
authorization for the exact set of required permissions. To
achieve this objective, some proposed solutions either modify
the policy of the domains [18], [14], [20], [19] or grant
extra privileges; however, neither of these two solutions are
adequate, as the former increases the policy administration
difficulty and the latter violates the principle of least privilege.
Furthermore, none address these three issues together.

In this paper, we propose a role based framework that
addresses aforementioned limitations of existing approaches.
The key contributions of this paper are:

• We propose a secure interoperation framework and for-
mally show that it enforces temporal, SSoD and DSoD
constraints of individual domains involved.

• We introduce temporal coverage as the objective function
of role mapping to maximize interoperation based on
temporal requirements.

• We use the notion of filter roles in the interoperation

policy to ensure the enforcement of the least privilege
principle, and support secure interoperation even when
the internal policy evolves.

The paper is organized as follows. In Section II, we present
an overview of GTRBAC model, hybrid hierarchy and SoD
constraints. In Section III, we present the requirements of the
system. In Section IV, we present the proposed secure interop-
eration framework. We show that the framework complies with
the requirements in Section V. In Section VI, we present the
proposed role mapping algorithm and implementation results.
In Section VII, we discuss related work and in Section VIII,
we conclude the paper and discuss future directions.

II. BACKGROUND

Temporal Constraints Generalized Temporal Role Based
Access Control (GTRBAC) [9] is an extension of RBAC [4]
with temporal constraints that restrict the periods of time
during which a user can acquire certain permissions. It allows
several types of temporal constraints on different components
of the model such as roles, role-permission assignment, etc. In
this paper, we only consider temporal constraints for enabling
and disabling roles. In GTRBAC, a role can be activated by
an authorized user only if it is enabled. A disabled role cannot
be activated. To express temporal constraints, GTRBAC uses
periodic time expressions, which are of form 〈[begin, end], P 〉,
where P is a periodic expression denoting an infinite set
of periodic time instants, and [begin, end] is a time interval
denoting the lower and upper bounds for the instants in P . We
refer interested readers to [9] for further details. We define
overlapRatio(tc1, tc2) as the ratio of the time instants that
the interval tc1 has in common with tc2 to the interval tc1.

GTRBAC also introduces the concept of hybrid hierarchy
[9]. Roles r1 and r2 can be hierarchically related in one of
the following ways. (1) I-senior (r1 ≥I r2) where r1 inherits
the permissions of r2. (2) A-senior (r1 ≥A r2) where users
assigned to r1 can activate r2; however, r1 does not inherit
r2’s permissions. (3) IA-senior (r1 ≥IA r2), in this case r1 is
I-senior and A-senior of r2.

In order to deal with the semantics of temporal constraints
in presence of hybrid hierarchy, Joshi et al. propose two
variations of hierarchical relations: weak and strong [8]. A
weak hierarchical relation allows a senior role to activate a
junior role or acquire its permissions even when the junior
role is not enabled. In contrast, a strong hierarchical relation
requires that both the senior and the junior roles be enabled
for the inheritance semantics to be valid. In this paper, we
use the function Pau(r, t) to denote the permissions that can
be acquired through a role r, including permissions inherited
through hierarchical relations.
Separation of duty constraints Separation of duty constraints
(SoD) are used to prevent fraudulent activities within an
organization by preventing a unique user from playing two or
more conflicting roles. There are two types of SoD constraints.
The Static SoD (SSoD) and the Dynamic SoD (DSoD). SSoD
restricts the authorization of users to conflicting roles [1], [5],
[12], [11]. An SoD constraint is denoted by (RS, k) where
RS = {r1, r2, r3, ..., rn} is a set of roles in conflict and
2 ≤ k ≤ n. We use ssod(RS, k) to express SSoD constraints,
which states that a user can be authorized to at most k − 1

rTC

rCA

rPA rRA

rTA rTBA

rFM

rTS
{p1,p2,p3}

{p4,p5}

{p6} rEL

{p8,p9,p10} {p11,p12,p13,p14 }

{p7}

{p11,p15 }

{p16,p17,p18} {p19,p20 }

A-hierarchy

I-hierarchy

Authorized Permissions and temporal constraints:
Pau(rTS)= {p1, p2, p3, p4, p5, p7}, Pau(rFM)={p4, p5},
Pau(rEL)= {p6}, Pau(rTC)= {p7}, Pau(rRA)={p19, p20},
Pau(rCA)={p11, p15, p16, p17, p18}, Pau(rPA)={p16, p17, p18},
Pau(rTA) = {p8, p9, p10}, TC(rTA)=Mondays to Fridays, 7am to 7pm
Pau(rTBA)= {p11, p12, p13, p14}, TC(rTBA)= Mondays to Thursdays.
SoD Constraints: dsod({rEL, rTA, rTBA}, 3), ssod({rTS , rCA}, 2)

Fig. 1: TO’s internal policy

roles in RS. Similarly, a DSoD constraint dsod(RS, k) states
that a user can activate at most k − 1 roles in RS.

III. REQUIREMENTS FOR SECURE INTEROPERATION

An interoperation policy indicates which roles in an external
domain will be able to acquire which privileges within a local
domain. We propose a framework whose main goal is to
establish an interoperation policy that respects the policies of
individual domains. Here, by external and internal domains we
mean the domain that issues access requests and the domain
that grants/denies these requests, respectively. We assume that
the domains involved use RBAC policies extended with SoDs,
temporal constraints and hybrid hierarchy. We illustrate the
requirements through the following example.

