
Mining Positive and Negative Attribute-Based Access Control
Policy Rules

Padmavathi Iyer

University at Albany – SUNY

Albany, New York

riyer2@albany.edu

Amirreza Masoumzadeh

University at Albany – SUNY

Albany, New York

amasoumzadeh@albany.edu

ABSTRACT
Mining access control policies can reduce the burden of adopting

more modern access control models by automating the process of

generating policies based on existing authorization information in

a system. Previous work in this area has focused on mining positive

authorizations only. That includes the literature on mining role-

based access control policies (which are naturally about positive

authorization) and even more recent work on mining attribute-

based access control (ABAC) policies. However, various theoretical

access control models (including ABAC), specification standards

(such as XACML), and implementations (such as operating systems

and databases) support negative authorization as well as positive

authorization.

In this paper, we propose a novel approach tomineABACpolicies

that may contain both positive and negative authorization rules.

We evaluate our approach using two different policies in terms of

correctness, quality of rules (conciseness), and time. We show that

while achieving the new goal of supporting negative authorizations,

our proposed algorithm outperforms existing approach to ABAC

mining in terms of time.

CCS CONCEPTS
• Security and privacy→ Access control; Authorization;

KEYWORDS
attribute-based access control; policy mining; negative authoriza-

tion; authorization conflicts

ACM Reference format:
Padmavathi Iyer and Amirreza Masoumzadeh. 2018. Mining Positive and

Negative Attribute-Based Access Control Policy Rules. In Proceedings of The
23rd ACM Symposium on Access Control Models & Technologies (SACMAT),
Indianapolis, IN, USA, June 13–15, 2018 (SACMAT ’18), 12 pages.
https://doi.org/10.1145/3205977.3205988

1 INTRODUCTION
Access control is one of the indispensable services of any informa-

tion system responsible for protecting the underlying data from

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

SACMAT ’18, June 13–15, 2018, Indianapolis, IN, USA
© 2018 Copyright held by the owner/author(s). Publication rights licensed to Associa-

tion for Computing Machinery.

ACM ISBN 978-1-4503-5666-4/18/06. . . $15.00

https://doi.org/10.1145/3205977.3205988

unauthorized access and inappropriate modifications [8]. Attribute-
based access control (ABAC), as one of the more recent models for

specifying access control policies, has been shown to overcome

major limitations in previous models [10]. Unlike discretionary

access control (DAC) or mandatory access control (MAC) models,

ABAC is not dependent on user identities or rigid rules to determine

authorizations as in DAC and MAC. Also, by allowing composition

of flexible rules, it avoids problems such as role explosion [10] in

role-based access control (RBAC). As the name suggests, ABAC

models employ the attributes of users and resources to determine

if an access request should be granted or denied, that is, attribute

expressions are used to specify the sets of users and resources to

which a policy is applicable [12, 22, 28]. For example, a policy such

as "A manager can read any document in his/her department" may

be directly translated to an ABAC policy: "if userType=manager,
resourceType=document, userDepartment=resourceDepartment, ac-
tion=read then PERMIT". Thus, compared to traditional access con-

trol models, ABAC is very flexible in specifying access control

policies, which makes ABAC a powerful access control model for

promoting security.

We explore the problem of mining ABAC policies in this paper.

Suppose an organization has already implemented some form of

access control and wants to migrate to ABAC paradigm. Specifying

ABAC policies manually from the existing access control infor-

mation can be a time-consuming and error-prone job. To reduce

the burden and expense of this task, the process of extracting poli-

cies from the given access control information can be partially or

completely automated. This approach of automating the policy

generation process is called policy mining. Mining RBAC policies,

aka role mining, has been heavily studied in recent years [18]. Re-

cently, Xu and Stoller have proposed an approach for mining ABAC

policies [27, 26].

One of the limitations of policy mining approaches in the liter-

ature, addressing which is a central contribution of this paper, is

lack of support for mining negative authorization rules. An ABAC

policy can comprise of a set of positive and negative authorization

rules, which grant or deny applicable access requests, respectively.

Simultaneous use of positive and negative authorization rules are

useful in situations when exceptions to more general rules need

to be expressed, or when authorization rules with clonflicting out-

comes originated from different viewpoints may have overlap. Be-

side ABAC, various other access control models in the literature

allow expressing both positive and negative authorizations [13, 3,

9]. XACML policy language [6], a widely used standard for spec-

ifying and enforcing access control policies, also supports them.

Negative authorizations have been also supported in products such

as operating systems [21], web servers [1], and database systems [2].

https://doi.org/10.1145/3205977.3205988
https://doi.org/10.1145/3205977.3205988

Therefore, it is essential for an access control mining approach to

be able to mine policies that may contain both positive and negative

authorization rules. We note that although policy mining has been

largely studied in the context of RBAC, due to lack of support for

negative authorization in RBAC, naturally no previous work in that

area addresses this problem [18]. The work by Xu and Stoller [27,

26], in the context of ABAC, also supports only mining policies

with positive rules.

In this paper, we propose an algorithm for mining ABAC policies

that can extract positive as well as negative authorization rules

from a given access control information. Rather than designing

an algorithm from scratch, we adopt an existing rule mining algo-

rithm from the data mining literature, called PRISM [4], and extend

that to capture positive and negative authorization rules simultane-

ously. Therefore, compared to previous work [27, 26], our algorithm

provides a more systematic and less heuristic approach to mining

access control rules that not only extracts negative authorizations

but also performs better in terms of time. Our key contributions in

this paper are as follows.

• We propose an algorithm for mining ABAC policies that, to

the best of our knowledge, is a first of its kind approach to

extract negative authorization rules in addition to positive

authorization rules in the access control mining literature.

• We present a detailed approach to generate an authorization

log that is needed as input to the mining algorithm, in case

it is not readily available for a system.

