
Enhancing Relationship-Based Access Control Policies with
Negative Rule Mining

Ferhat Demirkiran

University at Albany

Albany, New York, USA

fdemirkiran@albany.edu

Amir Masoumzadeh

University at Albany

Albany, New York, USA

amasoumzadeh@albany.edu

Abstract
Relationship-based access control (ReBAC) policies often rely solely

on positive authorization rules, implicitly denying all other requests

by default. However, many scenarios require explicitly stating nega-

tive authorization rules to capture exceptions or special restrictions

that are not naturally enforced by deny-by-default semantics. This

work presents a systematic method to mine ReBAC policies that

integrate both positive and negative authorization rules from ob-

served authorizations. We formalize the mining problem, show

its NP-hardness, and develop an approach that identifies minimal

policies while accurately reflecting observed access decisions. We

demonstrate the feasibility and effectiveness of our proposed ap-

proach through a set of experiments. Our experimental evaluations

on representative datasets demonstrate that including negative

rules leads to more concise and semantically complete policies, con-

firming the necessity of explicit negative authorizations in complex

access control settings.

CCS Concepts
• Security and privacy;

Keywords
relationship-based access control; policy mining; negative autho-

rization; deny rules; policy optimization

ACM Reference Format:
Ferhat Demirkiran and Amir Masoumzadeh. 2025. Enhancing Relationship-

Based Access Control Policies with Negative Rule Mining. In Proceedings of
the Fifteenth ACM Conference on Data and Application Security and Privacy
(CODASPY ’25), June 4–6, 2025, Pittsburgh, PA, USA. ACM, New York, NY,

USA, 11 pages. https://doi.org/10.1145/3714393.3726510

1 Introduction
Relationship-based access control (ReBAC) has emerged as a flex-

ible and expressive framework for managing access permissions.

ReBAC policies enable more granular and context-aware access

control decisions by utilizing the connections among users and re-

sources [2]. In various domains, such as online social networks [11],

healthcare systems [24], and collaborative platforms, such relation-

ships are fundamental to defining who should have access to what

resources.

This work is licensed under a Creative Commons Attribution 4.0 International License.

CODASPY ’25, June 4–6, 2025, Pittsburgh, PA, USA
© 2025 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-1476-4/2025/06

https://doi.org/10.1145/3714393.3726510

Traditionally, the focus in the mining of ReBAC policies has been

on extracting positive authorization rules, that is, rules that spec-

ify when access should be granted based on certain relationship

patterns. Yet, effective policies often require not only stating when

access is allowed but also when it must be explicitly denied [20].

Negative authorization rules are essential for capturing exceptions

and prohibitions that cannot be expressed solely through deny-by-

default semantics. Consider a social media platform where Alice

and Bob share a friendship relationship, granting each other the

permission to view each other’s posts. However, when an explicit

blocked relationship is established between Alice and Bob, this neg-

ative authorization rule overrides the existing friendship, ensuring

that Alice is denied access to Bob’s content despite their friendship

connection. Without the incorporation of such negative rules, the

ReBAC policies would rely solely on implicit denials, potentially

leading to unauthorized access and compromising user privacy.

Despite the clear need, however, integrating negative authoriza-

tion rules into ReBAC policy mining introduces unique challenges.

One primary challenge is distinguishing between access denials that

result from explicit negative authorization rules and those that arise

from a deny-by-default policy, which is often implicitly enforced

in access control systems [21]. Accurately attributing access de-

nials to specific negative authorization rules requires sophisticated

analysis and a deep understanding of the underlying relationship

patterns. Furthermore, negative authorization rules often represent

exceptions to general access patterns, necessitating to identify and

categorize these exceptions without introducing inconsistencies or

conflicts within the policy. Effectively addressing these challenges

requires not only understanding of access control patterns, but also

a focus on policy minimality, ensuring that the resulting policies

capture the required access control decisions with the minimal set

of rules. This balance between expressiveness and minimality is cru-

cial for maintaining policies that are comprehensive and practical

for real-world implementation [16].

Addressing these challenges, this paper presents the first system-

atic approach for mining ReBAC policies that incorporate both posi-

tive (PERMIT) and negative (DENY) authorization rules. Our approach
thoroughly explores the authorization space, identifies relationship

patterns for user-resource pairs, and applies a categorization and

optimization process to distinguish implicit and explicit denial de-

cisions and derive minimal policies. Our specific contributions in

this work are as follows.

• We formulate the problem of mining ReBAC policies with

both positive and negative authorization rules.

• We show that the proposed mining problem is NP-hard.

• We propose a two-stage solution that mines positive and

negative authorization rules by translating each stage to

https://doi.org/10.1145/3714393.3726510
https://creativecommons.org/licenses/by/4.0/legalcode
https://creativecommons.org/licenses/by/4.0/legalcode
https://doi.org/10.1145/3714393.3726510

CODASPY ’25, June 4–6, 2025, Pittsburgh, PA, USA Ferhat Demirkiran and Amir Masoumzadeh

an instance of the classic set cover problem, leading to an

approximately optimal result. We provide a comprehensive

time complexity analysis of the solution as well.

• We experimentally validate our approach on datasets of vary-

ing complexity, demonstrating its correctness, scalability,

and conciseness. Additionally, we provide a feasibility anal-

ysis that empirically establishes the necessity of explicit

negative rules for representing complex access control re-

quirements.

In the remainder of the paper, we formalize the ReBAC policy

model and mining problem (Section 2), discuss our policy mining

algorithms and their analysis (Section 3), present the results of our

experimental evaluations (Section 4), review the closely related

work (Section 5), and discuss the significance of our findings for

future research and practice (Section 6).

2 Preliminaries and Problem Statement
ReBAC extends classical access control by incorporating the rela-

tionships among users and resources when making authorization

decisions [15]. Specifically, ReBAC policies determine whether a

user can access a resource by examining the path of relationships

in a graph that connects user to resource.

The central problem addressed in this paper is the automated

mining of ReBAC policies that incorporate both positive and nega-

tive authorization rules. Existing literature has primarily focused

on discovering relationship patterns that justify granting permis-

sions, implicitly treating all unpermitted accesses as denied. While

this positive authorization approach can suffice for some scenar-

ios, many systems require explicit negative authorization rules to

enforce specific prohibitions. For example, an organization might

grant contractors access to certain internal resources, while explic-

itly denying access to those who also contract with a competing

organization. Without the ability to capture such negative rules it

fails to capture explicit denials required in many real-world con-

texts.

To formally define the problem of mining optimal ReBAC poli-

cies, we first define a ReBAC system. In applications that support

ReBAC policies, the system information is modeled as a system

graph [13], where nodes represent users and resources, and edges

denote the relationships between them.

Definition 2.1 (System Graph). Let 𝑈 be the set of users and 𝑅

be the set of resources within a system. Let 𝐿 be the set of possible

relationship labels between users and resources. The System Graph
𝐺 = ⟨𝑉 , 𝐸⟩ is a directed graph where:

• 𝑉 = 𝑈 ∪ 𝑅 is the set of vertices representing users and

resources.

• 𝐸 ⊆ 𝑉 × 𝑉 × 𝐿 is the set of directed, labeled edges that

represent relationships between entities.

Building upon the system graph 𝐺 , the ReBAC policies define

authorization rules based on path-based relationship patterns spec-

ified about the graph.

Definition 2.2 (Relationship Pattern). A Relationship Pattern 𝜙 is

a sequence [𝑙1, 𝑙2, . . . , 𝑙𝑛], where each 𝑙𝑖 is a relationship label in 𝐿

and 𝑛 ≥ 1. We refer to 𝑛 as the length of the relationship pattern,

i.e., the number of relationship labels in that sequence. The domain

of relationship patterns is denoted by Φ.

Suppose a system graph contains a path from 𝑢 to 𝑟 of the form:

𝑢
friend−−−−−→ 𝑥

colleague

−−−−−−−→ 𝑟 .

