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Abstract—In online social networks (OSNs), the privacy of
users is impacted by exposure of information about those users
to other users of the system. Various factors, including design and
user behavior, may affect the degree to which information about
users is exposed. We propose the notion of knowledge exposure
that measures the probability that information about users will
be seen by others. We argue that such a measure can give OSN
users and designers insight about how privacy is affected based
on system design and user behavior. We present exposure as a
promising notion that can complement privacy control efforts in
an OSN rather than replacing existing measures such as access
control. We provide a formal model of exposure in an OSN, and
demonstrate through experiments how it can be calculated for
various information items.

Index Terms—online social networks, exposure, privacy

I. INTRODUCTION

Online social networks (OSNs) are Web applications where
users interact with one another by forming connections (friend-
ships) and sharing information. An OSN like Facebook,
LinkedIn, or Google+ contains a large amount of personal
information about the users of that system. Much of this infor-
mation is privacy-sensitive, and users may want to limit who
can access their information. Various access control models
have been proposed for OSNs to enable users control sharing
of their privacy-sensitive information with other users. Such
proposals specify and enforce access control policies based
on user-to-user relationships [2, 3, 6, 9, 12]. Regardless of the
choice of the access control model, access control policies in
an OSN determine the authorized users for accessing a piece of
information. In other words, the authorization determines who
can access the information. We note, however, that there are
other factors involved that could determine who would access
the information. Everyone may not have the same chance to
access certain information even if authorized. In the same way,
a piece of information may not be accessed by every individual
authorized for it.

As users browse an OSN, they obtain (access) information
about other users in the system. More precisely, each page
on OSN presents pieces of knowledge to a user about other
users. For example, as Bob browses Alice’s profile page on
Facebook he learns Alice’s birthday. Or as Bob reviews his
news feed, he learns about a new photo in which Alice has
been tagged. As users obtain pieces of knowledge about other
users, those pieces of knowledge become exposed. In this

work, we propose and formalize the notion of exposure for
a piece of knowledge as the chance (or probability) that it
is accessed by a user. In other words, while authorization
determines a possible access, exposure measures chance of
materializing that access.

In this paper, we propose a foundational model and as-
sociated algorithms for defining and calculating knowledge
exposure in OSNs. Knowledge exposure as a measure can be
an indicator of privacy risk of user’s information. Our intuition
is that, given the same impact of privacy violation for two
knowledge items, a user will be more concerned about the
knowledge item that has more exposure than the item that is
less exposed. Such a measure can form the basis of an access
control model based on desired exposure levels. Also, it can
also inform users about the effect of their behavior/policies on
exposure of their data. Finally, it can be employed by OSN
developers to test the effects of changes to system design on
user privacy, in order to tune the designs and to inform and
prepare their users more adequately.

Our contributions in this paper can be summarized as
follows.

1) A formal model of an OSN and the knowledge contained
therein. This model is abstract and can be used to
represent many different kinds of OSNs.

2) A 3-step modular algorithm for computing exposure of
OSN pages, knowledge items, and users. Each of the
three modules of this algorithm can be exchanged for
an alternative approach, without affecting the others.

3) A use case for a simple OSN, in which we demonstrate
how the generic model (contribution 1) can be instanti-
ated to represent a real system.

4) An experiment in which we apply the simple OSN
(contribution 3) to a real-world dataset from Facebook,
and implement the algorithm from contribution 2 to
compute exposure on that dataset.

The rest of the paper is organized as follows. We provide
an overview of factors that we consider to impact exposure of
knowledge items in Section II. In Section III, we establish a
generic framework for modeling an OSN and the knowledge
contained within it. We outline our methodology for comput-
ing exposure of pages, knowledge, and users in Section IV.
In Section V, we discuss the application of our model to a
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specific OSN design based on a simple version of Facebook,
and discuss the results of our experiment in Section VI. We
finally review the related work in Section VII.

II. FACTORS IMPACTING EXPOSURE IN OSN

There are several factors that affect information exposure in
an OSN. We argue that the two main factors are the design
of the OSN, and the behavior of its users. Here, we give an
overview of how these factors impact exposure, and argue
in the rest of the paper how the model and experimental
results support our hypotheses. Figure 1 shows the relationship
between various factors. In the diagram, an arrow from one
item to another indicates that the first item impacts the second.

User preferences, browsing habits, goals for using the
system, and other factors (collectively referred to here as
“user psychology”) have an impact on the behavior of users
in the system. These users take on two distinct roles, the
role of a knowledge stakeholder (knowledge about them is
contained on pages in the system), and the role of an observer
(someone browsing the system and learning knowledge about
others). Stakeholder behavior and observer behavior are both
impacted by user psychology, but they in turn impact exposure
in different ways.

Decisions made in the design of the OSN impact both the
layout of each page, as well as the topology of the system’s
Webpage hyperlink graph. These in turn have an affect on the
behavior of users who are observing information contained
on pages in the system. For example, the design decision
regarding whether or not to show “Alice has been tagged in
a photo” on Bob’s news feed determines whether or not Bob
might navigate to the photo page.