Example 1: Consider that the Treasurer Office (TO) wants
to interoperate with the County Clerk Office (CCO) to increase
the effectiveness of detecting tax evasions and have up-to-date
and accurate information [16]. Part of TO’s policy is shown in
Figure 1, where each role has been directly assigned to it the
permissions shown in the rectangles and the permissions that
each role can acquire are shown underneath the policy. TO’s
policy has the following roles: Chief auditor (rCA), Process
auditor (rPA), Refund auditor (rRA), Tax collector (rTC),
Fraud manager (rFM), Tax assessor (rTA), Tax bill approver
(rTBA) and Treasurer (rTS). TO’s policy contains important
information on how to manage SoD conflicts. For instance, it
contains the SSoD constraint ssod({rTS , rCA}, 2) that spec-
ifies that rTS and the rCA cannot be assigned to the same
user; i.e., the person in charge of performing the operations
should not be her own auditor. In addition, DSoD constraints
specify how to follow the principle of least privilege. The
constraint dsod({rEL, rTA, rTBA}, 3) specifies that the same
user cannot activate 2 of those roles simultaneously. Finally, it
also contains information on the times during which the roles
are enabled; e.g., rTBA can only be activated during Mondays
to Thursdays and role rTA can only be activated during office
hours (7am to 7pm) Monday to Friday. These SSoD, DSoD
and temporal constraints within a local domain also need to be
enforced when users from external domains are given access
through a secure interoperation policy.

In order to comply with the principle of security, all the
constraints of the internal domain’s policy should be enforced

2

when it interoperates with external domains. Hence, it is
important to create an interoperation policy that respects these
constraints in local domains. This requires looking for the set
of roles in the internal policy that can provide the permissions
that need to be granted to users assigned to a role of the
external domain without violating any constraint. When an
internal domain has a large policy (in terms of the number
of roles and constraints), performing this process manually is
very tedious and error-prone, and hence may lead to violations
of the internal policy. Our framework provides the means to
automate this process.

To create an interoperation policy, the internal domain’s
security administrator issues an interoperation query that
contains a set of desired permissions, and a periodic expression
during which those permissions should be available for a
particular external role. Given a set of interoperation queries,
the framework should construct an interoperation policy that
fulfills the following requirements:

1) It should respect the SSoD, DSoD and temporal con-
straints of the internal domain.

2) The time during which interoperation can happen should
be maximized.

3) It should be possible to establish additional temporal
restrictions on the accesses to the internal resources.

4) It should provide only the required permissions.
5) Individual domains should not be required to disclose

their policies to create the interoperation policy. We
assume the external domain does not trust the internal
domain enough to reveal its policy and vice versa.

6) The policy of the internal domain should not be modified
in order to interoperate, but it may evolve.

IV. POLICY INTEROPERATION FRAMEWORK

Our approach consists of creating an intermediate layer of
roles that forms the interoperation policy, which governs how
a particular external domain can access the resources of the
internal domain; one interoperation policy is created for each
external domain and managed by the internal domain.

A. Preliminaries and Notations

We use the following notations. A GTRBAC policy is an
8-tuple 〈U,R, P, UA, PA,RH, TC, SSoD,DSoD〉 where in
addition to standard GTRBAC components, TC is a function
assigning enabling time constraint to roles. We use subscripts
to refer to these sets in a specific GTRBAC policy, e.g.,
SSoDP refers to the set of SSoDs in policy P .

We use P and E to denote the policies of internal and
external domain, respectively. The interoperation between the
two domains is a triple 〈Q,P, E〉 where Q is a set of interop-
eration queries. An interoperation query is a triple 〈r, PS, τ〉,
indicating role r ∈ RE (in the external domain) requires access
to the permission set PS ⊆ PP , during a periodic time τ .

The interoperation policy is constructed using a special type
of roles called filter roles [7]. A filter role is a role that has
associated with it an upper bound set (UBS), which is the
maximum set of permissions that can be acquired through it.
We formally define it as follows.

Candidate
Solution

Pau(r ∈ Rsel) Enabled
time

CR

1 Pau(r1) = {p1, p2, p3, p4, p5} 3pm-8pm 0.25

2 Pau(r2) = {p1, p6, p7} 9am-4pm 0.625
Pau(r3) = {p2, p3, p4, p7} 8am-2pm

3
Pau(r4) = {p1, p4} 8am-10pm,

2pm-6pm 0.5
Pau(r5) = {p1, p3, p5, p6} 11am-5pm
Pau(r6) = {p2} 9am-5pm

TABLE I: Sample Coverage for {p1, p2, p3, p4} and τ =

{9am− 5pm, everyday}

Definition 1: Let rf be a filter role and UBS (rf) indicate
its upper bound permission set. The authorized permissions
for rf at time t is

Pau(rf , t) =
⋃

r∈I−juniors(rf)

Pau(r, t) ∩ UBS(rf)

We use dot notation to refer to the elements of a tuple, e.g.,
c.RS refers to the role set in the constraint c = dsod(RS, k).
Whenever a set is used in a formula where a single element
should be normally used, we mean the union of the results of
applying each member of the set in the formula. For instance,
Pau(RS) refers to the union of sets of permissions authorized
for individual roles in set RS and DSoDP .RS refers to the
union of sets of roles involved in a DSoD constraint in P .