Here, the path corresponds to the relationship pattern:

𝜙 = ⟨friend, colleague⟩.
Its length is 2 because it involves exactly two labels in the path.

Definition 2.3 (Authorization Rule). An Authorization Rule is a tu-
ple ⟨𝜙,𝑑⟩ where 𝜙 is a relationship pattern and 𝑑 ∈ {PERMIT, DENY}
is the associated access decision with 𝜙 .

To simplify our discussions in this paper, we assume that all

authorization rules pertain to a singular right or action. Considering

an additional component in the above definition that represents

the applicable right would be trivial. We define a ReBAC policy as

a collection of authorization rules.

Definition 2.4 (Policy). A Policy 𝜌 is a set of authorization rules

{⟨𝜙𝑖 , 𝑑𝑖 ⟩}, where each ⟨𝜙𝑖 , 𝑑𝑖 ⟩ represents an authorization rule, i.e.,

a pair of relationship pattern and associated decision.

An access request is evaluated based on whether it matches any

of the rules defined in the policy.

Definition 2.5 (Access Request Evaluation). An access request

⟨𝑢, 𝑟 ⟩, where 𝑢 ∈ 𝑈 and 𝑟 ∈ 𝑅, matches a relationship pattern 𝜙 if

there exists a path in 𝐺 from 𝑢 to 𝑟 whose sequence of edge labels

corresponds to 𝜙 . The access decision for ⟨𝑢, 𝑟 ⟩ is determined by

the policy 𝜌 by considering the following rules in order:

(1) If there exists an authorization rule ⟨𝜙, DENY⟩ ∈ 𝜌 such that

𝜙 matches the access request, then ⟨𝑢, 𝑟 ⟩ is denied.
(2) If there exists an authorization rule ⟨𝜙, PERMIT⟩ ∈ 𝜌 such

that 𝜙 matches the access request, then ⟨𝑢, 𝑟 ⟩ is permitted.

(3) Otherwise, ⟨𝑢, 𝑟 ⟩ is denied by default.

If both PERMIT and DENY rules match the same access request,

the above process ensures that the DENY decision takes precedence.

This prioritization avoids ambiguity and ensures a secure outcome

in case of conflicting rules.

Our last preliminary definition captures a collection of access

request evaluations that forms the input to a policy mining process.

Definition 2.6 (Access Log). Given the system graph 𝐺 , an access
log A is a set of tuples A = {(𝑢, 𝑟, 𝑑)} where:

(1) 𝑢 ∈ 𝑈 is a user requesting access.

(2) 𝑟 ∈ 𝑅 is the resource being accessed.

(3) 𝑑 ∈ {PERMIT, DENY} is the access decision outcome for the

request.

Given an access log defined, our objective is to construct a Re-

BAC policy 𝜌 , composed of both PERMIT and DENY authorization

rules, that accurately reflects the observed decisions. In practice,

this means that the policy must be consistent with the access log:

for every access request (𝑢, 𝑟, 𝑑) recorded in the log, the policy

must yield the same decision. If the log indicates that a particular

user-resource pair is permitted, the policy should allow it; if the log

Enhancing Relationship-Based Access Control Policies with Negative Rule Mining CODASPY ’25, June 4–6, 2025, Pittsburgh, PA, USA

indicates a denial, the policy should likewise deny that access. In ad-

dition to consistency, we favor policies that are minimal. Among all

policies that satisfy the consistency requirement, a minimal policy

is one that uses the fewest possible authorization rules. This focus

on minimality reduces redundancy and enhances manageability by

limiting the number of rules that need to be maintained.

Definition 2.7 (Optimal ReBAC Policy Mining Problem). Given a

system graph 𝐺 = ⟨𝑉 , 𝐸⟩ and an access log A, find an optimal Re-

BAC policy 𝜌 consisting of both positive and negative authorization

rules. The policy 𝜌 must satisfy the following criteria:

(1) Consistency: For every access request (𝑢, 𝑟, 𝑑) ∈ A, the

policy 𝜌 must yield a decision consistent with 𝑑 .

(2) Minimality: Let Σ denote the set of all policies that are

consistent withA. Then an optimal policy 𝜌∗ satisfies |𝜌∗ | ≤
|𝜌 | for every 𝜌 ∈ Σ; equivalently, there exists no consistent

policy 𝜌′ with |𝜌′ | < |𝜌∗ |, where |𝜌 | denotes the number of

rules in the policy 𝜌 .

By ensuring consistency and minimality, the resulting policy 𝜌

becomes both manageable and interpretable while faithfully repre-

senting the observed access decisions.

3 Methodology
This section presents a systematic approach for mining ReBAC poli-

cies that incorporate both positive (PERMIT) and negative (DENY)
authorization rules. The methodology directly addresses the chal-

lenges outlined in the problem statement, including accurately at-

tributing access denials, handling policy exceptions, and achieving

policy minimality. The approach consists of the following steps:

(1) Pattern Extraction and Mapping: We identify all rela-

tionship patterns of length up to a specified bound 𝑘 that

relate users to resources, and map each pattern to the set of

user-resource pairs it matches.

(2) Categorization and Refinement of Relationship Pat-
terns: We categorize relationship patterns based on the ob-

served access decisions, distinguishing those that could serve

as PERMIT rules, DENY rules, or require refinement to resolve

conflicts.

(3) Policy Optimization: We optimize the selection of autho-

rization rules to find minimal sets of rules that accurately

represent the desired access control decisions.

The remainder of this section provides a detailed discussion of

each step, along with their associated algorithms and complexity

considerations.

3.1 Pattern Extraction and Mapping
The initial step involves extracting all applicable relationship pat-

terns from the system graph and creating a mapping between those

patterns and their applicable set of user-resource pairs. A pattern

is applicable to a user-resource pair if a path exist between them

correspondig to the pattern.

Since the number of possible paths can be large, we limit our

search to paths of length at most 𝑘 , a user-specified parameter. This

length constraint ensures computational feasibility while capturing

all possible relationship patterns up to a maximum length that is

practical. Thus, we perform a breadth-first traversal from each user

node 𝑢, exploring all reachable resources within 𝑘 hops. For each

discovered path, we record the relationship pattern 𝜙 defined by its

edge labels, and associate 𝜙 with the corresponding user-resource

pairs ⟨𝑢, 𝑟 ⟩. Algorithm 1 outlines the construction of mappingM
from relationship patterns to sets of user-resource pairs.

Algorithm 1 Mapping Relationship Patterns to User-Resource

Pairs

Input: System Graph 𝐺 = ⟨𝑈 ∪ 𝑅, 𝐸⟩, Maximum Pattern Length 𝑘

Output: MappingM : Φ→ {𝑈 × 𝑅}
1: M[𝜙 ∈ Φ] ← ∅
2: for all 𝑢 ∈ 𝑈 do
3: Create a queue 𝑄 and enqueue ⟨𝑢, []⟩, where [] is the

empty pattern

4: while 𝑄 is not empty do
5: Dequeue ⟨𝑣, 𝜙 ′⟩ from 𝑄

6: if 𝑣 ∈ 𝑅 then
7: M[𝜙 ′] ← M[𝜙 ′] ∪ ⟨𝑢, 𝑣⟩
8: if |𝜙 ′ | < 𝑘 then
9: for all (𝑣,𝑤, ℓ) ∈ 𝐸 where 𝑣 is the source node do
10: 𝜙 ′′ ← 𝜙 ′ ◦ [ℓ] ⊲ Append edge label ℓ
11: Enqueue ⟨𝑤,𝜙 ′′⟩ into 𝑄

Complexity Analysis of Algorithm 1. The complexity of the breadth-

first traversal from a node is dependent on how many edges may be

followed from each vertex in the graph. Theoretically, that would be

𝑂 (|𝑉 | · |𝐿 |). However, such vertex out-degree will be much smaller

in real-world system graphs. Let 𝑑 be the maximum out-degree of a

vertex in the system graph. Given the maximum length of patterns,

𝑘 , each breadth-first traversal explores up to 𝑑𝑘 paths. Thus, the

overall worst-case complexity of the algorithm is 𝑂 (|𝑉 | · 𝑑𝑘).