• We implement a prototype and conduct experiments on the

performance of our algorithm in terms of correctness and

conciseness of themined rules and the time taken to generate

them. We demonstrate that, when the original (ground truth)

policy includes negative authorization rules, our algorithm

generates concise set of rules, which is not possible using

previous work [27, 26]. Moreover, our algorithm outperforms

previous work in terms of time in both cases of positive-only

and positive-and-negative authorization policies.

The rest of the paper is organized as follows. Section 2 discusses

our reference policy model that we use for specifying ABAC poli-

cies. In Section 3, we discuss about the design goals and challenges,

and formally define the ABAC policy mining problem. Section 4

will describe the proposed ABAC policy mining algorithm in depth

along with its time complexity. We discuss about an approach to

generate complete authorization log in Section 5. In Section 6, we

run experiments to test our proposed algorithm and analyze the re-

sults. Section 7 discusses related work in the field of policy mining

and how our approach is novel compared to previous contribu-

tions. Finally, in Section 8, we provide additional discussions and

conclusions.

2 ABAC POLICY MODEL
In this section, we present a specification and authorization seman-

tics for ABAC policies that will be the basis for defining the policy

mining problem and its proposed solution in this paper.

2.1 Policy Specification
An ABAC policy usually contains a disjunctive set of rules com-

prising attribute expressions on users and resources, actions, and

applicable decisions. In the rest of this section, we generally use up-

percase letters for denoting a set and lowercase letters for notating

an element in a set.

Let U be the set of users in the system and R be the set of re-

sources. A user is characterized by a set of attributes. Let UATTR
be the set of user attributes. To get the value of an attribute for

a user, we use the notation u.uattr, where uattr ∈ UATTR is the

name of the user attribute. Like a user, a resource is characterized

by a set of attributes, which will be denoted as RATTR. Given a

resource attribute rattr ∈ RATTR, the value of that attribute for a
resource is denoted by r.rattr. Let the domain of an attribute be the

set of all possible values that the attribute can take. The domain

of an attribute attr ∈ UATTR ∪ RATTR is denoted by dom(attr). For
simplicity, we consider only categorical attributes in this work. We

assume that every user and resource in the system has a unique
identifier attribute, defined by uid and rid, respectively. Authoriza-
tions in an ABAC system are determined for actions requested by

users over resources. Let ACT be the set of all possible actions in

the system.

The main components of an ABAC rule are attribute expressions

that together (in a conjunctive format) determine the sets of users

and resources to which a rule applies. An attribute expression can

be either an attribute-value pair or an attribute-attribute pair. An
attribute-value pair specifies the value corresponding to a user or

resource attribute for the given rule to be applicable. An attribute-

value pair for a user attribute uattr and a value val is expressed as

u.uattr = val and that for a resource attribute rattr and a value val
is denoted as r .rattr = val. The followings are examples of attribute-

value pairs:

• u.department = CS
• r .type = transcript

In the above examples, the first attribute-value pair indicates the

set of users whose department is CS, while the second attribute

pair indicates the set of resources whose type is transcript.

An attribute-attribute pair specifies a pair of user and resource

attributes that need to match for the rule to be applicable. Formally,

an attribute-attribute pair can be expressed as u.uattr = r .rattr ,
where uattr ∈ UATTR and rattr ∈ RATTR. An example of attribute-

attribute expression is as follows:

• u.department = r .department

In the above example, the attribute expression is satisfied by that

set of users and resources where user department is the same as

resource department.

Similar to attribute expressions, in particular attribute-value

pairs, an ABAC rule includes an action expression that is denoted

by action = act, where act ∈ ACT . Such an expression determines

the access requests to which a rule will be applicable based on the re-

quested action. Finally, each ABAC rule includes a rule effect, which

is interpreted as granting applicable requests (PERMIT) or denying
them (DENY). Given the abovementioned components, an ABAC rule
is formally defined as a pair ⟨ϕ,d⟩ where ϕ is a conjunctive set of at-

tribute expressions and action expression and d ∈ {PERMIT, DENY}

is the rule effect. We use the following grammar for rule specifica-

tion in this paper:

rule ::= ⟨ϕ, d⟩

ϕ ::= exp [; exp]

exp ::= u .uattr = value |

r .rattr = value |

u .uattr = r .rattr |

action = value

d ::= PERMIT | DENY

The followings are some examples of ABAC rules:

• ⟨u .position = faculty;u .chair = true; r .type = transcript;
u .department = r .department; action = read_transcript,
PERMIT⟩
• ⟨u .position = manager ;u .department = accounts;
r .type = budget; action = approve, DENY⟩

The first example above is an example of a positive rule, according

to which a user who is a faculty and chair of a department can

perform read_transcript operation on all the transcripts in his/her

department. On the other hand, the second example is an illus-

tration of a negative rule, according to which if a manager from

the accounts department tries to approve the budget of a project

(project is a resource in this case), then he/she will be denied access.

As mentioned earlier, an ABAC policy is a disjunctive set of

rules. We denote the complete set of rules in an ABAC policy by ρ.
Along with the authorization rules, an ABAC policy also includes a

default decision and a conflict resolution strategy. A default decision
applies when none of the rules in the policy are applicable to an

access request. A conflict resolution strategy applies when there is

an overlap between positive and negative authorization rules. In

other words, if both PERMIT and DENY rules are applicable to an

access request, then the conflict resolution strategy of the policy

decides the final decision for that access request [15, 16, 11].

In the context of this paper, in order to avoid overcomplicating

our discussion about policy mining, we assume DENY as the default

decision and deny-overrides as the conflict resolution strategy.

2.2 Authorization Process
An authorization request is a tuple ⟨u ∈ U , r ∈ R,a ∈ ACT ⟩ indicat-
ing the requesting user, requested resource and action, respectively.