The page layout and hyperlink topology are also affected by
the behavior of knowledge stakeholders. For example, Alice’s
decision to become friends with Bob might cause there to be
an additional entry on each of their friend lists. There will also
now be hyperlinks from each person’s friend list to the other’s
profile.

Finally, the behavior of observer users (which was influ-
enced by their psychology and by the OSN layout/topoligy)
directly determines the exposure of knowledge in the system.
For example, Alice’s decision (influenced by her browsing
habits, the availability of a hyperlink, and the presence of
desired knowledge) to navigate to Bob’s profile page increases
the exposure of knowledge contained on that page.

An additional important factor is access control. Intuitively,
denied authorizations results in no exposure, while grant
authorizations result in some (even if nominal) exposure. The
OSN model we present in this paper does not include access
control rules, and we therefore do not discuss this factor in as
much detail as the others. However, we foresee access control
as having an important relationship to exposure, and therefore
plan to address it in future work.

III. THE OSN MODEL

We now present our model of an OSN. The core of the
model has two representations: the knowledge model, and
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Figure 1: Factors Impacting Exposure

the navigation model. The knowledge model represents the
system’s users, their data, and the relationships between them.
The navigation model consists of a Web graph that represents
the page-hyperlink structure of the OSN website itself. Pieces
of knowledge from the knowledge model are exposed to users
on pages in the navigation model.

A. Knowledge Model

The knowledge graph is derived from an underlying knowl-
edge ontology, which describes the set of knowledge contained
in the system. Each individual piece of knowledge is called
a knowledge statement, and corresponds to one edge (and its
endpoints) in the knowledge graph. The stakeholder function
maps a knowledge statements to the set users whose privacy
is impacted by the exposure of that knowledge statement.

1) Knowledge Ontology: A knowledge ontology is a tuple
〈U,O,R〉, such that:
• U is the set of users in the system. Each element u ∈ U

represents an individual who has an account in the online
social networking system.

• O is the set of objects in the system. These are items
such as photos, text posts, location check-ins, pieces of
profile information (e.g., name, home address), etc.

• R is a collection of binary relations representing the
relationships in the system. Each element of R is a
set Rt ⊆ (U ∪ O) × (U ∪ O). Rt contains pairs of
users and/or objects that have the relationship t (i.e. t
is the relationship type). For example, if users u1 and
u2 are friends, then (u1, u2) ∈ Rfriend. If O 6= ∅,
then R must contain at least the element Rown such that
∀o ∈ O.∃u ∈ U.(u, o) ∈ Rown. In other words, if there
are objects in the model, then each object must have an
owner assigned to it.

2) Knowledge Graph: The knowledge graph is the graph-
representation of the knowledge ontology. It is a directed graph
GK(VK , EK) with typed edges and typed vertices such that:



• VK = U ∪O
• EK = {t(x, y) | Rt ∈ R ∧ (x, y) ∈ Rt}
3) Knowledge Statements: From the knowledge graph we

obtain the set K of knowledge statements. A knowledge
statement is a a subgraph of GK consisting of two nodes
x and y, and the labeled edge (x, y) ∈ Rt for some Rt ∈ R.
It is expressed as t(x, y). For example, if users u1 and u2 are
friends (i.e. (u1, u2) ∈ Rfriend), then the knowledge statement
friend(u1, u2) expresses this fact.

Each knowledge statement has a type and a Unix-style
timestamp. The type corresponds to the relation to which
its corresponding edge belongs. The timestamp records the
time that the corresponding edge was created. For a given
knowledge statement k = t(x, y), the type is denoted by
type(k) = t, and the timestamp is denoted by time(k).

4) Knowledge Stakeholders: A stakeholder for a piece
of knowledge is a user whose privacy is affected by the
exposure of that knowledge. Function ∫ : K → P(U) assigns
stakeholders to knowledge items. Suppose k is the statement
t(x, y). Then ∫(k) = {u ∈ U | x = u ∨ y = u ∨ (u, x) ∈
Rown ∨ (u, y) ∈ Rown}. Therefore, a user is a stakeholder
for a knowledge statement if that user either appears in the
knowledge statement, or owns an object that appears in the
knowledge statement.

B. Navigation Model

The navigation model is a tuple
〈GN (P,H), contains, priority, weight〉 such that:
• GN (P,H) is the navigation graph, which represents the

Webpage/hyperlink topology of the OSN Web applica-
tion.

• contains is a function that keeps track of the pages that
a particular knowledge statement appears on.

• priority is a function that captures the “prominence” of
a knowledge item on a page.

• weight is a function that assigns edge weights to hyper-
links. The weight of a hyperlink is the probability that a
user will click on that hyperlink, rather than another one
on the same page.