Relationship Patterns User-Resource Pairs / Decisions

ø1

ø2

ø3

ø4

ø5

ø6

ø7

<u2,r2>

<u3,r3>

<u4,r4>

<u5,r5>

<u6,r6>

<u7,r7>

<u1,r1>

<u8,r8>

<u9,r9>

Permit

Deny

Permit

Deny

Permit

Permit

Permit

Deny

Deny

Figure 1: Mapping of Each Relationship Patterns 𝜙𝑖 to
Matched User-Resource Pairs ⟨𝑢, 𝑟 ⟩ in the System Graph.
Empty Circles Correspond to DENY pairs.

Example 3.1. Figure 1 illustrates the correspondence of relation-
ship patterns and access requests in the log in the context of a small

CODASPY ’25, June 4–6, 2025, Pittsburgh, PA, USA Ferhat Demirkiran and Amir Masoumzadeh

system graph that will be used as a running example in the rest of

this section. There are seven relationship patterns, {𝜙1, 𝜙2, . . . , 𝜙7},
each pattern𝜙𝑖 matches a set of ⟨𝑢, 𝑟 ⟩ pairs. For example,𝜙1 matches

⟨𝑢1, 𝑟1⟩ and ⟨𝑢3, 𝑟3⟩, whereas 𝜙2 matches ⟨𝑢2, 𝑟2⟩ and ⟨𝑢4, 𝑟4⟩. These
sets collectively form the output of the mapping step and will be

the foundation for subsequent categorization and refinement.

3.2 Categorization and Refinement of
Relationship Patterns

After constructingM, we obtain a set of relationship patterns Φ
along with the corresponding user-resource pairs that each pattern

matches. Utilizing the access logA, which records observed (𝑢, 𝑟, 𝑑)
triples (where 𝑑 ∈ {PERMIT, DENY}), we categorize each pattern

𝜙 ∈ Φ based on the decisions associated with its matched user-

resource pairs as follows:

• Candidate PERMIT Patterns without Conflicts (𝑃+): All
⟨𝑢, 𝑟 ⟩ ∈ M[𝜙] are associated with a PERMIT decision in A.

• Candidate DENY Patterns without Conflicts (𝑃−): All
⟨𝑢, 𝑟 ⟩ ∈ M[𝜙] are associated with a DENY decision in A.

• Candidate PERMIT Patterns with Conflicts (𝑃±): Some

⟨𝑢, 𝑟 ⟩ ∈ M[𝜙] are permitted while others are denied.

We also track the set of user-resource pairs that are denied by 𝑃−

patterns (𝐷𝑈𝑅). If a denial is not part of 𝐷𝑈𝑅 , we can confidently

attribute it to the default deny policy, as it cannot be explained

by any potential DENY rules. Algorithm 2 outlines the process for

categorizing patterns.

Algorithm 2 Categorizing Relationship Patterns

Input: Set of Relationship Patterns Φ; MappingM; Access LogA
Output: Sets of Candidate Non-Conflicting, PERMIT Patterns 𝑃+,

DENY Patterns 𝑃− , Conflicting PERMIT Patterns 𝑃±; User-
Resource Pairs Corresponding to Candidate DENY Patterns
𝐷𝑈𝑅

1: 𝑃+ ← ∅; 𝑃− ← ∅; 𝑃± ← ∅; 𝐷𝑈𝑅 ← ∅
2: for all 𝜙 ∈ Φ do
3: 𝐷 ← {𝑑 | ⟨𝑢, 𝑟, 𝑑⟩ ∈ A, ⟨𝑢, 𝑟 ⟩ ∈ M[𝜙]}
4: if D = {PERMIT} then
5: 𝑃+ ← 𝑃+ ∪ {𝜙}
6: else if D = {DENY} then
7: 𝑃− ← 𝑃− ∪ {𝜙}
8: 𝐷𝑈𝑅 ← 𝐷𝑈𝑅 ∪M[𝜙]
9: else ⊲ Pattern with mixed decisions
10: 𝑃± ← 𝑃± ∪ {𝜙}

Complexity Analysis of Algorithm 2. The loop in the algorithm it-

erates over |Φ|, which will be𝑂 (|𝐿 |𝑘), where 𝑘 is the user-specified,

maximum length of patterns considered. Constructing 𝐷 in every

iteration of the loop on Line 3 essentially requires calculating the

intersection of the user-resource pairs in the log records and those

associated with a pattern. Assuming that those sets are sorted by

user-resource pairs, the intersection operation will take 𝑂 (|𝑉 |2)
(more accurately, 𝑂 (|𝑈 | · |𝑅 |). Assuming a log-linear complexity

for a sort operation, the overall complexity of the algorithm is

𝑂 (|𝐿 |𝑘 · |𝑉 |2 log |𝑉 |).

After categorizing the relationship patterns into sets 𝑃+, 𝑃− , and
𝑃±, we proceed to refine 𝑃± to ensure that it is not associated with

any DENY decision that cannot be explained by patterns in 𝑃− . Any
denials not explained by 𝑃− has to result from the deny-by-default

policy. Therefore, 𝑃± patterns with such DENY decisions cannot be

considered as potential PERMIT pattern. Specifically, for each pat-

tern in 𝑃±, we examine whether it has a denied user-resource pair

not included in the user-resource pairs 𝐷𝑈𝑅 (those that correspond

to patterns in 𝑃− , collected in Algorithm 2). Algorithm 3 illustrates

the refinement process.

Algorithm 3 Refinement of Candidate PERMIT Patterns with Con-

flicts

Input: Candidate Conflicting PERMIT Patterns 𝑃±; User-Resource
Pairs Corresponding to Candidate DENY Patterns𝐷𝑈𝑅 ; Map-

pingM; Access Log A
Output: Refined Candidate PERMIT Patterns with Conflicts 𝑃±

refined

1: 𝑃±
refined

← ∅
2: for all 𝜙 ∈ 𝑃± do
3: U𝜙

DENY = {⟨𝑢, 𝑟 ⟩ | ⟨𝑢, 𝑟 ⟩ ∈ M[𝜙], (𝑢, 𝑟, DENY) ∈ A}
4: U𝜙

Unexplained-DENY
= D𝜙

DENY \ 𝐷𝑈𝑅

5: if U𝜙

Unexplained-DENY
= ∅ then

6: 𝑃±
refined

← 𝑃±
refined

∪ {𝜙}

Complexity Analysis of Algorithm 3. In each iteration of the loop,

matching user-resource pairs with DENY decisions in the log on

Line 3 takes 𝑂 (|𝑉 |2 log |𝑉 |) (similar to the analysis of Line 3 in

Algorithm 2). The subsequent lines take at most𝑂 (|𝑉 |2). Thus, the
overall complexity of the algorithm is 𝑂 (|𝐿 |𝑘 · |𝑉 |2 log |𝑉 |).

Example 3.2. Figure 2 demonstrates how the seven relationship

patterns from Example 3.1 are divided into different sets based on

the observed PERMIT or DENY decisions. First, each pattern is as-

signed to one of the three sets 𝑃+, 𝑃− , or 𝑃± (Figure 2a). Patterns
𝜙1 and 𝜙6 are in 𝑃+, as they only match user-resource pairs with

PERMIT decisions, while 𝜙2 and 𝜙3 are placed in 𝑃− , as they match

only DENY decisions. Patterns 𝜙4, 𝜙5, and 𝜙7 are in 𝑃±, as they each

match some PERMIT and some DENY decisions. Figure 2b illustrates

the refinement algorithm, which inspects each relationship pat-

tern in 𝑃±. If a relationship pattern explains a DENY decision not
accounted for by 𝑃− (i.e., not in 𝐷𝑈𝑅), that relationship pattern

cannot be a candidate for final set of PERMIT patterns. Consider

relationship pattern 𝜙7 and the corresponding pair ⟨𝑢9, 𝑟9⟩, which
has a DENY decision. However, this denial cannot be explained by

any negative relationship pattern in 𝑃− (Note that ⟨𝑢9, 𝑟9⟩ is not
present in 𝐷𝑈𝑅). Therefore, it must result from the system’s deny-

by-default policy. Consequently, 𝜙7 is excluded from 𝑃±
refined

, and

will not be considered as a candidate PERMIT pattern in the policy

optimization step.