Given an ABAC policy as described in Section 2.1, an ABAC autho-

rization system evaluates each policy rule’s expressions based on

the request and determines if the rule is applicable to the request or

not. There are three possible scenarios based on such a matching

process:

• the access request matches with one or more rules in the

policy, all of which contain the same access decision; or

• the access request matches with more than one rule in the

policy but the access decisions of those rules are conflicting,

i.e., include both PERMIT and DENY decisions; or
• the access request does not match with any rule in the policy.

The first scenario is quite straightforward. In this case, the autho-

rization decision returned by the rule(s) in the policy. In the second

scenario, the final authorization decision is resolved according to

the conflict resolution strategy of the policy. For example, if the

conflict resolution strategy of the policy is deny-overrides, then
only one applicable DENY rule in the policy is sufficient to make

the final authorization decision to be DENY. Finally, in the third

scenario above, the default decision of the policy determines the

authorization result. For example, if the default decision of the pol-

icy is DENY, then the system denies an access request if the request

is not applicable with any of the rules in the policy.

3 PROBLEM STATEMENT
In this section, we present our design considerations and challenges

for mining ABAC policies that include both positive and negative

rules, and formulate the ABAC policy mining problem.

As input to the policy mining process, we consider a low-level

log of authorization decisions in a system, which indicates autho-

rization decision (PERMIT or DENY) for any given access by a user

to a resource. Since our goal is to mine rules based on user and

resource attributes, such a log needs to be accompanied (and aug-

mented) by attributes of users and resources involved in the log

entries. Such an access log may be accumulated by and retrieved

from a working authorization system (e.g., as in collected in audit

logs or for the sole purpose of mining). Also, in some cases, we

may have an already existing access control policy specified using

other models such as role-based access control (RBAC [7]) or simple

access control lists (ACL [20]). In such cases, based on the existing

policy, we may generate the desired log using an authorization

engine or a log conversion process in case of simple models such

as ACL.

A central design consideration and contribution of this work is

coexistence of positive and negative rules in a mined policy. Ability

to specify both positive and negative rules is desirable in cases such

as handling simple exceptions (e.g., all but one department should

be able to access a file) or implementing strict requirements for

a group of users/resources (e.g., all employees on administrative

leave should not be able to access any resource). This requirement

brings on new challenges for mining ABAC policies compared to

when mining positive rules only. In order to discuss better about

the challenges, we illustrate two sample abstract policies as Venn

diagrams in Figure 1. Here, the universe represents all possible

access requests and corresponding decisions in the system. Each

policy rule has been represented as a circle determining set of access

instances to which it is applicable. As such, various overlapping

situations can exist among policy rules. An overlap area indicates

access instances with multiple applicable policies. As explained in

Section 2.2, overlap can lead to a conflict situation if rules result in

different decisions. For example, Figure 1(a) represents partial over-

laps between two positive rules as well as overlap of the negative

rules with the positive rules. Here, negative rules are proper subset

of positive rules which may be used to specify exceptions to some

permissions. For example, it can be the case that every student

except students in the CS department can view the courselist:

• ⟨u .position = student; actions = view_course_list, PERMIT⟩
• ⟨u .position = student;u .department = CS;
actions = view_course_list, DENY⟩

Figure 1(b) shows another example where a negative rule overlaps

with multiple positive rules.

Universal DENY PERMIT space DENY within PERMIT space

(a) (b)

Figure 1: Policy spaces demonstrating PERMIT rules, conflicting DENY rules, and DENY space as default decision (a) Conflicting
DENY rules are proper subset of PERMIT rules; and, (b) DENY rules conflict with more than one PERMIT rule.

Looking at the above examples from the viewpoint of a policy

mining algorithm, which only sees a flat access log data, it is chal-

lenging to discover the rules when both positive and negative rules

exist. The solution needs to discern DENY cases that are result of

applying negative rules versus those that are result of applying the

default rule. Note that we consider DENY as the default decision in

this paper as explained in Section 2.1, . In Figure 1 the non-shaded

area outside of the rules represents cases to which the default policy

applies while the crossed areas represent cases when a negative

rule results in DENY. Figure 1(b) highlights another desired char-

acteristic for our solution. Rather than trying to generate three

different specific negative rules, each corresponding to the crossed

DENY pieces that are cut out of the positive rules, we need to be able
to detect that they belong to one more general negative rule.

Finally, a policy mining solution should strive for deriving a

policy that is as concise as possible as they are more manageable

and easier to interpret. In terms of an ABAC policy, we would

like to create less number of rules as well as creating rules with

less number of expressions (more general rules). Previous work on

mining ABAC policies [26] have adopted the notion of Weighted
Structural Complexity (WSC), previously defined in the context of

RBAC policy mining [19], as a metric for this purpose. We adopt the

same notion here. Informally, WSC of an ABAC policy is the sum

of weights of all of its rules, where each rule’s weight is calculated

as the weighted sum of the number of expressions in that rule.

Mathematically, WSC of an ABAC policy composed of the ruleset

ρ is given as:

WSC(ρ) =
∑

rule∈ρ

WSC(rule)

WSC(rule) = w1 |α | + w2 |β | + w3 |γ |

where α , β and γ are, respectively, sets of attribute-value pairs,

attribute-attribute pairs, and action expressions in rule’s ϕ. More-

over, wis are user-specified weights that adjust their contribution

to rule’s conciseness.

Based on the abovementioned considerations, we define the

ABAC policy mining problem as follows. The ABAC policy mining

problem accepts a complete authorization log (augmented with

attributes) as input and extracts an ABAC policy (Section 2.1) that

is concise and consistent with the authorization log. Based on the

notations discussed in Section 2.1, the authorization log is a set

of records, each indicating attribute values of a requesting user

(UATTR), attribute values of requested resource (RATTR), an action

(ACT), and corresponding access decision (PERMIT or DENY). In this

work, we assume a complete log as input, meaning that every po-

tential combination of attribute values are provided in the log (or

otherwise assumed and set to be equal to the default DENY decision).
As the correctness criterion, the mined policy must be consistent

with the input authorization, i.e., the authorization of a log entry

according to the mined policy and the semantics described in Sec-

tion 2.2 must result in the same access decision as in the log entry.