B. The Role Selection Optimization Problem
To create a suitable interoperation policy, it is necessary to

find the set of roles that provides the desired permissions and
that can also be activated during the requested periods of time.
We define the notion of coverage ratio to indicate how much
of the requested interval is covered by a particular solution
Rsel ⊆ RP .

Definition 2 (Coverage Ratio (CR)): Given a candidate
solution Rsel for the interoperation query 〈r, PS, τ〉,
CR(Rsel, PS, τ) is defined as:

overlapRatio(τ,
⋂
p∈PS

⋃
ri∈Rsel

{t|p ∈ Pau(ri, t)})

The objective of our role selection process is to choose a
solution that maximizes coverage ratio. In addition, it needs
to consider the restrictions imposed by SoD constraints. We
define the role selection problem as follows.

Definition 3: The Role Selection Problem (RSP) for a query
q = 〈r, PS, τ〉 is to find a solution, S(q), for the following
optimization problem:

Max
Rsel∈RP

CR(Rsel, PS, τ)

s.t. ∀ dsod(RSi, ki) ∈ DSoDP : |Rsel ∩RSi| < ki

∀ssod(RSi, ki) ∈ SSoDP : |Rsel ∩RSi| < ki

Pau(Rsel) ⊇ PS

If S(q) has a coverage of zero for a given query q, it means
that no set of roles in RP can satisfy the query. i.e., the
interoperation request is denied.

Example 2: Suppose that Table I lists feasible solutions for
the role selection problem for query 〈r, {p1, p2, p3, p4}, 9am−
5pm, everyday〉 and their calculated CR. Solution 2 provides

3

Mo(q)

ron…

rcn

ri

Mc(rk)

re

q

Ro

Rc

RP

rk DSoDP.RS SSoDP.RS

P’

P

…

…

rk

A-hierarchy

I-Strong

Filter roles

ri DSoDP.RS SSoDP.RS

E

Fig. 2: Overview of Interoperation-Augmented Policy (IAP)

the best coverage, hence S(q) = {r2, r3}. Without considering
temporal constraints, solution 1 would be selected, as it sat-
isfies the request with a minimum number of roles. However,
this solution is not suitable based on temporal requirements as
it only covers 25% of the requested interval.

C. Interoperation-Augmented Policy (IAP)
In order to allow secure interopration 〈Q,P, E〉, we augment

the internal policy with an interoperation policy. We call
the result an Interoperation-Augmented Policy (IAP). This
process is abstractly presented in Figure 2. From top to
bottom, the three layers represent external, interoperation, and
internal policy, respectively. The interoperation layer consists
of filter roles that are conceptually divided into two categories:
interoperation roles (Ro) and constrained roles (Rc). Roles
in Ro provide access to the external users, as they are made
A-strong junior of the external query roles. Every query is
mapped uniquely to one of these roles using Mo. Roles
in Rc ensure the enforcement of SoD constraints of the
internal policy for external users. There exists a role in Rc
corresponding to every role in S(q) that is part of an internal
SoD. The correspondence is provided by mapping function
Mc. Roles in Ro are A-strong-seniors of the corresponding
roles in Rc. Finally, all hierarchical relations between roles
in the interoperation layer and corresponding selected internal
roles are of type I-strong. IAP is formally defined as follows.

Definition 4: For interoperation 〈Q,P, E〉, the
interoperation-augmented policy P ′ augments the internal
policy as follows.
Roles (R′P): R′P = RP ∪RQ ∪Ro ∪Rc where
• RQ = Q.r (i.e., set of all external roles in the queries)
• Ro = {Mo(q)|∀q ∈ Q}, where Mo is a one-to-

one mapping function from a query role q.r to its
corresponding interoperation role, and ∀r ∈ Ro, q =
M−1o (r)[UBS(r) = q.PS ∧ TC(r) = q.τ].

• Rc = {Mc(r)|∃(c = dsod(RS, k) ∈ DSoDP ∨ c =
ssod(RS, k) ∈ SSoDP) ∧ r ∈ RS ∧ r ∈ S(Q)}, where
Mc is a one-to-one mapping function from an internal
role to its corresponding constrained filter role, and ∀q ∈
Q ∀r ∈ Rc [r ∈ Mc(S(q)) → UBS(r) = q.PS ∧
TC(r) = q.τ].

Users (UP′): an imaginary user ue in the external domain is
assumed to have access to all the external policy:
• UP′ = UP ∪ {ue}.
• UAP′ = UAP ∪ {〈ue, r〉|r ∈ RE}.

Role Hierarchy (RHP′): Is the union of RHP and the set
containing the following hierarchical relations:
• Query roles A-senior to interoperation roles:
∀q ∈ Q [q.r ≥A−strongMo(q)]

• Interoperation roles A-senior to constrained roles:
∀q ∈ Q ∀rc ∈ Rc [rc ∈Mc(S(q))→Mo(q) ≥A−strong rc]

• Constrained roles I-senior to selected roles:
∀rc ∈ Rc [rc ≥I−strongM−1c (rc)]

• Interoperation roles I-senior to selected roles:
∀q ∈ Q ∀rs ∈ S(q) \M−1c (Rc) [Mo(q) ≥I−strong rs]

DSoDs (DSoDP′): Is the union of DSoDP and the following
sets:
• Equivalent DSoDs on the constrained roles to en-

force DSoDP : {dsod(Mc(RS ∩ S(Q)), k)|∃c =
dsod(RS, k) ∈ DSoDP ∧RS ⊆ S(Q)}

• Equivalent DSoDs on the constrained roles to en-
force SSoDP : {dsod(Mc(RS ∩ S(Q)), k)|∃c =
ssod(RS, k) ∈ SSoDP ∧RS ⊆ S(Q)}

In the above definition, we consider a unique external user
ue who is authorized for all the external roles in Q. Due to the
requirement of non-disclosure of the external’s domain policy,
we cannot assume any knowledge of authorized roles for
external users. Therefore, we consider the worst case scenario,
in which there exists an external user that is authorized for all
the accesses that can take place in the interoperation.