3.3 Policy Optimization
Having identified 𝑃+, 𝑃− , and refined 𝑃±, we combine 𝑃+ and

𝑃±
refined

to form a candidate set of patterns for PERMIT rules. Simi-

larly, 𝑃− defines candidate patterns for DENY rules. The objective of

Enhancing Relationship-Based Access Control Policies with Negative Rule Mining CODASPY ’25, June 4–6, 2025, Pittsburgh, PA, USA

P+ = {ø1,ø6}
P- = {ø2,ø3}

P± = {ø4,ø5,ø7}

 <u2,r2>

 Set of negative user-resource pairs (DUR)

Categorization

ø2

 <u4,r4>

 <u8,r8>

ø3

(a) Categorization of Relationship Patterns Into 𝑃+, 𝑃− , and 𝑃±.

P±
refined = {ø4,ø5}

Unexplained Deny <u9,r9>

ø7 <u7,r7>

<u9,r9>

 Permit

Deny

<u4,r4> Deny

<u9,r9> Deny

Refinement

(b) Refinement of 𝑃±, Excluding Relationship Patterns Correspond-
ing To Deny-by-Default Decisions.

Figure 2: Categorization and Refinement Processes.

ReBAC policy mining optimization is to select a minimal set of rules

that fully and precisely represents the observed access decisions.

In this section, we formalize the optimization of the ReBAC policy

mining process involving both PERMIT and DENY decisions. We first

show that the proposed mining problem is NP-hard.

Theorem 3.3. The ReBAC policy optimization problem, as defined
above, is NP-hard.

Proof. We prove NP-hardness by showing a polynomial-time

reduction from the set cover problem to our ReBAC policy optimiza-

tion problem.

Set Cover Problem: In the classic set cover problem, we are given:

• A universeU of elements.

• A family of subsets S = {𝑆1, 𝑆2, . . . , 𝑆𝑚} such that

⋃𝑚
𝑖=1 𝑆𝑖 =

U.

The objective is to find the minimum number of subsets S′ ⊆ S
whose union still coversU.

Reduction Construction: Given an instance of the set cover prob-
lem (U,S), we construct an instance of our ReBAC policy opti-

mization problem as follows:

(1) Universe to User-Resource Pairs: For each element 𝑒 ∈ U,

introduce a unique user-resource pair ⟨𝑢𝑒 , 𝑟𝑒 ⟩. We assume

that the access log A grants PERMIT decisions for exactly

these pairs. Thus, the set of all permitted pairsUpermit cor-

responds directly to the universeU.

(2) Subsets to Candidate Patterns: For each subset 𝑆𝑖 ∈ S, define
a corresponding Candidate PERMIT pattern 𝜙𝑖 ∈ 𝑃+. Define

mappingM[𝜙𝑖] as the set of all user-resource pairs ⟨𝑢𝑒 , 𝑟𝑒 ⟩
corresponding to elements 𝑒 ∈ 𝑆𝑖 . Hence, the domain cov-

ered by rule 𝜙𝑖 directly matches 𝑆𝑖 in the original set cover
instance. Also, consider 𝑃− = 𝑃±

refined
= ∅.

(3) Minimal Coverage: Our objective in the ReBAC instance is

to select the minimal subset of rules 𝑃min ⊆ 𝑃+ ∪ 𝑃±
refined

such that: ⋃
𝜙∈𝑃min

U𝜙 = Upermit,

mirroring the requirement in the set cover problem that a

minimal subcollection of subsets coversU.

Correctness of the Reduction: The construction ensures a one-to-

one correspondence between elements ofU and permitted user-

resource pairs, and between subsets 𝑆𝑖 and candidate PERMIT pat-
terns 𝜙𝑖 . A solution that selects a minimal set of rules 𝑃min covering

all permitted pairsUpermit in our ReBAC instance directly corre-

sponds to a minimal set cover S′ of U in the original problem.

Likewise, any minimal set cover S′ translates into a minimal set of

authorization rules 𝑃min.

NP-hardness: The set cover problem is well-known to be NP-hard.

Since our reduction is polynomial-time and faithfully translates set
cover instances into ReBAC policy optimization instances, the NP-

hardness of set cover implies that the ReBAC policy optimization

problem is also NP-hard. □

The above NP-hardness proof also provides us an intuitive ap-

proach to solve our mining problem. The set cover problem has

been studied extensively in the literature including proposals for

approximation algorithms to solve it. We propose a two-stage so-

lution for the mining problem that relies on solving a set cover

problem in each stage. This approach ensures reaching a relatively

optimal solution in polynomial time.

The pseudocode for mining authorization rules is shown in Al-

gorithm 4. In the first stage, we concentrate on mining PERMIT
authorization rules. Our objective is to select the minimal subset

of candidate PERMIT patterns, including those without conflicts

(𝑃+) and with conflicts (𝑃±
refined

), such that all PERMIT cases in the

authorization log are covered. We model this stage of the solution

as a set cover problem as follows. The universe is the set of all user-

resource pairs with PERMIT decision (Line 2). The subsets include

user-resource pairs corresponding to each pattern in 𝑃+ ∪ 𝑃±
refined

with PERMIT decision (Line 4). The solution of this set cover in-

stance determines the patterns for PERMIT authorization rules in

the policy (Line 5). Selected patterns are guaranteed to cover the

expected PERMIT cases in the log. However, if they include any of

the patterns in 𝑃±
refined

, they result in extra PERMIT cases that are
denied in the authorization log. In the second stage, we concen-

trate on mining DENY authorization rules that lead to denying those

extra-permitted cases. We first form the universe of our second

instance of set cover problem as all user-resource pairs that are

supposed to be denied, but would be permitted by the previously se-

lected 𝑃±
refined

in the minimal PERMIT patterns (Line 9). The subsets

include user-resource pairs corresponding to the 𝑃− patterns that

overlap with this universe. The solution to this second set cover

instance achieves minimal patterns for DENY authorization rules in

the policy.

CODASPY ’25, June 4–6, 2025, Pittsburgh, PA, USA Ferhat Demirkiran and Amir Masoumzadeh

Algorithm 4Mine Minimal Policy

Input: Sets of Candidate Non-Conflicting PERMIT Patterns 𝑃+, Re-
fined Conflicting Patterns 𝑃±

refined
, DENY Patterns 𝑃− ; User-

Resource Pairs Corresponding to Candidate DENY Patterns

𝐷𝑈𝑅 ; MappingM; Access Log A
Output: Minimal Subset of Patterns for PERMIT and DENY Rules:

𝑃+
min

, 𝑃−
min

1: ⊲ Mine PERMIT rules ⊳

2: UPERMIT ← {⟨𝑢, 𝑟 ⟩ | ⟨𝑢, 𝑟, PERMIT⟩ ∈ A}
3: for all 𝜙𝑖 ∈ (𝑃+ ∪ 𝑃±

refined
) do

4: 𝑆+
𝑖
←M[𝜙𝑖] ∩ UPERMIT

5: 𝑃+
min

= {𝜙𝑖 } where 𝜙𝑖 corresponds to 𝑆+𝑖 selected by solving

Set Cover problem for universeUPERMIT and subsets {𝑆+
𝑖
}

6: ⊲ Mine DENY rules ⊳

7: UDENY ← ∅
8: for all 𝜙 ∈ (𝑃+

min
∩ 𝑃±

refined
) do

9: UDENY ←UDENY ∪ (M[𝜙] ∩ 𝐷𝑈𝑅)
10: for all 𝜙𝑖 ∈ 𝑃− do
11: 𝑆−

𝑖
←M[𝜙𝑖] ∩ UDENY

12: 𝑃−
min

= {𝜙𝑖 } where 𝜙𝑖 corresponds to 𝑆−𝑖 selected by solving

Set Cover problem for universeUDENY and subsets {𝑆−
𝑖
}

Complexity Analysis of Algorithm 4. Preparing the universe and

subset inputs for each instance of set cover takes 𝑂 (|𝑉 |2) and
𝑂 (|𝐿 |𝑘 · |𝑉 |2 log |𝑉 |), respectively. Note that preparing subsets in-
volve sorting and intersection operations. The complexity of our

algorithm is clearly dependent on the complexity of the set cover

solution that is used as well. The well-known greedy algorithm

for set cover [12] achieves an approximation factor of ln𝑛, where

𝑛 is the size of the universe. It has been also shown that, unless

𝑃 = 𝑁𝑃 , no polynomial-time algorithm can attain an approximation

factor significantly better than (1 − 𝑜 (1)) ln𝑛 [14]. This highlights

the inherent difficulty in surpassing the greedy algorithm’s perfor-

mance in the worst-case scenario. The complexity of the greedy

solution is 𝑂 (𝑚 · 𝑛 log𝑛) where𝑚 is the number of subsets and 𝑛

is the size of the universe. In our setup,𝑚 and 𝑛 will be |Φ| and
𝑂 (|𝑉 |2), respectively. Therefore, the complexity of Algorithm 4 is

𝑂 (|𝐿 |𝑘 · |𝑉 |2 log |𝑉 |).

Overall Complexity Consideration: Considering the complexity

of all algorithms discussed, the time complexity of our proposed so-

lution will be𝑂 (|𝐿 |𝑘 · |𝑉 |2 log |𝑉 |+ |𝑉 | ·𝑑𝑘) where𝑑 is the maximum

out-degree of a vertex in the system graph and 𝑘 is the maximum

length of patterns to be considered. Considering that the practical

choices for pattern lengths will be relatively small (e.g., we consider

𝑘 = 5 in our experiments), the algorithm will be of polynomial

complexity in practice. We also note that |𝐿 | and 𝑑 will be relatively

small in many real-world systems. Therefore, the overall complex-

ity in practice would be log quadratic in terms of the number of

system graph vertices.

Example 3.4. Continuing from Example 3.2, Figure 3 illustrates

how the minimal set of PERMIT and DENY patterns are identified.

Figure 3a demonstrates the selection of a minimal subset of PERMIT
patterns from 𝑃+ ∪ 𝑃±

refined
to cover all pairs in Upermit. In this

example, patterns 𝜙5 and 𝜙6 together cover every PERMIT pair with

Universe U => Set of all PERMIT pairs (Upermit)
Upermit = {<u1,r1>, <u3,r3>, <u5,r5>, <u6,r6>, <u7,r7>}

Subset S => User-resource pairs of candidate PERMIT
patterns (P+ U P±

refined)

Minimal set of PERMIT patterns: {ø5, ø6}

ø1

ø2

ø3

ø4

ø7

<u3,r3>

<u4,r4>

<u5,r5>

<u6,r6>

<u7,r7>

<u1,r1>

<u8,r8>

Permit

Permit

Deny

Permit

Permit

Permit

Deny<u8,r8> Deny

<u4,r4> Deny

Udenyø5

ø6

(a) Selecting Minimal Set of PERMIT Patterns

Universe U => Set of DENY pairs comes from final
PERMIT patterns

Udeny = {<u4,r4>, <u8,r8>}

Subset S => User-resource pairs of candidate DENY
patterns (P-)

 Minimal set of DENY patterns: {ø3}

ø1

ø2

ø4

ø5

ø6

ø7

<u4,r4>

<u8,r8>

Deny

Deny<u8,r8> Deny

<u4,r4> Denyø3ø3

(b) Selecting Minimal Set of DENY Patterns

Figure 3: Policy Optimization in Two Stages, Selecting Mini-
mal Set of Final PERMIT and DENY Patterns.

fewer rules than any other combination, yielding a final minimal set

of PERMIT rules {𝜙5, 𝜙6}. However, 𝜙5 also matches pairs ⟨𝑢4, 𝑟4⟩
and ⟨𝑢8, 𝑟8⟩ with observed DENY decisions. Without an explicit DENY
rule, these pairs would be incorrectly permitted by 𝜙5. Accordingly,

Enhancing Relationship-Based Access Control Policies with Negative Rule Mining CODASPY ’25, June 4–6, 2025, Pittsburgh, PA, USA

in Figure 3b, we collect these newly exposed DENY pairs intoU
deny

and solve a second set cover problem over 𝑃− . In this example, 𝜙3
covers all pairs in U

deny
; thus, our final minimal ReBAC policy

becomes { ⟨𝜙5, PERMIT⟩, ⟨𝜙6, PERMIT⟩, ⟨𝜙3, DENY⟩ }. User-resource
pairs not matched by these rules, i.e., ⟨𝑢2, 𝑟2⟩ and ⟨𝑢9, 𝑟9⟩, will be
implicitly denied by default.

4 Experimental Evaluation
In this section, we present the experimental evaluation of the pro-

posed mining algorithm, which extracts both PERMIT and DENY au-

thorization rules for ReBAC policies. The evaluation is structured

into two main parts. First, we assess the correctness, conciseness,

and performance of our proposed algorithm on two datasets with

distinct policy configurations: one containing only PERMIT autho-
rization rules and the other containing both PERMIT and DENY rules.
Second, we perform an empirical feasibility analysis to explore

whether mixed policies requiring both PERMIT and DENY rules can

be effectively represented using only PERMIT rules. This dual focus

allows us to thoroughly validate the algorithm’s effectiveness and

investigate the necessity of explicit DENY rule mining in ReBAC

policy generation. Finally, we conduct an additional experiment in

which we vary the number of nodes in the system graph to measure

how the total runtime scales with increasing graph size.

All experiments were conducted on Google Colab, which pro-

vided a runtime environment equipped with an Intel
®
Xeon

®
CPU

@ 2.20GHz, 12GB of RAM, and Python 3.11.11 running in a con-

tainerized environment.

4.1 Datasets and Mining Evaluation Cases
Dataset Construction. We utilize two distinct system graphs to

evaluate our policy mining approach. The first dataset models a

medical records system taken from [17]. We also synthesize on-

line social network graphs containing relationships such as friend,

colleague, and family. Since such relationship are inherently sym-

metric, we treat edges as bidirectional. We synthesize networks

using a controlled random process. Specifically, each pair of nodes

has a 1% chance of forming an edge. If an edge is created, one of re-

lationship labels 𝐿 is chosen according to the specified probabilities

of them. The key statistics for both datasets, including the number

of users𝑈 , resources 𝑅, unique relationship labels 𝐿, and edges 𝐸

are summarized in table 1.

Table 1: Summary of Policy Configurations

Policy |𝑈 | |𝑅 | |𝐿 | |𝐸 |
Medical Records System 30 6 8 52

Online Social Network 100 100 3 55

Generating Mining Evaluation Cases. Each experiment is framed

as a mining evaluation case (MEC) [18], defined as ⟨𝐺, 𝜌𝑇 ⟩. For a
given𝐺 and ground truth policy 𝜌𝑇 , we produce the set of authoriza-

tions 𝐴 = 𝜆(𝐺, 𝜌𝑇), which represents the computed PERMIT/DENY
decisions for all relevant (𝑢, 𝑟) pairs. We then provide (𝐺,𝐴) as
input to our proposed miner algorithm. The miner outputs a mined

policy 𝜌𝑚 , which we evaluate compared to 𝜌𝑇 .