As the quality criterion, a solution to the mining problem must aim

for policies that are as concise as possible. We quantify performance

towards achieving this goal using the abovementioned WSC metric.

4 MINING ABAC POLICIES
In this section, we propose an approach for mining ABAC policies

that include both positive and negative rules based on the policy

model discussed in Section 2. Our proposed algorithm follows a

systematic flow to mine optimal rules, as shown in Figure 2, avoid-

ing heuristic and sub-optimal procedures as much as possible. The

flow starts with mining positive rules, but also discovers conflicting

negative rules simultaneously as a subprocess. In the following, we

present our algorithm and analyze its time complexity.

4.1 Positive/Negative Rule Mining Algorithm
In order to mine attribute-based rules from authorization logs, we

adopt concepts from a rule mining algorithm, called PRISM [4].

Start Access Control Log Initialize a rule

Calculate best

attribute expression

(αx) for PERMIT

Find subset of log

based on αx and

add αx to rule

Subset contains

only PERMIT
instances?

Yes

No
Mine-able

DENY rule in

subset?

Yes

No

Add the PERMIT
rule to ruleset

Add the PERMIT rule and the

conflicting DENY rule to ruleset

Remove the

subset from log

Log contains

PERMIT
instances?

Yes

NoGeneralize

DENY rules

Mined ABAC rulesetStop

Figure 2: Flow chart of the proposed ABAC policy mining algorithm

The backbone of PRISM algorithm is induction strategy for find-

ing the attribute-value pair, αx , which yields highest conditional

probability for a particular classification, δn , that is, for which
P(δn | αx) is maximum. In context of this paper, conditional proba-

bility P(δn | αx) is the probability of occurrence of PERMIT or DENY
decision, δn , for a given attribute expression, αx .

At a high level our ABAC policy mining algorithm works in an it-

erative manner as shown in Algorithm 1. The input to the algorithm

is an authorization log (augmented with user/resource attributes)

as described in Section 3. The getLastCol function returns all the

access decisions, in order, from the input dataset. The outer while

loop runs until the log does not contain any PERMIT instances, to
ensure that all positive rules have been mined. The inner while

loop runs until a subset of the log contains all PERMIT instances or

a conflicting DENY rule is encountered. Basically, the inner while

loop is used to mine either a positive rule or a pair of positive and

conflicting DENY rules. Within the inner loop, lines 7-17 returns the

attribute expression, either attribute-value or attribute-attribute

pair, that yields the highest conditional probability for PERMIT. If
equal probabilities are encountered, then the one with larger cover-

age is returned. An attribute expression has larger coverage over

another if the number of instances in the dataset that contains

the former is greater than that for latter. The selected attribute

expression is then added to the positive rule. getInstances function
returns a subset of the log containing those instances that satisfy

the selected attribute expression. Within this subset, existence of a

conflicting DENY rule is checked using findDenyRule function (Al-

gorithm 4). If it does, the conflicting DENY rule is added to ruleset

and the inner loop breaks. Otherwise, inner loop repeats over the

subset created in the previous iteration, until the subset comprises

of only PERMIT instances. Lines 24-25 add PERMIT rule, which is

created by taking the conjunction of all selected attribute expres-

sions in the inner loop, to the ruleset, and remove all instances from

the log that are covered by this rule. generalizeDenyRules function
(Algorithm 5) generalizes all the negative rules in the ruleset by

removing redundant attribute expressions from those rules. The

output of the ABAC policy mining algorithm is a set of positive

and conflicting negative rules.

Algorithm 1: mineRules

Input :loд (complete authorization log)

Output :List of rules
1 decision_col ← дetLastCol(loд)

2 while PERMIT ∈ decision_col do
3 X ← loд

4 Y ← decision_col

5 ϕ ← ∅

6 while DENY ∈ Y do
7 (attr ,val ,prob) ← findAttrValPair (X , PERMIT)

8 coveraдe1 = lenдth(дetInstances(X ,attr ,val))

9 (attr1,attr2,prob2) ← findAttrAttrPair (X , PERMIT)

10 coveraдe2 = lenдth(дetInstances(X ,attr1,attr2))

11 if prob = prob2 and coveraдe1 > coveraдe2 then
12 (expr_LHS, expr_RHS) ← (attr ,val)

13 else if prob2 < prob then
14 (expr_LHS, expr_RHS) ← (attr ,val)

15 else
16 (expr_LHS, expr_RHS) ← (attr1,attr2)

17 ϕ.add(expr_LHS = expr_RHS)

18 X ← дetInstances(X , expr_LHS, expr_RHS)

19 Y ← дetLastCol(X)

20 deny_rule ← f indDenyRule(X ,ϕ,Y)

21 if deny_rule! = null then
22 ruleset .add(deny_rule)

23 break
24 ruleset.add(⟨ϕ, PERMIT⟩)

25 loд.removeInstances(ϕ)

26 decision_col ← дetLastCol(loд)

27 ruleset ← дeneralizeDenyRules(ruleset , loд)

Algorithms 2 and 3manifest two functions for returning attribute

expressions, attribute-value pair and attribute-attribute pair, with

highest conditional probability for PERMIT. The inputs to both these
functions are the same. The loop in the findAttrValPair function

Algorithm 2: findAttrValPair
Input :X (log of access requests and decisions), class

(PERMIT or DENY)
Output :Attribute-Value pair

1 (maxProb,attr ,val) ← (0,null ,null)

2 for i ← 1 to (numAttributes(X)-1) do
3 foreach j ∈ getUniqueValues(X .getColumn(i)) do
4 prob ← P(class | i j)