The navigation graph is the Web hyperlink graph repre-
sentation of the OSN system. P is a set of Web pages, and
H ⊆ P × P is a set of hyperlinks. GN (P,H) is a directed
graph with weighted edges. This represents the system that
users navigate. Each page contains knowledge statements that
are potentially exposed when a user navigates to that page.
For an edge e = 〈p1, p2〉, the weight of e is the probability
that a user currently visiting page p1 will navigate to p2 by
following hyperlink e.

The function contains is defined as follows: Suppose p ∈ P
and k ∈ K. If p ∈ contains(k), then knowledge statement k
appears on p and can be learned by any user that navigates
to page p. In other words contains(k) is the set of all pages
that k appears on. The function contents(p) : P → P(K)
is a pseudo-inverse of the contains function. contents(p) =
{k | p ∈ contains(k)}.

Table I: Example Set of Pages

Page Contents Priority

p1

k1
k2
k3

0.50
.3
0.16

p2
k1
k3

0.6
0.3

p3
k2
k3

0.6
0.3

p4 k⊥ 1

The priority function is defined as follows: priority :
K×P → R. If priority(k, p) = c, then we say that knowledge
statement k has priority c on page p. The priority c is a mea-
sure of the prominence of k on page p. A higher priority value
indicates that the knowledge statement is more prominent on
the page. The priority function can be implemented in different
ways to capture the fact that users might be more likely to look
at certain knowledge statements, as opposed to others on the
same page. In section IV-B, we discuss how to compute and
interpret priority.

If a page p1 contains no knowledge (i.e. 6 ∃k. p1 ∈
contains(k)), then p1 is said to contain a special knowledge
statement called the empty knowledge statement. We denote
the empty knowledge statement as k⊥. Therefore, for an empty
page p1, contents(p1) = {k⊥} This is important in computing
knowledge exposure from page exposure, as we will see in
section IV.

Example 1: Table I shows an example of part of the Navi-
gation Model for a hypothetical OSN. This example illustrates
how a knowledge statement can appear on multiple pages, and
how a page can have multiple different knowledge statements
contained within it. If a page has no knowledge statements
(e.g., p4), it is assigned the empty knowledge statement (i.e.
k⊥). We will refer back to this example in subsequent sections
to help illustrate how exposure is computed.

IV. COMPUTING EXPOSURE

We discuss three distinct levels of knowledge exposure:
page exposure, knowledge statement exposure, and user ex-
posure. Those are denoted by functions ep, ek, and eu, re-
spectively. These three values are closely linked. In particular,
eu depends on ek, and ek depends on ep.

We define exposure, in general, is a probabilistic measure.
If p ∈ P is a page, then ep(p) is the probability that at any
given moment, a random user will be visiting page p. For
a knowledge statement k ∈ K, ek(k) is the probability that
at any given moment, a random user will be looking at an
instance of k. Finally, for a user u ∈ U , eu(u) is the probability
that, at any given moment, a random user will be looking at
some knowledge statement for which u is a stakeholder. We
derive this notion primarily from the PageRank algorithm [14],
which we employ in our calculation of page exposure.

The first step in measuring the exposure of a knowledge
item in an OSN is to compute the exposure of the OSN
Web pages containing that knowledge. Once the page exposure
values are obtained, the knowledge exposure for each piece of



Figure 2: Calculating Exposure

knowledge can be computed by aggregating the page exposure
of all the pages containing that piece of knowledge. This
calculation must also take into account the layout of the pages
with respect to where the knowledge is displayed to users.
Finally, the user exposure for a user can be computed by
aggregating the exposure scores for all of the knowledge in
which that user is a stakeholder.

A summary of this process is as follows:
1) Given the knowledge model, and the details of the

OSN being modeled (i.e. the features of the actual,
implemented Web application), construct the navigation
model of the OSN.

2) Analyze the topology of the navigation graph to compute
page exposure.

3) Compute knowledge exposure from the computed page
exposure values. This requires use of the contents and
priority functions.

4) Compute user exposure from the computed knowledge
exposure values. This requires use of the stakeholder
function ∫ : K → P(U).

This process is designed to be highly modular. That is, each
of the four steps can be thought of as an abstract module. Each
module has specific inputs and outputs, but its implementation
details do not depend on the details of the other modules.
Figure 2 depicts each module as a “black box” algorithm.

In the subsequent sections, we will explain the details of
the step-by step process for computing exposure. In section
IV-A, we describe how to calculate page exposure. In section
IV-B, we describe how to calculate knowledge exposure from
page exposure. In section IV-C, we describe how to compute
user exposure from knowledge exposure.

A. Page Exposure

We utilize the PageRank algorithm [14] for calculating page
exposure in this paper. We leave exploration of other possibly
useful network centrality measures [4] for future work.

PageRank was originally developed as a tool for quantifying
the importance of Web page in order to help tailor the results of
search engine queries. PageRank approximately simulates the
behavior of a user browsing a set of Web pages by clicking
a randomly-selected hyperlink on each page. The algorithm
also allows for the possibility that the user will decide to jump

directly to a page without following hyperlinks; this behavior
is called teleportation.