Ground Truth Policies. We generate two variants of ground truth

policies 𝜌𝑇 for each dataset: one with only PERMIT rules (PERMIT-
Only), and another with both PERMIT and DENY rules (PERMIT-and-
DENY). Corresponding to each variant, we produce two types of

MECs: a strong MEC and a weak MEC [18]. Strong MECs are con-

structed by ensuring that 𝜌𝑇 is both minimal and maximal with

respect to 𝐺 ; there are no alternative policies with fewer or addi-

tional rules that are still semantically equivalent on𝐺 . In contrast,

weak MECs arise in cases where multiple semantically equivalent

but syntactically different policies can represent the same autho-

rizations.

4.2 Evaluation Metrics
Correctness. We consider two particular correctness metrics: se-

mantic similarity and syntactic equivalence. These metrics evaluate

the quality of a mined policy 𝜌𝑚 in comparison to the target policy

𝜌𝑇 , as follows:

Definition 4.1 (Semantic Similarity). Let 𝑃 (𝜌𝑇) denote the set of
permitted ⟨𝑢, 𝑟 ⟩ pairs under the target policy 𝜌𝑇 , and 𝑃 (𝜌𝑚) the
set of permitted pairs under the mined policy 𝜌𝑚 . The semantic
similarity between 𝜌𝑚 and 𝜌𝑇 is defined as:

SemanticSimilarity(𝜌𝑚, 𝜌𝑇) =
|𝑃 (𝜌𝑚) ∩ 𝑃 (𝜌𝑇) |
|𝑃 (𝜌𝑇) |

A SemSim score of 1.0 indicates perfect semantic equivalence be-

tween the two policies.

Definition 4.2 (Syntactic Equivalence). Let 𝜌𝑇 be the target policy

and 𝜌𝑚 the mined policy. The syntactic equivalence between 𝜌𝑚
and 𝜌𝑇 is satisfied if:

𝜌𝑚 = 𝜌𝑇

This condition requires that 𝜌𝑚 and 𝜌𝑇 are not only semantically

identical but also the specific rules and their patterns match exactly.

For weak MECs, we require only perfect semantic similarity

(SemSim = 1.0) to ensure correctness. In contrast, for strong MECs,

correctness requires both perfect semantic similarity and syntactic

equivalence (𝜌𝑚 = 𝜌𝑇).

Conciseness. We measure policy complexity and conciseness us-

ing weighted structural complexity (WSC) [7, 22]. Since we have a
single action, WSC depends solely on the lengths of relationship

patterns in a rule. The WSC of a policy is computed as:

WSC(𝜌) =
∑︁
𝜙∈𝜌
|𝜙 |

Lower WSC values indicate simpler, more concise policies. We

compare𝑊𝑆𝐶𝑜𝑟𝑖𝑔 (for 𝜌𝑇) and𝑊𝑆𝐶𝑚𝑖𝑛𝑒𝑑 (for 𝜌𝑚) to assesswhether

the mining process preserves or improves policy simplicity. Addi-

tionally, we report the number of PERMIT and DENY rules in both

the original and mined policies. Specifically, |𝜌+
𝑜𝑟𝑖𝑔
| and |𝜌−

𝑜𝑟𝑖𝑔
| rep-

resent the number of PERMIT and DENY rules in the original ReBAC

policies, while |𝜌+
𝑚𝑖𝑛𝑒𝑑

| and |𝜌−
𝑚𝑖𝑛𝑒𝑑

| denote the corresponding

counts in the mined ReBAC policies.

CODASPY ’25, June 4–6, 2025, Pittsburgh, PA, USA Ferhat Demirkiran and Amir Masoumzadeh

Performance. We assess the runtime performance of our pro-

totype implementation of the mining algorithm to evaluate its

scalability and efficiency.

These metrics collectively offer a comprehensive view of correct-

ness, conciseness, and performance, ensuring the mined policies

are both accurate and practical for real-world applications.

4.3 Mining Performance
We begin our evaluation with PERMIT-Only policies, which consist

exclusively of PERMIT rules. Such policies are both conceptually

simpler and more commonly encountered, making them an ideal

starting point. While PERMIT-Only policies serve as a valuable

initial benchmark, they cannot fully represent real-world access

control scenarios, many of which require explicit denials to handle

exceptions. Consequently, we extend our analysis to PERMIT-and-
DENY policies that integrate both PERMIT and DENY rules.

In Table 2, we present the results of our proposed algorithm un-

der both the PERMIT-Only and PERMIT-and-DENY policy variants

within theMedical Records System setting. Likewise, Table 3 reports

the corresponding outcomes for the PERMIT-Only and PERMIT-and-
DENY variants in the online social network scenario, providing a

comparative perspective of our proposed algorithm across various

metrics.

The experimental results demonstrate the effectiveness of the

proposed algorithm across both PERMIT-Only and PERMIT-and-
DENY policies.

Considering correctness, in all weak MEC scenarios, the mined

policies achieve perfect semantic similarity, 1.0, accurately repro-

ducing the target authorizations. For strong MECs, syntactic equiv-

alence is also satisfied, meaning the mined policy not only matches

the authorization decisions but also the exact rule patterns of the

ground truth. This demonstrates the our proposed algorithm’s ef-

fectiveness in both weak and strong variants.

In terms of conciseness, the mined policies consistently exhibit

𝑊𝑆𝐶𝑚𝑖𝑛𝑒𝑑 ≤𝑊𝑆𝐶𝑜𝑟𝑖𝑔 across all experiments. In particular, in weak

MECs where multiple semantically equivalent representations exist,

our proposed algorithm is able to select a minimal set of rules that

cover the same access decisions as the original policy.

In summary, the experimental findings indicate that the proposed

approach produces accurate, concise, and minimal ReBAC policies.

4.4 Necessity of DENY Rules
While the previous experiments validated our algorithm’s ability to

mine accurate and concise ReBAC policies under both PERMIT-Only
and PERMIT-and-DENY scenarios, we now turn our attention to a

more fundamental question: Can policies that inherently require

explicit DENY rules be effectively represented using only PERMIT
rules? In other words, if a policy’s constraints depend on deliberate

denials, rather than default non-permissions, can PERMIT rules

alone suffice to capture its complete authorization semantics?

To investigate this, we conducted a large-scale feasibility study

simulating policies that mix PERMIT and DENY rules, and then tested

whether their resulting authorization configurations could be re-

produced by a policy composed solely of PERMIT rules.

In our analysis, we systematically varied the complexity of the

generated ReBAC policies by adjusting the number of PERMIT and

DENY rules. Let 𝑃 represent the number of PERMIT rules, and 𝐷

represent the number of DENY rules. We considered every combi-

nation (𝑃, 𝐷) where 𝑃 and 𝐷 each range from 1 to 10. This setup

yielded 100 distinct policy configurations, starting from the sim-

plest (1, 1) configuration and extending up to the more complex

(10, 10) scenario.
For each generated scenario, we attempted to model the required

permissions strictly using PERMIT rules alone. Formally, this was

approached using our proposed methodology: the universe of au-

thorized ⟨𝑢, 𝑟 ⟩ pairs came from the original mixture of PERMIT and

DENY rules, and we sought to cover this universe solely with PERMIT
rules. If no collection of positive subsets could achieve an exact

match of the required authorizations, we classified that scenario as

infeasible under a PERMIT-Only policy representation.

To achieve statistically robust results, we did not rely on a sin-

gle scenario per configuration. Instead, for each of the 100 (𝑃, 𝑁)
configurations, we generated 15,000 independent trials, each trial

comprising 100 different random scenarios. In total, this amounted

to 1,500,000 scenarios per configuration. For each trial, we recorded

the number of infeasible scenarios, leveraging the Central Limit

Theorem, these statistics provide stable population-level estimates

of infeasibility rates. Figure 4 presents the histogram of infeasibility

counts across 15,000 trials to provide a visual understanding of the

infeasibility distribution.