Also, note that roles in RQ do not have any permissions
assigned to them, although in the external domain this might
be the case. We do not consider those assignments, because the
focus of our framework is to ensure the safety of the internal
domain.

Example 3: Consider Example 1; suppose an interoper-
ation query is given by the tuple q = 〈re1 ∈ RQ,
{p11, p15, p16}, AllFridays〉. First, the roles that provide the
requested permissions are selected without violating any of
the internal constraints (Section V explains in detail how this
is done). For query q, rCA is selected, as it provides the
requested permissions. After this role has been selected, a filter
role ro re1 is created in the interoperation policy to satisfy the
request. The filter roles is initialized so that UBS(ro re1) =
{p11, p15, p16} and TC(ro re1) = AllFridays. Then, the
relations re1 ≥A−strong ro re1 ≥I−strong rCA are created as
shown in Figure 3. Here, Pau(rCA)={p11, p15, p16, p17, p18};
note that role rCA has two additional permissions than those
strictly required for the interoperation: {p17, p18}. Because of
Definition 1, users authorized for re1 can only acquire the
exact set of required permissions respecting the principle of
least privilege. With respect to the temporal constraint, the
external domain can only acquire permissions during Fridays,
as the temporal constraint on ro re1 and the internal domain
does not impose any additional temporal constraint.

V. CONFORMING WITH THE REQUIREMENTS

In this section, we explain and prove that the proposed
IAP provides only the requested permissions, respects DSoDs,
SSoD and temporal constraints of the internal policy.

4

Interoperation

policy

rTC

rCA

rPA rRA

rTA rTBA

rFM

rTS

rEL

ro_re1

re1re2

rc2_re2

re3

ro_re2

TO’s

policy

rc1_re2

ro_re3

rc_re3

A-hierarchy

I-hierarchy

I-Strong

Filter roles

E

Internal policy
Authorized Permissions and temporal constraints:
Pau(rTS)= {p1, p2, p3, p4, p5, p7}, Pau(rFM)={p4, p5},
Pau(rEL)= {p6}, Pau(rTC)= {p7}, Pau(rPA)={p16, p17, p18}
Pau(rCA)={p11, p15, p16, p17, p18}, Pau(rRA)={p19, p20}
Pau(rTA) = {p8, p9, p10}, TC(rTA)=Mondays to Fridays, 7am to 7pm,
Pau(rTBA)= {p11, p12, p13, p14}, TC(rTBA)= Mondays to Thursdays.
SoD Constraints: dsod{rEL, rTA, rTBA}, 3) ssod({rTS , rCA}, 2)
Components of Interoperation Policy
UBS(ro re1) = {p11, p15, p16}, TC(ro re1) = AllFridays
UBS(ro re2) = {p7, p8, p9, p10, p12, p13, p14}
UBS(rc1 re2) = {p7, p8, p9, p10, p12, p13, p14}
UBS(rc2 re2) = {p7, p8, p9, p10, p12, p13, p14}
UBS(rc re3) = UBS(ro re3) = {p6}
TC(ro re2) = TC(rc1 re2) = TC(rc2 re2) = EveryDay,
TC(ro re3) = TC(rc re3) = AllFridays
SoD Constraints: dsod({rc1 re2, rc2 re2, rc re3}, 3)

Fig. 3: Example of an IAP system.

A. Providing Only the Requested Permissions
The permissions an external user u authorized for r ∈ RQ

can acquire in the internal domain are bounded by the set
of queries created by the system’s administrator for role re
(assuming u is only authorized for re). Hence, u can acquire
permissions in the internal domain by activating the roles in
the interoperation policy that are juniors of re. The following
theorem shows IAP complies with these requirements.

Theorem 1: Let Qe be a set of queries with the same
external role re, for permissions in internal policy P . A user
u, in P’s IAP, can only acquire the permissions in Qe.PS
because of being authorized for re.

Proof: Being authorized for re allows u to activate re
and its A-juniors to acquire permissions. By activating re, u
does not acquire any permission because, as per Definition 4,
re does not have assigned any permissions. The A-juniors of
re, roles in Ro and Rc, are filter roles that have their UBS set
to q.PS, where q ∈ Qe. Therefore, they can acquire at most
Qe.PS.

B. Respecting Internal Enabling Constraints
One of the requirements of the framework is to respect the

temporal constraints of the internal policy. In what follows, we
show that IAP enforces temporal constraints of the internal
policy and is able to enforce additional constraints during
interoperation with an external domain.

Theorem 2: For an IAP policy and a corresponding query
q = 〈r, PS, τ〉, user ue can only acquire the permissions in

q.PS during time τ without violating any temporal constraint
of the internal domain.