We customize PageRank in several ways to better fit our
needs in measuring exposure of pages. First, we specify the
probability that, at any given moment, the user will teleport
away from the current page. This probability is known as the
damping factor. Second, we specify, for a particular page,
the probability that this page will be the destination for a
teleportation. This probability is called the reset value of
a page. Finally, we assign edge weights to hyperlinks. The
weight of a hyperlink is the probability that the user will follow
that hyperlink when leaving the page (as opposed to another
hyperlink on the same page).

The purpose of the damping factor and reset values are
to simulate the user behavior of foregoing hyperlinks and
navigating directly to a specific page. In our model we employ
these features to capture the scenario in which a user chooses
to return to her homepage.

The purpose of the edge weights is to capture the notion that
users may be more inclined to follow a particular hyperlink
over another. If one hyperlink is deemed to be more likely to be
selected (based on the design of the system or the hyperlink’s
location on a page), it will be assigned a higher weight.

When PageRank runs, it approximately simulates a random
walk of the graph. Each vertex will be assigned a rank which
depends on two factors: (1) the number of incoming links, and
(2) the recursively-calculated rank of the pages that link to it.
When weights are used, a higher weight on an incoming link
causes effect of that link on the page’s rank to be greater.

After executing the PageRank algorithm on the navigation
graph, there will be a value ep(p) for each p ∈ P . As discussed
above, each page’s ep value is interpreted as a probability.
Therefore,

∑
pi∈P

ep(pi) = 1. This is guaranteed as an invariant

of the PageRank algorithm [14]. We rely on this fact in our
calculation of ek in the subsequent section.

B. Knowledge Exposure
Suppose that k ∈ K is a knowledge statement. The knowl-

edge exposure, denoted as ek(k), is the probability that, at a
given moment, a random user is visiting some page p such that
p ∈ contains(k) and is currently looking at k (as opposed to
some other knowledge statement on the same page).

Since a knowledge statement may appear on more than
one page, ek(k) relies on two factors: the ep of the pages
containing k, and the priority values for k on each of those
pages.

We define an instance of k to be a member of the set
Ik = {〈k, p〉 | p ∈ P ∧ p ∈ contains(k)}, which repre-
sents an occurrence of k on a particular page. For example,
if contains(k) = {p1, p2} then there are two instances:
Ik = {〈k, p1〉 , 〈k, p2〉}. The instance-exposure of an instance,
eki

(k, pi) is based on ep(pi) and priority(k, pi). In turn,
the ek of k is an aggregate of the instance-exposures of all
instances of k.

The priority priority(k1, p1) is the probability that, if a
user is visiting p1, then k1 is the knowledge statement she



is looking at. The priority of a knowledge statement could
depend on many different factors, including but not limited
to: the position of the knowledge item on the page, the type
of knowledge statement, the timestamp of the knowledge
statement, and the endpoints or stakeholders for the knowledge
statement (and their relationship to the observer). For now,
priority is left as an abstract function that can be customized
for different OSN modeling needs. In section V, we describe
how exposure is implemented in our specific use case and
subsequent experiment.

Once the ep value for each page, and the priority value
for each instance of a knowledge item are computed, we can
compute the ek of a knowledge item as follows:

ek(k) =
∑

pi∈contains(k)

ep(pi) ∗ priority(k, pi)

This is where the existence of the empty knowledge state-
ment is important, as previously mentioned in Section III-B. If
some page p1 was allowed to exist such that contents(p1) =
∅, then the sum

∑
k∈K

ek(k) would not be equal to 1. Thus, we

instead set contents(p1) = {k⊥} This correctly captures the
possibility that a user is visiting a page that has no knowledge
(i.e., contains only k⊥), which lowers the probability that the
user is looking at some non-empty knowledge statement.

Example 2: Consider the example in table I. Suppose that
we have computed the page exposure of each page using the
process outlined in section IV-A, and obtained the following
page exposure values: ep(p1) = 0.25, ep(p2) = 0.35, ep(p3) =
0.25, and ep(p4) = 0.15.

We can now compute knowledge exposure as follows (we
show the details of the calculation for k1, but only the result
for k2 and k3. The reader can easily verify the arithmetic):

ek(k1) = ep(p1) ∗ priority(p1, k1) + ep(p2) ∗ priority(p2, k1)
= 0.25 ∗ 0.5 + 0.35 ∗ 0.6
= 0.3583

ek(k2) = 0.25

ek(k3) = 0.2416

Notice that, excluding k⊥, the sum of the exposure values
for all knowledge statements is ek(k1) + ek(k2) + ek(k3) =
0.85 (as opposed to 1). Since p4 contains no knowledge, some
of the exposure value on that page seems to be “lost” when
computing knowledge exposure. This is why we have k⊥. We
can compute ep(k⊥) = ep(p4) ∗ 1 = 0.15. Now the sum of
the exposure for all knowledge statements is 0.85+0.15 = 1.