5 if maxProb < prob then
6 (maxProb,attr ,val) ← (prob, i, j)

7 else if maxProb = prob then
8 if attr = null and val = null then
9 (attr ,val) ← (i, j)

10 else if lenдth(дetInstances(X ,attr ,val)) <
lenдth(дetInstances(X , i, j)) then

11 (maxProb,attr ,val) ← (prob, i, j)

12 return (attr ,val ,maxProb)

Algorithm 3: findAttrAttrPair
Input :X (log of access requests and decisions), class

(PERMIT or DENY)
Output :Attribute-Attribute pair

1 uAttr ← getUserAttributes(X)
2 rAttr ← getResourceAttributes(X)
3 (maxProb,attr1,attr2) ← (0,null ,null)

4 for i ← 1 to (numAttributes(uAttr)-1) do
5 for j ← 1 to (numAttributes(rAttr)-1) do
6 prob ← P(class | [i, j])

7 actual_i← getActualIndex(i,X)
8 actual_j ← getActualIndex(j,X)
9 if maxProb < prob then

10 (maxProb,attr1,attr2) ←

(prob,actual_i,actual_j)

11 else if maxProb = prob then
12 if attr1 = null and attr2 = null then
13 (attr1,attr2) ← (actual_i,actual_j)

14 else if lenдth(дetInstances(X ,attr1,attr2)) <
lenдth(дetInstances(X ,actual_i,actual_j)) then

15 (maxProb,attr1,attr2) ←

(prob,actual_i,actual_j)

16 return (attr1,attr2,maxProb)

enumerates all possible attribute-value pairs in the input dataset

and calculates conditional probability in case of each attribute-

value pair. The getUniqueValues function in line 3 returns the set of

distinct values from the input set. The conditional probability in

line 4 indicates the probability of occurrence of the given class (in

this case, the class is PERMIT), given an attribute-value pair. If two

attribute-value pairs have the same probability, then the one with

higher coverage is selected (lines 7-11). The findAttrAttrPair func-
tion is similar to the findAttrValPair function, except that, instead
of attribute-value pairs, the loop in findAttrAttrPair function enu-

merates all possible pairs of uattr and rattr , where uattr ∈ UATTR,

Algorithm 4: findDenyRule
Input :X (log of access requests and decisions), ϕ (a permit

rule), Y (list of decisions for access requests in X)

Output :A deny rule

1 f laд← f alse

2 decision_col ← дetLastCol(X)

3 while not(getUniqueValues(decision_col) = {DENY}) do
4 (attr ,val ,prob) ← getAttrExp (X , DENY)

5 coveraдe = lenдth(дetInstances(X ,attr ,val))

6 (expr_LHS, expr_RHS) ← (attr ,val)

7 if дetUniqueValues(X .дetColumn(attr)) ≡ dom(attr)

then
8 ϕ.add (expr_LHS = expr_RHS)

9 f laд← true

10 X ← дetInstances(X , rule_LHS, rule_RHS)

11 decision_col ← дetLastCol(X)

12 if f laд = f alse then
13 return (null)
14 else if coveraдe = lenдth(дetInstances(Y , DENY)) then
15 return (⟨ϕ, DENY⟩)
16 else
17 return (null)

Algorithm 5: generalizeDenyRules
Input :ruleset (initial ruleset from mining algorithm), loд

(complete authorization log)

Output :Final ruleset with generalized deny rules

1 covered_instances ← ∅

2 foreach rule ∈ ruleset do
3 if rule .d = DENY then
4 coveraдe ← дetRuleCoveraдe(rule)

5 if coveraдe ⊆ covered_instances then
6 ruleset .remove(rule)

7 else
8 foreach attrExp ∈ rule do
9 дen_cov ←

дetRuleCoveraдe(rule .remove(attrExp))

10 if not(PERMIT ∈ дen_cov) then
11 rule ← rule .remove(attrExp)

12 ruleset .add(rule)

13 coveraдe ← дetRuleCoveraдe(rule)

14 covered_instances ←

covered_instances ∪ coveraдe

15 return ruleset

rattr ∈ RATTR, and uattr and rattr have the same domain, that is,

dom(uattr) = dom(rattr). The conditional probability in line 6 (Al-

gorithm 3) indicates the probability of occurrence of PERMIT, given
an attribute-attribute pair.

The findDenyRule function in Algorithm 4 mines a conflicting

negative rule within a positive rule. The loop runs until all the

instances in the input dataset contain only DENY. Within this loop,

the attribute expression yielding the highest conditional probability

for DENY is selected. Lines 7-9 ensure that the selected attribute

expression is added to the input rule only if the set of distinct

values contained in attribute attr equals the domain of attr. The
flag variable indicates whether any attribute expression was added

to the input rule. A subset of the input dataset is created comprising

of all instances containing the selected attribute expression. The

loop is then repeated on this subset, until it contains only instances

of DENY. At this point, a negative rule is created by taking the

conjunction of all selected attribute expressions in the loop. The

mined negative rule is indeed a conflicting negative rule if it covers

all DENY instances in the input dataset (lines 12-17).

After generating the initial ruleset from the access control log,

the policy mining algorithm generalizes the DENY rules in the rule-

set as specified in Algorithm 5. For every DENY rule in the ruleset,

we initially check if it is a subset of a generalized DENY rule, and

if it is, then it is removed from the ruleset. Otherwise, the DENY
rule is generalized by removing its components (attribute expres-

sions) one at a time. Each time a component is removed, we check

if the new DENY rule covers any PERMIT instances. If it does not,

then the redundant component is removed from the original DENY
rule. Finally, the generalized DENY rule is added to the ruleset. The

getRuleCoverage function returns the set of instances covered by a

rule in the access log.