Proof: Based on hierarchical relations in Definition 4, ue
can only acquire permissions by activating A-juniors of re.
All such roles that are added to the IAP policy for the query
q are assigned the time constraint τ . Therefore, ue can only
activate these roles during τ . Since these roles are linked to
the internal policy roles using I-strong-hierarchy, they do not
inherit permissions unless the internal roles are enabled.

C. Respecting Dynamic Separation of Duty Constraints

In this section, we first provide some definitions and then
formally prove that IAP respects DSoDs.

Definition 5: A user can acquire a role if the user can
activate it or one of its I-seniors.

Definition 6: A GTRBAC system enforces constraint c =
dsod(RS, k) if and only if no user can simultaneously activate
k or more roles in RS.

Definition 7: A GTRBAC system strictly enforces con-
straint c = dsod(RS, k) if and only if no user can simul-
taneously acquire k or more roles in RS.
Strict enforcement of DSoD constraints is a desired property
in RBAC systems, and in fact, one of the main reasons that led
to introduction of hybrid hierarchy [15]. We assume that in the
internal policy, the roles involved in a DSoD constraint may
only have A-senior roles, and no I-senior roles. This guarantees
that when a GTRBAC system enforces a DSoD constraint, it
is enforced strictly. We call such a policy DSoD-well-formed.

Definition 8: A policy P is DSoD-well-formed if and only
if ∀r ∈ RS, c = dsod(RS, k) ∈ DSoDP [@r′ ∈ RP , r′ ≥I r].

Theorem 3: Let P and P ′ be a DSoD-well-formed GTR-
BAC system and its IAP, respectively. P ′ strictly enforces
constraints in DSoDP .

Proof: Assume c = dsod(RS, k) ∈ DSoDP is not
strictly enforced in P ′, i.e., a user can acquire RK ⊆ RS
with k roles in system P ′. Note that RS ⊆ RP . Since the user
assignments and their respective role structure for the users in
UP is not different in P and P ′, the user that violates strict
enforcement has to be ue. Among the roles in RP , ue can only
acquire S(Q), i.e., the set of selected roles for interoperation
queries, and the roles I-junior to them. Since P is DSoD-well-
formed, the roles I-junior to the roles in S(Q) must not be
involved in a DSoD. Thus, we have RK ⊆ S(Q). Since roles
in RK are involved in a DSoD, based on Definition 4, we have
RK ′ =Mc(RK) ⊆ Rc. ue needs to activate all roles in RK ′
in order to acquire their corresponding roles in RK. According
to Definition 4, there exists a constraint c′ = dsod(RS′, k),
which should be enforced in P ′. Since RK ⊆ RS, we have
RK ′ ⊆ RS′. Hence, ue needs to activate k roles in RS′

which contradicts the enforcement of c′. Consequently, our
assumption about non-strict enforcement of c is false.

Example 4: Let q1 = 〈{p6, p8, p9, p10, p12, p13, p14}, re ∈
Re, τ = EveryDay >〉 be an interoperation query. Here,
roles rEL, rTA and rTBA should be selected, but that
would violate the DSoD constraint of TO’s internal policy:
dsod({rEL,rTA,rTBA}, 3) (i.e., selected roles cannot be acti-
vated simultaneously). Hence, this request is denied, because

5

r3
r6

r7 r8

ro2

r4 r5

r9

ro1

re1

re3re2 re5

re4

re6

u1

ssod({r3, r7},2)

rc_r3 rc_r7

u1

E

P

P’

Fig. 4: An example of indirect violation of SSoD

creating a filter role that inherits from rEL, rTA and rTBA
would result in a P ′ that is not DSoD-well-formed.

Example 5: Let q1 =< {p7, p8, p9, p10, p12, p13, p14},
re2 ∈ Re, EveryDay > and q2 =< {p6}, re3 ∈ Re,
AllFridays >. Query q1 can be granted by selecting roles
rTA, rTBA and rTC . Note that role rTBA can be activated
only on Monday to Thursday. Although the request was issued
for every day, because of the I-strong semantics, the activation
constraint of rTBA is respected and the external domain cannot
inherit permission from rTBA on Fridays, Saturdays and
Sundays. To satisfy q1, filter roles ro re2, rc1 re2 and rc2 re2
are created as shown in Figure 3. According to Definition
4, ro re2 ∈ Ro and rc1 re2, rc2 re2 ∈ Rc because the latter
roles inherit from a role in DSoD. For query q2, role rEL
should be selected. Two interoperation roles ro re3 ∈ Ro and
ro re3 ∈ Rc are created to satisfy this request as shown in Fig-
ure 3. Since rc re3 is inheriting from rEL, which is in a DSoD
constraint, a constraint dsod({rc1 re2, rc2 re2, rc re3}, 3) is
created. Hence, even if an external user is authorized for roles
re2 and re3, he cannot activate them simultaneously, thus re-
specting the DSoD internal policy. Finally, note that filter roles
created for q1 and q2 are initialized as follows UBS(ro re2) =
UBS(rc re2) = UBS(rc re2) = {p7, p8, p9, p10, p12, p13, p14}
and UBS(ro re3) = UBS(rc re3)= {p6}.