C. User Exposure

For some user u ∈ U , exposure eu(u) is computed simply
by calculating the sum of the ek values of the knowledge
statements for which that user is a stakeholder. Suppose Ku ⊆
K such that Ku = {k | u ∈ ∫(k)}. Then eu(u) =

∑
ki∈Ku

ek(ki)

V. USE CASE: EXPOSURE IN A FACEBOOK-LIKE OSN

In this section, we present a use-case implementation of our
exposure model for a Facebook-like OSN.

A. OSN Model

We consider a simplified version of Facebook where each
user has a profile page and a news feed. A user’s profile
page includes her “wall,” upon which other users may leave
messages (wall posts). The profile page also lists that user’s
friends. The news feed contains a list of recent “stories” about
the user’s friendship network. Stories in this system include
recently-created friendships or wall posts for/by the user’s
friends. We assume that wall posts and news feed stories
are displayed in inverse chronological order. In particular, the
following kinds of knowledge is shared in the OSN:
• The existence of a friendship between two users
• The fact that a particular user posted on another user’s

wall or on her own wall (which is commonly known as
“status” message on Facebook)

Each user u has a news feed page, a profile page, a friend list
page, and a wall page. The friend list page contains knowledge
statements of the form friend(u, fi) and has a hyperlink to
the profile page of each friend fi. The wall page contains
knowledge statements of the form postedOnWall(aj , u), and
has a hyperlink to the profile page of each post author aj . The
news feed contains the most recent knowledge statements for
which a friend of u is a stakeholder, and has hyperlinks to
pages owned by the users mentioned in those statements. The
profile page for each user contains no knowledge, and serves
only as a landing page for other users navigating to u’s cluster
of pages.

For a precise specification of how the knowledge graph and
navigation graph are constructed, see Appendix A.

Figure 3a shows a sample knowledge graph. This social
network has three users. The types of knowledge statements
are friendship and wallpost (e.g. u2 posted on u3’s wall).
Figure 3b shows the corresponding navigation graph, creating
using the algorithm outlined above. Each vertex is a page, and
each directed edge is a hyperlink. For each user ui, the vertex
ni represents that user’s news feed, pi represents their profile
page, fi represents their friend list page, and wi represents
their wall page.

VI. EXPERIMENTAL RESULTS

In this section, we conduct a set of experiments on our use
case OSN, described in Section V, using a real-world dataset.

A. Dataset

We utilize a dataset from a 2009 study on user interaction
on Facebook [19]. The data set consists of 63,891 users,
with 817,091 friendships and 876,994 interactions (wall posts).
Each wall post is assigned a timestamp based on the time it
was created. Each friendship is assigned a timestamp based
on the time that the two users became friends, if this could be
determined. Otherwise, it is assigned timestamp 0.



Figure 3: An example of a simple knowledge graph, and the
corresponding navigation graph for our use case.

(a) Example Knowledge Graph

(b) Example Navigation Graph

B. Setup

We implemented a program to import our dataset and
construct the knowledge and navigation graphs (details in Ap-
pendix A). We then used the personalized PageRank algorithm
(see section IV-A), provided by the Python iGraph library [5],
to compute page exposure for vertices in the navigation graph.
We customized the algorithm with the following parameters:

1) The damping factor is set to 0.15. This means that the
probability of ’teleporting’ away from a page (instead of
clicking one of its hyperlinks) at any given time is 0.85.
(The teleportation probability is always 1− d, where d
is the damping factor).

2) The reset value for a node representing a news feed page
is set to 1, while the reset value for each other node is
set to 0. The PageRank implementation automatically
redistributes this evenly among all feed-page nodes so
that the sum of all reset values is 1. This ensures that
if a user teleports away from the page she is visiting,
then the probability that she will arrive at a feed page is
1, and each feed page has an equal chance of being the
destination. This simulates the user behavior of returning
back to their news feed during a browsing session.

Figure 4: Exposure of knowledge statements vs. their times-
tamps

3) The edge weights are set based on the contents of
the pages and proportional to the priority of the corre-
sponding knowledge items (details given in Appendix
A). The PageRank implementation will automatically
normalize these values so that the sum of the weights
of all outgoing edges from a page is 1. When a user
navigates away from a page by clicking a hyperlink, then
weight(e) denotes the probability that e is the hyperlink
she will choose.

Once the PageRank calculation gives us our ep value for
each page, we compute ek for each knowledge statement and
eu for each user as discussed in section IV.

It is important to note that all exposure values are multiplied
by 100 to preserve precision. Therefore, the sum of all page
exposure values is 100, rather than 1. Similarly, the sum of
all knowledge exposure values is 100, rather than 1. This is
merely a convenience for the reporting of values. The exposure
values can be interpreted in nearly the same way as before.

C. Knowledge Characteristics and Exposure

We investigated the relationship between exposure of
knowledge statements and their characteristics, more specif-
ically, their timestamp and appearance on pages. Figure 4
shows the relationship between the timestamp for a knowl-
edge statement, and that knowledge statement’s exposure. The
exposure shows a strong correlation with time (Spearman
correlation = 0.71). We utilize Spearman correlation because
it captures the fact that, as time increases, exposure increases
as well. This is not expressed well by a Pearson correlation,
since Pearson only tracks linearity between two variables.