4.2 Time Complexity
The time complexity of ABAC policy mining algorithm (Algo-

rithm 1) can be calculated as follows. Let n be the number of records

or instances and d be the number of attributes in the access log. The

outer loop runs as many times as the number of PERMIT instances

in the log. So, the running time of the outer loop is O(n).
The inner loop runs as many times as the total number of at-

tributes involved, including all the attribute expressions, within

a particular PERMIT rule. In the worst case, a PERMIT rule can be

formed by all attributes for attribute-value pairs and all combina-

tions of attributes for attribute-attribute pairs. Since a rule cannot

contain duplicate attribute expressions, total number of attributes

included in attribute-value pairs is d and that for attribute-attribute

pairs is of the order d2. So, the running time of inner while loop is

O(d2).
Calculating the optimal attribute-value pair (line 7 in Algo-

rithm 1; Algorithm 2) takes O(nd) in the worst case when all the

attributes in the log contains n distinct values. Further, calculating

the optimal attribute-attribute pair (line 9 in Algorithm 1; Algo-

rithm 3) takes O(d2) time. So, total time taken for calculating the

optimal attribute expression is O(nd).
Computing a conflicting DENY rule (line 20 in Algorithm 1; Algo-

rithm 4) takes total O(nd3) time. This is because the while loop in

Algorithm 4 takes O(d2) time in the worst case when a DENY rule
contains all attributes for attribute-value pairs and all combinations

of attributes for attribute-attribute pairs. Moreover, calculating the

optimal attribute expression (line 4 in Algorithm 4) takes O(nd)
time.

Generalizing the DENY rules (line 27 in Algorithm 1; Algorithm 5)

consumes a total of O(nd) time. This is because the loop in Algo-

rithm 5 runs for each attribute, within every DENY rule in the initial

ruleset. Since rules represent instances of the access log, the number

of DENY rules in the initial ruleset is of the order n.
The total running time of our ABAC policy mining algorithm

is, therefore, O(n2d5). The time complexity of our policy mining

approach is much less than O(n3), which is the worst case running

time of [26] (details in Section 7). Suppose, every attribute in the

log contains exactly two values in its domain, then total number of

instances in a complete log,n, is 2d . Besides, in a realistic application,
domain of attributes have more than two values. So, for large values

of d , d5 << md (= n), where m ∈ {2, 3, 4, ...} depending on the

application.

5 GENERATING ACCESS LOGS
In this part, we discuss the algorithm used for generating the log,

in detail. The proposed algorithm can be used as a framework for

generating synthetic logs, which can be utilized for various analysis

purposes. For example, we use synthetic logs, generated fromABAC

policies, for evaluation of our policy mining approach, so that we

can have the ground truth while comparing the mined ABAC policy

with original ABAC policy.

Log generation is an important phase in our proposed approach,

because the log outputted from this phase serves as the input for

the ABAC policy mining algorithm. Our goal is to understand the

behavior of an underlying access control model. So we consider all

possible combinations of all possible users, resources and actions, in

short all possible scenarios of access requests, while generating the

log, to be able to interpret all possible operations of the underlying

access control model.

The log generation algorithm works as follows. Using the set of

user attributes and domain for each user attribute, all possible users

in the system are created by enumerating all possible combinations

of values for user attributes. Similarly, all possible resources in the

system are created using the set of resource attributes and domain

for each resource attribute. A unique identifier is allocated to each

user and resource. Then, using the complete set of users, resources

and actions in the system, all possible (user, resource, action) combi-

nations are determined, to enumerate all possible access requests

that can be created from the system. While generating the complete

set of access requests, each request is evaluated against the given

XACML policy to determine the access decision for that request, fol-

lowing which the access request and corresponding access decision

are written to a file.

Each record in the log indicates if a certain user can perform

certain action on a certain resource. In other words, each row in the

log contains the tuple (Au, Ar, Action, Decision), where Au and Ar
are, respectively, the set of requesting user and requested resource

attributes, Action is the requested action, and Decision ∈ {PERMIT,
DENY } is the access decision corresponding to that access request.

5.1 Determining domains for each attribute
A challenge that we encountered while generating the log was to

determine the domain for each user and resource attribute, because

based on this domain information, all possible combinations of

values for user and resource attributes can be created. In the con-

text of this paper, we assume four types of columns or attributes:

columns appearing only in the set of user attributes or resource

attributes (but not in both) referred to as usr-only attribute and res-
only attribute respectively, columns that appear in the intersection

of user and resource attribute sets referred as usr-res attributes, a
user column dependent on the resource identifier column called as

usr-foreign-key column, and a resource column dependent on the

user identifier column referred to as res-foreign-key attribute.

The basic algorithm for defining the domain for all attributes is

as follows:

Step 1: Determine the domain for all usr-only and res-only attributes.

Step 2: For every column c ∈ usr-res, repeat:
– First determine the domain of c .
– Then the domain of each uattr and rattr , where uattr ∩
rattr = c , is the same as the domain of c , that is, dom(uattr)
= dom(rattr) = dom(c).

Step 3: If the set of user attributes contains a column c ∈ usr-foreign-
key, then the domain of c, dom(c), is the set or subset of

resource identifiers, as required by c .
Step 4: If the set of resource attributes contains a column c ∈ res-

foreign-key, then the domain of c, dom(c), is the set or subset
of user identifiers, as required by c .

6 EVALUATION
We have implemented the proposed algorithms in Section 4 and

report our experimental evaluation in this section. As our evalua-

tion approach, rather than starting from an access log, we conduct

our experiments by generating an access log from an ABAC pol-

icy, and then mine policies based on the generated log. Such an

approach ensures that we have access to ground truth policies (i.e.,

original policies) with which we can compare the results of our

mining algorithm. We follow a systematic approach to generate a

comprehensive as well as minimal log as proposed in Section 5.