D. Respecting Static Separation of Duty Constraints

In this section, we show how the framework enforces
SSoD constraints. According to the requirements presented in
Section III, the policy of the external domain is not known. As
a consequence, it is not possible to identify SSoD violations
caused by the hierarchical structure or user assignments of
the policy of the external domain. Furthermore, even if the
policy of the external domain was known, in order to have a
continuous enforcement of the internal SSoD constraints, the
external domain should maintain its policy as it was when P ′
was constructed. Therefore, we propose to relax the SSoD to
DSoD constraints to ensure that the permissions and roles in
conflict are never acquired simultaneously by any user of the
external domain. We capture this relaxation in Definition 4.

Example 6: Consider the policy presented in Figure 4 with
ssod({r3, r7}, 2). The hierarchy paths from re1 to r3 and from

re1 to r7 represent a SSoD violation. This means that any user
authorized for re1 is authorized for r3 and r7. Moreover, user
u1 assigned to roles re4 and re6 violates the above-mentioned
SSoD, by being authorized for r3 and r7. To mitigate this lack
of control, we add dsod({rc3, rc7}, 2) to P ′, which ensures the
relaxed enforcement of ssod({r3, r7}, 2).

Now, we formally prove enforcement of SSoD constraints in
our framework, based on the following definitions. We assume
that there are no roles in the internal policy that inherit from
the roles involved in SSoD constraints. We call such a policy
SSoD-well-formed .

Definition 9: A GTRBAC system satisfies constraint c =
ssod(RS, k) if and only if no user is authorized to k or more
roles in RS.

Definition 10: A policy P is SSoD-well-formed if and only
if ∀r ∈ RS, c = ssod(RS, k) ∈ SSoDP [@r′ ∈ RP , r′ ≥I r].

Theorem 4: Let P satisfy SSoDP and be SSoD-well-
formed and DSoD-well-formed. Also, let P ′ be its IAP. P ′
strictly enforces constraints in SSoDP as DSoDs.

Proof: As per Definition 4, there exists a constrained role
and DSoD constraint for each selected role that is in a SSoD
constraint. Therefore, constraints in SSoDP are regarded as
DSoDs and strictly enforced by P ′ as proved in Theorem 3.

VI. ALGORITHMS AND IMPLEMENTATION RESULTS

The interoperation policy is created in two phases, the
role selection phase and the interoperation policy construc-
tion phase where the filter roles and the hierarchy of the
interoperation policy are constructed. Algorithm 1 is used
to process the queries, and Algorithm 2 presents the role
mapping details. The role mapping works using a back-
tracking algorithm that greedily looks for the solution with
the maximum possible coverage (defined in Section IV-B)
given a request 〈Preq, τ, rext〉. In each iteration the role with
maximum average coverage per queried permission is selected
and, to respect the SSoD constraints, the search space is
reduced by removing the roles that cannot be authorized any
longer. For instance, given a constraint ssod(RS, k) if the
algorithm has selected k − 1 roles in RS, the search space
is pruned accordingly. Similarly, the algorithm prunes the
roles that cannot be activated at the same time due to DSoD
constraints. If a solution for a request is found some post-
processing is performed. Because the policy of the external
domain is dynamic and unknown, we relax SSoD to DSoD as
explained in Section V-D. The time complexity in the worst
case is exponential to the number of roles in the internal policy,
but in practice is less due to the pruning strategy used.

A. Implementation Results
We have implemented a prototype system to test the perfor-

mance of the proposed algorithm. We generated 30 random
policies and averaged the time required to process a query.
Each role was randomly assigned a periodic time constraint.
The ratios of role to SSoD and DSoD were set to 0.1, and
of role to temporal constraints to 0.4. The ratio of roles to
authorized permissions was kept 1:24. A randomly generated
request was created. The number of requested permissions was
kept to five, the number of hierarchical levels to seven and the

6

Algorithm 1 createInteroperationPolicy(r, PS, τ)

1: Ravail ← RP \ juniors(r ∈ SSoDP) {Candidate roles}
2: Rsel ← ∅ {Selected roles so far}
3: Prem ← Pi {Set of permissions that haven’t been found}
4: Ppart ← ∅ {Permissions partially covered}
5: Rb ← ∅ {Global variable to store the best found solution}
6: for all p ∈ PS do
7: add to UT the pair [p, τ] {Initialize uncovered time per

permission}
8: selectRolesMaxCoverage(Prem, Ravail, Rsel, Ppart, UT)
{See Algorithm 2}

9: if Rb 6= ∅ then
10: Follow Definition 4
11: else
12: return {Could not find a solution for the query}

Algorithm 2 selectRolesMaxCoverage(Prem, Ravail, Rsel, Ppart,
UT)