Figure 5 shows the relationship between the number of
pages that a knowledge statement appears on, and that knowl-
edge statement’s exposure. The Pearson correlation for this
relationship is 0.90. This suggests that the number of pages
that a knowledge statement appears on has a strong positive
effect on its exposure.



Figure 5: Exposure of knowledge statements vs. the number
of pages they appear on

Figure 6: Exposure of users vs. their two-hop neighborhood
size

D. User Characteristics and Exposure

We also investigated the exposure of users in relation to their
characteristics. In figure 6, we show the relationship between
a user’s two-hop neighborhood size and their user exposure.
The Pearson correlation is 0.53, showing a moderate effect of
neighborhood size on user exposure.

E. Observer Behavior and Exposure

As discussed in section II, one of the primary factors that
impacts exposure is the behavior of observer users. As users
browse Web pages in the system, they may arbitrarily decide
to return to their news feed, instead of following a hyperlink
to another page.

In our experiment, we capture this behavior using the
damping factor and reset values in the PageRank algorithm.
The damping factor controls the probability of “teleporting”, or

Damping Factor Total News Feed Exp. Total Profile Exp.
0.15 84.976 14.999
0.50 50.027 49.997
0.85 15.015 84.997

Table II: The effect of the PageRank damping factor on page
exposure by page type in OSN-1

navigating directly to a page, instead of following a hyperlink.
A damping factor of d, such that 0 ≤ d ≤ 1, indicates that the
teleportation probability is 1 − d. Meanwhile, the reset value
for a page controls the probability that that page will be the
destination of a teleportation.

We assign a reset value of 1 to each news feed page,
and a reset value of 0 to each other page. These values are
automatically redistributed by the PageRank implementation,
so that the destination of a teleportation will always be a news
feed page. In the experiments discussed thus far, we have
used a damping factor of .15, indicating that the probability
of teleporting away from any given page is 0.85.

In this experiment, we observe the effect of different damp-
ing factor values on the page-exposure of different kinds of
pages. We run PageRank with damping factors of 0.15, 0.5,
and 0.85. Suppose F ⊆ P is the set of all friend list pages,
W ⊆ P is the set of all wall pages, Q ⊆ P is the set of all
profile pages, and N ⊆ P is the set of all news feed pages.
For each damping factor value, we compute the followings:∑
f∈F

ep(f),
∑

w∈W
ep(w),

∑
n∈N

ep(n), and
∑
q∈Q

ep(q).

Table II shows the results. As the damping factor increases
(i.e. the teleportation probability decreases), the exposure of
news feed pages decreases, and as a result, the exposure of
other kinds of pages increases. In fact, the sum of the exposure
values news feeds has nearly a perfect correlation with the
teleportation probability.

F. OSN Design and Exposure

As discussed in section II, one of the primary factors that
impacts exposure is the design of the implemented OSN
system. In our main OSN model (discussed in section V),
the design of the hypothetical OSN dictates that each user
has a feed page, a profile page, a friend list page, and a wall
page. We will refer to this design as OSN-1. To demonstrate
how a change in the design impacts exposure, we introduce a
second model, OSN-2. In OSN-2, each user has only a profile
page and a news feed page. The news feed is the same as in
OSN-1. Meanwhile, the profile page now contains all of the
knowledge and outgoing hyperlinks that used to be stored on
the friend list and wall pages. This knowledge is displayed
in two columns: one for friendships, and one for wall posts.
The first friendship is assigned a priority value that is equal
to the first wall post, and this trend continues down the page.
To demonstrate the impact of this change, we conducted the
same damping-factor experiment discussed in Section VI-E on
OSN-2.

Table III shows the result of repeating the damping factor
experiemnt on OSN-2. As in OSN-1, the teleportation proba-



Damping Factor Total Feed Exposure Total Profile Exposure
0.15 84.976 14.999
0.50 50.027 49.997
0.85 15.015 84.997

Table III: The effect of the PageRank damping factor on page
exposure by page type in OSN-2

bility (1− d, where d is the damping factor) is a very strong
predictor of the total exposure of all news feed pages. The
difference is that, without an empty profile page “stealing”
some of the total exposure, all of the remaining exposure is go-
ing to a page that contains knowledge. Therefore, knowledge
appearing on non-news feed pages will have more exposure
than it did in OSN-1.

VII. RELATED WORK

Various access control models have been proposed for
OSNs in order to allow users specify policies which protect
the privacy of their information. In particular, relationship-
based access control policies specify authorizations based
on relationship between owner and accessor in the social
network. Metrics such as type and distance of friendship [3,
9], various topology-based constraints [6], and more expressive
ontologies [2, 12] have been discussed in the literature. While
exposure is influenced by access control policies, it is also
significantly driven by other design aspects of an OSN as
well as user behavior. We argue that exposure can be a metric
that can further enhance user privacy in OSN and complement
existing access control policy models.