We compare the performance of our algorithm with the previ-

ously proposed algorithm by Xu and Stoller [26], which we refer

to as XSAM in the rest of this section. We should note that XSAM
is only capable of mining positive attribute-based access control

policies. Therefore, we conduct our experiments on both policies

that contain only positive rules, and policies that include positive

as well as conflicting negative rules.

6.1 Datasets
We perform our experiments on two policy datasets that we have

have adapted from [26] to include negative authorizations. The

university policy, University, authorizes accesses to applications,

gradebooks, rosters and transcripts, requested by students, faculties,

applicants and staff in registrar/admissions office. The project man-

agement policy, Project, controls accesses by accountant, auditor,

planner and manager to tasks, schedules and budgets associated

with projects.

In order to provide a fair assessment and comparison of our al-

gorithm versus XSAM, we use two different versions of University
and Project policies. Policies UniversityP and ProjectP contain
only postive authorization rules, while policies UniversityPN and

ProjectPN have both positive and negeative authorization rules.

We have included the policies in Appendix A.

6.2 Implementation
Our log generation implementation works based on list of all possi-

ble user attributes and resource attributes along with the domain

for each attribute, list of all possible actions, and an ABAC pol-

icy written in XACML 3.0 [6] (Section 5). Each policy in XACML

comprises of a set of rules, where each rule consists of a sequence

of attribute expressions to determine which access requests the

rule applies to and a rule effect to determine the access decision in

case the rule is satisfied by an access request. Consistent with our

policy model, we use deny-overrides rule-combining algorithm for

XACML policies. The log generation algorithm is implemented in

Java (JDK 1.8). We use WSO2 Balana [25], an open-source XACML

implementation, to determine access decisions corresponding to

each access request for a given XACML policy. The policy mining

algorithm is written in Python (Python 3.5). We performed each

experiment 10 times and report the average time measurement

in our experiments. The experiments were performed on a 64-bit

Windows 10 machine having 12 GB RAM and Intel Core i7-6700HQ

processor.

Table 1 summarizes the access logs generated for university and

project management policies. We note that the same number of

access requests were generated regardless of positive-only vs. posi-

tive/negative policy versions. |attru| is the number of user attributes,

including the unique identifier attribute. Similarly, |attrr| is the num-

ber of resource attributes, including the identifier attribute. |U |, |R|
and |O| are, respectively, the total number of user, resources and

actions in the system. |log| is the total number of records in the

generated log, which is computed as |U | x |R| x |O|.

6.3 Experiments with Positive Authorizations
We first compare the performance of our policy mining algorithm

with XSAM [26] on policies consisting of only positive authoriza-

tions. This can provide an insight on how performances comapre

on solving a mining problem that both approaches should be able to

solve by design. We use the complete log as input to our algorithm,

and provide only the PERMIT instances as input to XSAM since it

works based on access control lists (ACLs).

The first four rows in Table 2 show the results of our algorithm

and XSAM on UniversityP and ProjectP policies. The table com-

pares approaches on the basis of quality, with respect to preciseness

and conciseness, of mined rules and total time taken for execution.

|ρor iд+| and |ρor iд−| are the number of positive and negative rules

in the original ABAC policies, whereas |ρmined+| and |ρmined−|

are the number of positive and negative rules in the mined ABAC

policies. Further,WSCorig andWSCmined are, respectively, the WSC

measure for original and mined policies. When calculating WSC

for the experiments, we consider all user-specified weightswi to be

equal to one. Finally, Run time is the total time, in seconds, taken for

mining ABAC policies from the given access control information.

As demonstrated in Table 2, both approaches, XSAM [26] and

our proposed work, perform exactly the same in terms of mining

concise rules that are syntactically and semantically similar to the

original policy. However, our approach outperforms XSAM in terms

of running time.

Table 1: Details of the access logs created from original ABAC policies

Policy |attru| |U | |attrr| |R| |O| |log|

University 6 128 5 2048 9 2359296

Project 8 4608 6 72 7 2322432

Table 2: Comparison of our proposed algorithm with XSAM [26] for university and project management policies

Mining Alg. Policy |ρor iд+| |ρor iд−| |ρmined+| |ρmined−| WSCorig WSCmined Time (s)

XSAM UniversityP 5 - 5 - 19 19 1540

Proposed work UniversityP 5 - 5 - 19 19 936

XSAM ProjectP 11 - 11 - 49 48 1328

Proposed work ProjectP 11 - 11 - 49 48 896

XSAM ProjectPN 11 4 20 - 67 4324 1370

Proposed work ProjectPN 11 4 11 4 67 64 1032

XSAM* UniversityPN 11 3 -
*

-
*

56 -
*

7200+
*

Proposed work UniversityPN 11 3 11 3 56 53 1123

* XSAM [26] did not terminate nor produced any output for the UniversityPN policy even after running for more than two hours.

6.4 Experiments with Positive and Negative
Authorizations

Our second set of experiments is on policies consisting of both

positive and negative authorization rules. The last four rows in Ta-

ble 2 show the performance of the two approaches on ProjectPN
and UniversityPN policies. Our observations show that our ap-

proach precisely mines concise positive and negative rules for both

policies, whereas XSAM [26] computes verbose rules that are more

identity-based rather than attribute-based. For example, in case of

ProjectPN, while our proposed algorithm mines total of 15 rules

with WSC of 64, XSAM produces 20 rules with significantly large

WSC (4332). Furthermore, in our experiments, XSAM was not able to
terminate and produce an output for UniversityPN even after run-

ning for more than two hours. The result clearly demonstrate the

need for mining negative authorization rules along with positive

rules.

6.5 Discussion of Results
6.5.1 Overall Analysis. As shown in Table 2, our policy mining

algorithm precisely mines all the positive and negative rules from

the generated log. Although the input access control log contains

records belonging to both types of DENY spaces, the DENY space as

a result of negative authorization rules and the default DENY space,

our policy mining algorithm successfully mines all and only the

required DENY authorization rules.