1: if Prem = ∅ then
2: if Rb = ∅ then
3: Rb ← Rsel
4: else
5: if CR(Rb, PS, τ) < CR(Rsel, PS, τ) then
6: Rb ← Rsel
7: else if (CR(Rb, PS, τ) = CR(Rsel, PS, τ))∧ | Rb |>| Rsel |

then
8: Rb ← Rsel
9: return {Found candidate solution}

10: if coverage(Rb) = 1 then
11: return {Objective fulfilled.}
12: for all ssod(RS, k) ∈ SSoDP do
13: if |Rsel ∩RS| = (k − 1) then
14: Ravail ← Ravail \ [RS \ (Rsel ∩RS)]
15: if simultaneous then
16: for all dsod(RS, t) ∈ DSoDP do
17: if | Rsel ∩RS |= (k − 1) then
18: Ravail ← Ravail \ [RS \ (Rsel ∩RS)]
19: for all ri ∈ Ravail do
20: if Prem ∩ Pau(ri) = ∅ then
21: Ravail ← Ravail \ ri
22: if Ravail = ∅ then
23: return
24: rbest ← roleMaxCoverage(Prem, Ravail, UT)
25: Ravail ← Ravail \ rbest
26: newUT ← UT {Create a copy}
27: updated newUT according to rbest activation constraint
28: PnewPart ← Ppart ∪ Pau(rbest)
29: PnewRem ← Prem
30: for all p ∈ Prem do
31: if [p, τ] ∈ newUT has τ = 0 then
32: PnewRem ← PnewRem \ p
33: else if ∀r ∈ Ravail : coverage(newUT (p), r) = 0

∧ (p ∈ PnewPart) then
34: PnewRem ← PnewRem \ p
35: selectRolesMaxCoverage(PnewRem, Ravail,

(Rsel ∪ {rbest}) , PnewPart, newUTime)
36: selectRolesMaxCoverage(Prem, Ravail, Rsel, Ppart, UT)

number of roles to 400. We used an Intel Core 2 Duo with
4GB of memory running Windows 7 to perform the tests.

Figure 5a shows the processing time against increasing
number of requested permissions, keeping other variables
constant. We observe some fluctuations in the time required to

Number of

permissions

in PS

(a) Effect of |PS|

(b) Effect of the number of roles

7 levels of hierarchy

3 levels of hierarchy

Maximum number
of junior roles

(c) Effect of the number of junior roles

Fig. 5: Performance of the system

process the requests because of the proposed greedy heuristic
for processing different requests against different policies. The
number of requested permissions does not seem to influence
per se the time required to find a solution. The effect of
augmenting the number of roles in P while keeping the
remaining variables constant is shown in Figure 5b. The
results suggest that the time required to find a solution does
not increase considerably when the number of roles in the
internal policy is augmented and the remaining parameters are
maintained unchanged. Finally, we find that the performance
of the algorithm depends on the configuration of P , as Figure
5c suggests. The experiment was run increasing the maximum
number of junior roles in P and maintaining the other variables
fixed. Each line represents the results for policies of 3 and 7
hierarchy levels. As can be seen, augmenting the number of
junior roles increases the time required to find a solution for
an interoperation query. This is due to the increase of density
of commonly authorized permissions per role, caused by the
inheritance of permissions, which in turn increases the size
of the search space. The experimental results suggest that the
algorithm can find solutions in reasonable time.

VII. RELATED WORK

Several algorithms related to the role mapping problem
exist, but they do not consider temporal constraints. In [3],
simulated annealing and genetic algorithms have been used
to find a suboptimal mapping. In [2], an alternative objective
function for the role mapping algorithm has been proposed to
consider the least privilege principle by penalizing solutions
that contain roles with extra permissions. In [3], [22], [2],

7

[21], various algorithms have been proposed to solve the role
mapping problem in presence of hybrid hierarchy - none,
however, consider temporal, SSoD and DSoD constraints.

In [14], an approach to consider temporal constraints has
been proposed. Their approach may override the internal
temporal constraints as the configuration of the internal do-
main is not considered. Wickramaarachchi et. al [19] propose
heuristics to solve the role mapping problem considering the
DSoD constraints. However, their work does not consider
the SSoD or temporal constraints, and their algorithms may
provide more permissions than those strictly required for the
interoperation. Algorithms proposed in [18] aim to respect
several constraints in presence of hybrid hierarchy, yet their
approach has some important limitations. The roles of the
internal and the external domains are mapped directly. Since
they do not use an intermediate layer, additional constraints
cannot be established on the interoperation. In addition, to
respect SSoD constraints, their algorithm assumes that the
policy of the external domain is known and static and may
modify their policies during interoperation periods.

Using filter roles allows our proposed approach to provide
only the permission needed without modifying the internal
policy. To the best of our knowledge, two alternative solutions
exist. In [18], [14], [20], the roles of the internal policy are split
to a degree in which the selection of a particular role provides
the exact set of required permissions. However, splitting the
roles affects the organization and the original semantics of the
hierarchy making it unmanageable. In the approach proposed
in [22], [21], [19] the principle of least privilege is sacrificed
when interoperation needs are more important. The solution
we propose avoids having to make such a compromise by
filtering out the permissions that should not be provided to the
external domain, without modifying the policy of the internal
domain. In [7], a similar notion of filter role is used, yet it
is limited to the semantics of the intra-domain delegation. To
the best of our knowledge, this paper is the first to introduce
filter roles in the context of multi-domain environments.

In addition to practical and secure support for SoD and
temporal constraints, our framework is distinguished from the
existing approaches in the following aspects: 1) The proposed
framework respects the principle of least privilege, as it
provides the exact set of required permissions, unlike other
approaches [22], [21], [19] that provide more permissions
than those requested. 2) The proposed solution maintains the
internal policy unmodified, while the existing approaches [18],
[14], [20] can potentially modify the internal policy for every
interoperation request. 3) To the best of our knowledge, our
work is the first one to propose an algorithm that respects the
temporal constraints of the internal domain.