Mondal et al. introduce the notion of exposure control as
an alternative to access control [13]. They define exposure for
a piece of information as the set of principals who we expect
to eventually learn about it. They then suggest that OSNs can
employ item popularity algorithms [17] in order to inform
their users about the exposure of their items and allow them
to fine-tune their sharing policies. Despite similarity in name,
our notion of exposure has concrete differences with Mondal
et al.’s work. Looking at it from the perspective of the audience
for a piece of information, Mondal et al.’s exposure is basically
a subset of authorized set of users who will know about
the item. In other words, it’s a binary notion: you are either
exposed or are not exposed to an item. However, we define
exposure as the chance of a user getting exposed to the item.
Therefore, our notion of exposure is probabilistic look at the
authorized individuals for a piece of item, a more fine-grained
perspective in a way. Moreover, while for assessing Mondal et
al’s exposure you would need access to actual OSN log’s on
user-item accesses, our notion of exposure can be calculated
based on a theoretic model of an OSN. The latter has clear
advantage for change-impact analysis tasks and tend to be
more accurate if the theoretical model is captured precisely.
The authors of [11] propose a similar approach to exposure
as taken in this paper, in which they compare exposures
in a system with and without news feed. In comparison,
we propose a formal model of exposure in OSNs which
provides a more efficient approach to calculating exposure.

The formal model is easily extensible to incorporate other
page importance algorithms beyond PageRank. Furthermore,
we model exposure of a user and conduct experiment on a
Facebook dataset that can demonstrate employing of exposure
in OSNs better.

Liu and Terzi [10] have proposed a privacy score metric for
users of OSNs which is based on sensitivity and visibility of
users’ information. However, they only consider the structure
of the friendship network and visibility according to the
(relationship-based) privacy settings. The key distinction in
our approach is to consider structure of OSN’s user interface
and how it exposes users to various information, as opposed to
measurement solely based on existing authorization policies.

Researchers in HCI privacy community have looked into
how users’ sharing behavior is impacted if they receive feed-
back on that. It should be noted exposure in this context
simply refers to who is authorized to access rather than a
standalone metric dependent on system design as in our work.
Tsai et. al. [18] investigated user response to being given
feedback about when their location information was shared.
They found that when users were provided feedback, they felt
overall more comfortable with their level of privacy and had
fewer privacy concerns. Schlegel et. al. [16] devised a system
to provide real-time feedback to users, displaying a set of
eyes which grow larger as more location requests are granted.
Hoyle et. al. [7] design a similar mobile app, presenting an
“avatar” of the user. As more people are granted access to
the user’s data, the clothing of the avatar changes to reflect
that they are now more exposed. Patil et. al. [15] conducted a
user experience study in which they found that when users
are provided immediate feedback about disclosure of their
information, they are more likely to feel as though they have
“over-shared” that information. The authors propose methods
to make disclosures more actionable, or to delay feedback to
avoid a “knee-jerk” response from the user.

Researchers have studied how users allocate their attention
and interact in OSNs [1, 19, 20]. Backstrom et al. propose a
new attention measure for analyzing social network of OSN
users based on how they allocate their attention to different
users [1]. The authors consider communication and viewing
actions as attention modalities. Using a complete activity log
of Facebook users they analyze how users’ attention is allo-
cated differently between communication and observation, and
how they are affected by other factors such as age and gender.
Wilson et al. propose to use actual user interaction within an
OSN (e.g., posting on somebody’s wall) as an indicator of
social connection between users instead of relying solely on
friendship graphs [20]. They show that an overlay interaction
network is more fruitful than relationship network to be used
in algorithms that rely on social network structure, such as
for socially-attested messaging or for detecting Sybil (fake)
identities in OSNs. Both notions of attention and interaction
as discussed rely on a posteriori analysis of users’ behavior
in an OSN. Our focus in this paper is on how the design of
an OSN could shape users’ exposure to information, i.e., to
measure the extent of exposure in an a priori fashion without



having access to an OSN’s activity log.
We have adopted the PageRank algorithm [14] in this work

in order to calculate page exposures in an OSN. PageRank
and other similarly well-known methods such as HITS [8] are
primarily used for ranking web search results by calculating
importance of web pages.