Figure 4: Histogram of Infeasible Scenarios Per Trial Across
15,000 Trials.

The results indicate that, on average, 77 out of 100 scenarios

per trial were infeasible. In other words, when DENY rules were

originally necessary to encode certain denials, attempts to model

these same constraints with PERMIT rules alone were unsuccessful

about 77% of the time. The standard deviation of 4.14 demonstrates

low variability around the mean suggesting the results are robust

and statistically stable.

These findings quantitatively confirm that DENY rules are essen-

tial mechanisms for capturing policies that rely on explicit denials.

Without them, significant portions of the authorization space can-

not be accurately reproduced.

Enhancing Relationship-Based Access Control Policies with Negative Rule Mining CODASPY ’25, June 4–6, 2025, Pittsburgh, PA, USA

Table 2: Comparison of the Proposed Algorithm on the Medical Records System Policy

MEC Variant Number of Original Rules Number of Mined Rules WSC Sem. Sim.
|𝜌+

𝑜𝑟𝑖𝑔
| |𝜌−

𝑜𝑟𝑖𝑔
| |𝜌+

𝑚𝑖𝑛𝑒𝑑
| |𝜌−

𝑚𝑖𝑛𝑒𝑑
| 𝑊𝑆𝐶𝑜𝑟𝑖𝑔 𝑊𝑆𝐶𝑚𝑖𝑛𝑒𝑑

PERMIT-Only

Weak 9 - 8 - 24 22 1

Strong 8 - 8 - 22 22 1

PERMIT-and-DENY

Weak 9 4 8 3 33 30 1

Strong 8 3 8 3 30 30 1

Table 3: Comparison of the Proposed Algorithm on the Online Social Network Policy

MEC Variant Number of Original Rules Number of Mined Rules WSC Sem. Sim.
|𝜌+

𝑜𝑟𝑖𝑔
| |𝜌−

𝑜𝑟𝑖𝑔
| |𝜌+

𝑚𝑖𝑛𝑒𝑑
| |𝜌−

𝑚𝑖𝑛𝑒𝑑
| 𝑊𝑆𝐶𝑜𝑟𝑖𝑔 𝑊𝑆𝐶𝑚𝑖𝑛𝑒𝑑

PERMIT-Only

Weak 40 - 37 - 148 135 1

Strong 40 - 40 - 162 162 1

PERMIT-and-DENY

Weak 40 10 35 8 186 158 1

Strong 40 10 40 10 197 197 1

4.5 Running Time Performance
In this subsection, we present two sets of experimental results on

the runtime performance of our prototype implementation. First,

we analyze how varying the number of PERMIT (𝑃) and DENY (𝐷)
rules affects the total runtime. Second, we assess the scalability of

our approach by measuring the runtime as the system graph grows

in size (in terms of both nodes and edges). Initially, we recorded

the total runtime for each (𝑃, 𝐷) configuration over all conducted

trials in the experiment discussed in Section 4.4. Figure 5 presents

a 2D heatmap of the total runtime recorded across various (𝑃, 𝐷)
configurations. Notice how configurations with fewer PERMIT rules
and more DENY rules (bottom-right corner) lead to lower overall

runtimes, indicated by lighter shades.

From Figure 5, we can identify two interrelated patterns. First,

as 𝑃 increases (while 𝐷 remains fixed), the total runtime tends to

rise. This is likely due to a larger universe of user-resource pairs

generated by the additional PERMIT rules, which in turn makes the

coverage problem more complex and time-consuming to solve.

Second, when 𝑃 is held constant and 𝐷 increases, the total run-

time generally decreases or stabilizes. In this case, the growing

number of DENY rules prunes the candidate universe by introduc-

ing early conflicts, effectively reducing the size of the set that must

be covered.

Together, these patterns underscore the importance of both 𝑃 and

𝐷 in shaping the complexity of the ReBAC policy inference process.

A higher 𝑃 expands the universe, increasing runtime, while a higher

𝐷 within a fixed 𝑃 can counterbalance that growth by trimming

the universe and thus streamlining the search.

Figure 5: Cumulative Runtime Heatmap for (𝑃, 𝐷) Configu-
rations. The Horizontal Axis Represents 𝐷 (Number of DENY
Rules), and the Vertical Axis Represents 𝑃 (Number of PERMIT
Rules). Each Cell Indicates the Cumulative Runtime (in Sec-
onds) for 15,000 Trials of the Corresponding (𝑃, 𝐷) Configu-
ration. Darker Shades Correspond to Higher Runtimes.

To further assess the scalability of our approach, we conducted

an additional experiment varying the size of the system graph

CODASPY ’25, June 4–6, 2025, Pittsburgh, PA, USA Ferhat Demirkiran and Amir Masoumzadeh

of online social network dataset from 100 to 600 nodes. In each

configuration, we recorded the total runtime (in seconds) for our

mining algorithm. Figure 6 visualizes these results, where the x-axis

represents the node size, the y-axis indicates the total runtime.

Figure 6: Runtime Performance as System Graph Size In-
crease.

As we mentioned, the overall time complexity of our proposed

mining algorithm is𝑂 (|𝐿 |𝑘 · |𝑉 |2 log |𝑉 | + |𝑉 | ·𝑑𝑘) which, under the
assumption of constant 𝑘 and low graph density (with 𝑑 remain-

ing relatively small due to the 0.01 edge probability), simplifies to

an effective scaling of (|𝑉 | · 𝐿2 log |𝑉 |). This analysis justifies our
empirical observation: as the system graph grows, both in terms

of nodes and edges, the NP-hard complexity of the policy-mining

problem becomes more pronounced, leading to longer runtimes.

5 Related Work
Relationship-based access control (ReBAC) has received attention

for its ability to incorporate social and organizational relationships

into access control decisions [15]. Recent studies have aimed to

automate the derivation of ReBAC policies from given lower-level

authorizations and entity relationships. Bui and Stoller proposed a

greedy heuristic approach to mining ReBAC policies, emphasizing

efficiency and practicality over optimality [7]. They later extended

this work with a grammar-based evolutionary algorithm, intro-

ducing genetic programming to explore policies while optimizing

for rule minimality and conciseness [9]. They further addressed

scenarios involving incomplete and noisy permission data [8]. The

authors have also proposed a work [6], where they proposed FS-

SEA*, a feature selection-enhanced evolutionary algorithm. The

researchers have also proposed decision tree-based algorithms for

ReBAC policymining, which support richer constructs such as nega-

tion [4]. They further extended their approach to handle scenarios

involving unknown attribute values [5]. Iyer and Masoumzadeh

proposed an optimal algorithm for ReBAC mining that utilizes rule

mining and frequent graph-based pattern mining concepts within

evolving systems, effectively addressing the challenges posed by

dynamic environments [17]. In a complementary approach, they

have extended ReBAC policy mining to address scenarios where

authorization information is incomplete or fully exploring it is

infeasible. This method leverages active learning techniques to in-

fer ReBAC policies directly from authorization decisions observed

in black-box systems [19]. Chakraborty and Sandhu investigated

whether a ReBAC policy can be formulated from relationship graphs

and existing authorization sets. Their work introduced a formal

feasibility framework and proposed an algorithm to address this

challenge [10].

Negative authorization has been supported in various access con-

trol policy models including role-based access control [3], attribute-

based access control [1], and ReBAC [23]. Despite the recognized

importance of negative authorizations, systematic methods for min-

ing such rules have been relatively limited. In the attribute-based

access control domain, Iyer and Masoumzadeh introduced a pio-

neering algorithm to mine both positive and negative rules using an

extended version of the PRISM rule-mining framework [16]. Their

work demonstrated that incorporating explicit negative authoriza-

tions leads to more concise and semantically accurate policies. How-

ever, no comparable systematic approach has been proposed for

ReBAC. Existing ReBAC mining techniques focus primarily on

discovering positive authorization patterns and rely on implicit

deny-all semantics, leaving a critical gap in representing exceptions

or special restrictions. Our work addresses this gap by introducing

the first systematic method for mining both positive and negative

authorization rules in ReBAC, enabling the derivation of policies

that more accurately capture the full spectrum of observed access

control decisions.