VIII. CONCLUSIONS

In this paper, we have proposed a secure role-based frame-
work that allows time-constrained interoperation between do-
mains, and complies with SoD and temporal constraints of the
internal domain policy. In addition, we consider a number of
other requirements such as maximizing the available interop-
eration time, assuming lack of knowledge and control over the
policy of the external domain, and avoiding changing in the
internal policy as the result of interoperation. We also prove

formally that our framework meets our security requirements
such as conforming with the constraints. As future work, we
plan to investigate reuse of the same interoperation policy for
multiple interoperations, in order to minimize the enforcement
load on the internal domain. We also plan to incorporate
additional temporal constraints proposed in GTRBAC.

ACKNOWLEDGMENT

This research has been supported by the US National
Science Foundation award IIS-0545912.

REFERENCES

[1] Ahn, G.J., Sandhu, R.: Role-based authorization constraints specifica-
tion. ACM Trans. Inf. Syst. Secur. 3, 207–226 (2000)

[2] Chen, L., Crampton, J.: Inter-domain role mapping and least privilege.
The 12th ACM SACMAT. pp. 157–162. (2007)

[3] Du, S., Joshi, J.B.D.: Supporting authorization query and inter-domain
role mapping in presence of hybrid role hierarchy. The 11th ACM
SACMAT. pp. 228–236. (2006)

[4] Ferraiolo, D.F., Sandhu, R., Gavrila, S., Kuhn, D.R., Chandramouli, R.:
Proposed nist standard for role-based access control. ACM Trans. Inf.
Syst. Secur. 4, 224–274 (2001)

[5] Gligor, V., Gavrila, S.L., Ferraiolo, D.: On the formal definition of
separation-of-duty policies and their composition. IEEE Symposium on
Research in Security and Privacy. pp. 172–183 (1998)

[6] Grimshaw, A., Morgan, M., Merrill, D., Kishimoto, H., Savva, A.,
Snelling, D., Smith, C., Berry, D.: An open grid services architecture
primer. Computer 42, 27–34 (2009)

[7] Joshi, J.B.D., Bertino, E.: Fine-grained role-based delegation in presence
of the hybrid role hierarchy. The 11th ACM SACMAT. pp. 81–90. (2006)

[8] Joshi, J.B.D., Bertino, E., Ghafoor, A.: Temporal hierarchies and inher-
itance semantics for gtrbac. In: Proc. of the 7th ACM SACMAT. pp.
74–83. (2002)

[9] Joshi, J.B.D., Bertino, E., Latif, U., Ghafoor, A.: A generalized temporal
role-based access control model. IEEE Trans. on Knowl. and Data Eng.
17, 4–23 (2005)

[10] Q. M. S. Osborn, R. Sandhu, “Configuring role-based access control to
enforce mandatory and discretionary access control policies,” 2000.

[11] Kuhn, D.R.: Mutual exclusion of roles as a means of implementing
separation of duty in role-based access control systems. The 2nd ACM
workshop on Role-based access control. pp. 23–30. RBAC ’97(1997)

[12] Li, N., Tripunitara, M.V., Bizri, Z.: On mutually exclusive roles and
separation-of-duty. ACM Trans. Inf. Syst. Secur. 10 (2007)

[13] Martino, L.D., Tech, I., Ni, Q.: Multi-domain and privacy-aware role
based access control in ehealth. The 2nd International Conference on In
Pervasive Computing Technologies for Healthcare (2008)

[14] Piromruen, S., Joshi, J.B.D.: An rbac framework for time constrained
secure interoperation in multi-domain environments. IEEE Workshop on
Object-oriented Real-time Databases (2005)

[15] Sandhu, R.: Role Activation Hierarchies. In Proc. of the 2rd ACM
Workshop on Role-based Access Control, Fairfax, Virginia, 22-23, 1998.

[16] Shafiq, B., Joshi, J.B.D., Bertino, E., Ghafoor, A.: Secure interoperation
in a multidomain environment employing rbac policies. IEEE Trans. on
Knowl. and Data Eng. 17, 1557–1577 (2005)

[17] Shehab, M., Bertino, E., Ghafoor, A.: Serat: Secure role mapping
technique for decentralized secure interoperability. In: Proc. of the 10th
ACM SACMAT. pp. 159–167. (2005)

[18] Tang, Z., Li, R., Lu, Z.: A request-driven role mapping for secure
interoperation in multi-domain environment. The 2007 IFIP International
Conference on Network and Parallel Computing Workshops. pp. 83–90.
(2007)

[19] Wickramaarachchi, G.T., Qardaji, W.H., Li, N.: An efficient framework
for user authorization queries in rbac systems. In: Proc. of the 14th ACM
SACMAT. pp. 23–32. (2009)

[20] Zhang, S., Kong, X., Wang, B.: Study on role-spliting and its ontology-
based evaluation methods during role mapping of inter-domain. In: Proc.
of the 2008 International Conference on Computer Science and Software
Engineering - Volume 03. pp. 642–645. (2008)

[21] Zhang, Y., Joshi, J.B.D.: A request-driven secure interoperation frame-
work in loosely-coupled multi-domain environments employing rbac
policies. In: Collaboratecom: Networking, Applications and Workshar-
ing. pp. 25–32. IEEE Computer Society, (2007)

[22] Zhang, Y., Joshi, J.B.D.: Uaq: a framework for user authorization query
processing in rbac extended with hybrid hierarchy and constraints. In:
The 13th ACM SACMAT. pp. 83–92. (2008)

8