VIII. CONCLUSIONS

In this paper, we defined the concept of exposure in OSNs at
three distinct levels: page exposure, knowledge exposure, and
user exposure. Each kind of exposure specifies the probability
that the item in question will be accessed. We proposed a
methodology for measuring these exposure values in a general
sense that can be applied to various different real-world OSN
systems. Finally, we experimented on a real-world Facebook
dataset of friendships and wall posts, and showed that our
calculations can capture the impact of various factors including
knowledge and user characteristics, observer behavior and
OSN design. As future work, we plan to investigate computing
knowledge exposure in presence of fine-grained access control
(we simply assumed global access in this work), modeling
exposure of complex knowledge statements, and quantify-
ing/managing privacy according to exposure.
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APPENDIX A
DETAILS OF IMPLEMENTED OSN MODEL

A. Knowledge Graph

Our implemented knowledge graph consists of user nodes
and two kinds of edges: friendships, and wall posts. The
friendship relation Rfriend ⊆ U × U contains the two pairs
〈ui, uj〉 and 〈uj , ui〉 whenever u1 and u2 are friends. The
wall post relation Rpost has a pair 〈ui, uj〉 for each time that
ui has posted on uj’s wall (note that a user may post on
their own wall). Therefore, the knowledge graph is defined as
GK(U,Rfriend ∪Rpost). Each edge e ∈ (Rfriend ∪Rpost) is
assigned a timestamp, based on the time that the friendship or
wall post was created. We denote this as time(e).

B. Navigation Graph

We base the structure of our navigation graph on a simplified
version of Facebook (see section V-A). Each user has 4 pages
associated with them: a news feed, a profile, a friend list, and
a wall. There are hyperlinks from the news feed to each of
the profile, friend list, and wall. There are also a hyperlink
for each 2-permutation of those three pages. Suppose that for
each user ux, the vertices nx, px, fx, and wx are that user’s
news feed, profile, friend list, and wall, respectively. Then our
navigation graph is constructed as follows:

1) P =
⋃

ux∈U
{nx, px, fx, wx}

2) H =
⋃

ux∈U
{〈nx, px〉 , 〈px, fx〉 , 〈fx, px〉 ,

〈px, wx〉 , 〈wx, px〉 , 〈fx, wx〉 , 〈wx, fx〉}
3) For each ux ∈ U :

a) contents(fx) = {friend(ux, v) | 〈ux, v〉 ∈
Rfriend}

b) contents(wx) = {post(v, ux) | 〈v, ux〉 ∈ Rpost}
c) contents(nx) =
{k ∈ K | ∃v ∈ ∫(k). 〈ux, v〉 ∈ Rfriend ∧ ux 6∈
∫(k)}

4) For each knowledge statement friend(ux, uy) on a user
ux’s friend list page fx, add a hyperlink 〈fx, py〉 to H ,
where py is the profile page of user uy .

5) For each knowledge statement post(uy, ux) on a user
ux’s wall page wx, add a hyperlink 〈wx, py〉 to H , where
py is the profile page for user uy

6) For each knowledge statement k on a user ux’s news
feed page nx:

a) If k = friend(uy, uz), then add hyperlinks
〈nx, fy〉 and 〈nx, fz〉 to H , where fy and fz are
the friend list pages for uy and uz , respectively.

b) If k = post(uy, uz), then add hyperlinks 〈nx, py〉
and 〈nx, wz〉 to H , where py is the profile for user
uy and wz is the wall for user uz .

7) Assign a position to each knowledge statement on each
page as follows: Suppose p ∈ P and contents(p) =
{k1, k2, ...kn}. We sort the statements in non-increasing
order by timestamp. The statement with greatest times-
tamp is assigned position 0, and we then increment
the position by 1 for each subsequent timestamp. The
result is that each statement has a position 0 ≤
position(ki, p) ≤ n − 1. The item with position 0 is
the “most prominent” item on the page (i.e. the one that
is most likely to be seen).

8) Assign the priority value to each knowledge statement
based on position: priority(ki, p) = n−position(ki,p)

n∗(n+1)/2 .
Note that

∑
ki∈contents(p)

priority(ki, p) = 1

9) Assign a weight to each edge as follows:
a) If e is an edge added in item (2), then weight(e) =

0.1
b) Otherwise, e is an edge 〈p1, p2〉 added in item

(6), which means e was added due to the presence
of some knowledge statement k1 ∈ contents(p1).
Therefore, weight(e) = priority(k1, p1)

An intuitive explanation of the process is as follows. Each user
has a profile page, a news feed page, a friend list page, and a
wall page. There is a link from the news feed (which acts as a
homepage) to the profile, and hyperlinks between each pair of
the other three pages. The friend list page for a particular
user contains a knowledge statement for each bidirectional
friendship edge incident to that user in the knowledge graph.
The wall page for a particular user contains a knowledge
statement for each incoming wall post edge incident to that
user in the knowledge graph. The news feed page for a user
contains a knowledge statement for each edge incident in the
knowledge graph to a friend of that user, excluding edges
incident to the user themselves. Knowledge on each page is
sorted in non-increasing order of timestamp. Each friend list
page has an outgoing hyperlink for each friendship contained
on that page, which leads to that friend’s profile page. The
wall post page has an outgoing hyperlink for each post on
the page, which leads to the profile of the author of that post.
For each knowledge statement on a news feed page, there
are two outgoing hyperlinks: If the knowledge statement is a
friendship, then the hyperlinks lead to the profiles of the two
users involved in that friendship. If the knowledge statement is
a wall post, then there is one hyperlink leading to the author’s
profile page, and another leading to the receiver’s wall page.