6 Conclusions
In this paper, we introduced a novel method for mining relationship-

based access control (ReBAC) policies that incorporate both posi-

tive (PERMIT) and negative (DENY) authorization rules. Unlike prior

approaches that rely solely on deny-by-default semantics, our tech-

nique systematically discovers explicit DENY rules. This extension
offers greater expressive power for capturing exceptions and pro-

hibitions, ultimately enabling ReBAC policies to better align with

real-world access control needs.

We formulated the ReBAC policy mining problem with PERMIT
and DENY rules, proved its NP-hardness, and devised a two-stage

solution modeled by the set cover problem. Our experimental eval-

uations demonstrate that our prototype implementation produces

minimal, correct, and concise policies across various scenarios. Fur-

ther, our feasibility analysis showed that a significant portion of

policies inherently requiring explicit DENY rules cannot be accu-

rately represented by PERMIT rules alone, underscoring the impor-

tance of negative authorizations in complex environments.

Our framework supports system administrators in capturing

intricate exceptions that deny-by-default alone fails to handle, thus

enhancing the policy’s precision, and manageability. While we fo-

cused on consistency and minimality, additional objectives such as

rule simplicity (e.g., limiting pattern lengths) could be integrated

into the optimization via a weighted set cover approach. In that

extension, each rule would be assigned a cost proportional to its

complexity, allowing the algorithm to optimize for simpler rule

structures as well as minimality. We leave this potential enhance-

ment for future work.

Enhancing Relationship-Based Access Control Policies with Negative Rule Mining CODASPY ’25, June 4–6, 2025, Pittsburgh, PA, USA

Acknowledgments
We thank the anonymous reviewers for their valuable comments

and helpful suggestions. This material is based upon work sup-

ported by the National Science Foundation under Grant No. 2047623.

References
[1] 2013. eXtensible Access Control Markup Language (XACML) Version 3.0. http:

//docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-os-en.html.

[2] Tahmina Ahmed, Ravi Sandhu, and Jaehong Park. 2017. Classifying and compar-

ing attribute-based and relationship-based access control. In Proceedings of the
Seventh ACM on Conference on Data and Application Security and Privacy. 59–70.

[3] MohammadAAl-Kahtani and Ravi Sandhu. 2004. Rule-based RBACwith negative

authorization. In 20th Annual Computer Security Applications Conference. IEEE,
405–415.

[4] Thang Bui and Scott D Stoller. 2020. A decision tree learning approach for

mining relationship-based access control policies. In Proceedings of the 25th ACM
Symposium on Access Control Models and Technologies. 167–178.

[5] Thang Bui and Scott D Stoller. 2020. Learning attribute-based and relationship-

based access control policies with unknown values. In International Conference
on Information Systems Security. Springer, 23–44.

[6] Thang Bui, Scott D Stoller, and Hieu Le. 2019. Efficient and extensible policy

mining for relationship-based access control. In Proceedings of the 24th ACM
Symposium on Access Control Models and Technologies. 161–172.

[7] Thang Bui, Scott D Stoller, and Jiajie Li. 2017. Mining relationship-based access

control policies. In Proceedings of the 22nd ACM on Symposium on Access Control
Models and Technologies. 239–246.

[8] Thang Bui, Scott D Stoller, and Jiajie Li. 2018. Mining relationship-based access

control policies from incomplete and noisy data. In International Symposium on
Foundations and Practice of Security. Springer, 267–284.

[9] Thang Bui, Scott D Stoller, and Jiajie Li. 2019. Greedy and evolutionary algorithms

for mining relationship-based access control policies. Computers & Security 80

(2019), 317–333.

[10] Shuvra Chakraborty and Ravi Sandhu. 2021. Formal analysis of rebac policy

mining feasibility. In Proceedings of the Eleventh ACM Conference on Data and
Application Security and Privacy. 197–207.

[11] Yuan Cheng, Jaehong Park, and Ravi Sandhu. 2012. Relationship-based access

control for online social networks: Beyond user-to-user relationships. In 2012
International Conference on Privacy, Security, Risk and Trust and 2012 International

Confernece on Social Computing. IEEE, 646–655.
[12] Vasek Chvatal. 1979. A greedy heuristic for the set-covering problem. Mathe-

matics of operations research 4, 3 (1979), 233–235.

[13] Jason Crampton and James Sellwood. 2014. Path conditions and principal match-

ing: a new approach to access control. In Proceedings of the 19th ACM symposium
on Access control models and technologies. 187–198.

[14] Irit Dinur and David Steurer. 2014. Analytical approach to parallel repetition. In

Proceedings of the forty-sixth annual ACM symposium on Theory of computing.
624–633.

[15] Philip WL Fong. 2011. Relationship-based access control: protection model and

policy language. In Proceedings of the first ACM conference on Data and application
security and privacy. 191–202.

[16] Padmavathi Iyer and AmirrezaMasoumzadeh. 2018. Mining positive and negative

attribute-based access control policy rules. In Proceedings of the 23nd ACM on
Symposium on Access Control Models and Technologies. 161–172.

[17] Padmavathi Iyer and Amirreza Masoumzadeh. 2019. Generalized mining of

relationship-based access control policies in evolving systems. In Proceedings of
the 24th ACM Symposium on Access Control Models and Technologies. 135–140.

[18] Padmavathi Iyer and Amirreza Masoumzadeh. 2022. Effective evaluation of

relationship-based access control policy mining. In Proceedings of the 27th ACM
on Symposium on Access Control Models and Technologies. 127–138.

[19] Padmavathi Iyer and Amirreza Masoumzadeh. 2022. Learning relationship-based

access control policies from black-box systems. ACM Transactions on Privacy
and Security 25, 3 (2022), 1–36.

[20] Padmavathi Iyer, Amirreza Masoumzadeh, and Paliath Narendran. 2022. On the

Expressive Power of Negated Conditions and Negative Authorizations in Access

Control Models. Computers & Security 116 (2022), 102586.

[21] Srdjan Marinovic, Naranker Dulay, and Morris Sloman. 2014. Rumpole: An intro-

spective break-glass access control language. ACM Transactions on Information
and System Security (TISSEC) 17, 1 (2014), 1–32.

[22] Ian Molloy, Ninghui Li, Yuan Qi, Jorge Lobo, and Luke Dickens. 2010. Mining

roles with noisy data. In Proceedings of the 15th ACM symposium on Access control
models and technologies. 45–54.

[23] Edelmira Pasarella and Jorge Lobo. 2017. A datalog framework for modeling

relationship-based access control policies. In Proceedings of the 22nd ACM on
Symposium on Access Control Models and Technologies. 91–102.

[24] Syed Zain R Rizvi, Philip WL Fong, Jason Crampton, and James Sellwood. 2015.

Relationship-based access control for an open-source medical records system. In

Proceedings of the 20th ACM Symposium on Access Control Models and Technologies.
113–124.

http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-os-en.html
http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-os-en.html

	Abstract
	1 Introduction
	2 Preliminaries and Problem Statement
	3 Methodology
	3.1 Pattern Extraction and Mapping
	3.2 Categorization and Refinement of Relationship Patterns
	3.3 Policy Optimization

	4 Experimental Evaluation
	4.1 Datasets and Mining Evaluation Cases
	4.2 Evaluation Metrics
	4.3 Mining Performance
	4.4 Necessity of DENY Rules
	4.5 Running Time Performance

	5 Related Work
	6 Conclusions
	Acknowledgments
	References