Our manual observation of the mined rules showed that they

never reference any identity-based attributes like unique user iden-

tifier attribute and unique resource identifier attribute. Further, the

experiment results verified that the mined ABAC policy is equiv-

alent to the original ABAC policy. Moreover, the WSC of mined

policy is constantly less than or equal to the WSC of original policy,

i.e., (WSC)
mined

≤ (WSC)
original

. This manifests that our algorithm

mines policies that are at least as concise as the original policies,

while maintaining the semantic meaning of the original policies.

6.5.2 Comparison with XSAM. Our policy mining algorithm

and the XSAM approach perform similar when only positive autho-

rization rules need to be mined. However, there is a significance

difference when both positive as well as negative authorization

rules are considered. More particularly, when experimenting on

policies containing negative authorization, XSAM either does not

terminate in reasonable time (after two hours for UniversityPN)
or produces verbose positive rules containing identifier attributes

(which should be avoided for ABAC policies). In addition, our policy

mining approach always runs faster than that of XSAM.
Although it may be argued that XSAM considers negative in-

stances implicitly (i.e., any access not permitted is denied), it fails

badly when considering both positive and negative rules as demon-

strated in our experiments. This is because the policies ProjectPN
and UniversityPN are particularly hard to express using only posi-
tive rules, which emphasizes the need for explicitly mining negative

authorization rules along with positive authorization rules.

7 RELATEDWORK
One of the areas in policy mining that received great research inter-

est was role mining. The problem of role mining is to determine an

optimal set of roles R from the user-permission assignments (UPA)

for obtaining RBAC configuration that is equivalent to the given

user-permission assignments, that is, decomposing the given UPA

into User-role Assignments (UA) and role-Permission Assignments

(PA) [18]. Vaidya at al. defined the Basic-RMP problem for finding

a minimal set of roles from the given UPA [23]. Edge-RMP, a vari-

ant of Basic-RMP, aims to minimize, along with number of roles,

|UA|+|PA| [14, 24]. |S| denotes the cardinality of a set S. Furthermore,

Colantonio et al. presented a cost-based metric for mining optimal

set of roles [5]. Another metric , proposed by Molloy et al., called

Weighted Structural Complexity (WSC) [19], is the weighted sum

of the number of elements in R, UA, PA and other components of

an RBAC system. The aim of WSC optimization problem is to find

an RBAC configuration, consistent with the given UPA, such that

WSC of the mined RBAC policy is minimized. Consistent with [26],

we adopt the notion of WSC for measuring the complexity of mined

ABAC policies.

The limitation of RBAC policymining is that, for obtaining RBAC

configuration from the given User Permission Assignments, role

mining problems consider only the positive authorizations, in terms

of what permissions are assigned to users, based on their roles. Our

ABAC mining approach on the other hand, considers both positive

and negative authorizations while obtaining ABAC policy.

Xu and Stoller were the first to introduce the concept of ABAC

policy mining [26]. The motivation behind the idea of ABAC min-

ing is to ease the burden of migration to ABAC framework from

an existing access control paradigm, by partially automating the

process of migration. At a high level, their policy mining algorithm

works as follows. Initially, they generate an Access Control List

(ACL), which they refer as the User Permission Relation, from an

ABAC policy and attribute data. Then their policy mining algo-

rithm, while iterating over the tuples in the given User Permission

Relation, select a user permission tuple that is used as the seed for

creating a candidate rule. This candidate rule is then generalized

by replacing conjuncts in attribute expressions with constraints.

The goal of their generalization process is to increase the coverage

of the rule in terms of the additional tuples that can be covered

by the rule in the User Permission Relation. The set of candidate

rules, which altogether cover the entire ACL, is then optimized

by removing redundant rules and merging pairs of rules. A rule

is redundant if it covers instances in the User Permission Relation

already covered by some other rule. Two different rules, having the

same constraints, are merged by taking the union of conjuncts, in

those rules, for every attribute. However, their algorithm does not

deal with negative authorizations. Moreover the ABAC policy min-

ing algorithm presented in [26] is very heuristic and complicated to

interpret. Importantly, their running time is cubic in the size of the

ACL, whereas the time complexity of our ABAC mining approach

is much less than cubic time as explained in detail in Section 4.2.

Recently, Medvet et al. [17] proposed an evolutionary, separate

and conquer approach for mining ABAC policies, using the same

policy language and case studies as in [26]. In their work, a new rule

is generated and the set of access requests decreases to a smaller size

during each iteration. Similar to Xu and Stoller [26] and unlike our

proposed approach, their work is not capable of mining negative

authorization rules. Moreover, there is not much difference in terms

of performance compared to [26]. Therefore, we only compare our

performance against [26].

Our policy mining algorithm is closely related to the PRISM

rule mining algorithm [4] by Cendrowsk. PRISM is an established

data mining algorithm for inducing rules corresponding to a given

dataset. It serves as a solution for the traditional data mining clas-

sification problem. Given a training dataset, containing different

classifications, PRISM outputs a set of modular rules, where each

rule contains combination of attribute-value pairs for arriving at a

particular classification. To yield a set of disjunctive rules, PRISM

uses an induction strategy for finding the attribute-value that deliv-

ers the most information about a particular classification. In other

words, when determining a rule for a particular classification δn,
PRISM finds the attribute-value pair αx that gives the highest con-
ditional probability for the classification δn, that is, PRISM selects

the αx for which the probability of occurrence of the classifica-

tion δn, given the attribute-value pair αx, is maximum. However,

the limitation of PRISM in the context of this paper is that, for a

particular rule, PRISM tends to find only attribute-value pairs, but

not attribute-attribute pairs. As a result, when PRISM is run on

the access control log, which serves as a suitable training dataset

comprising of two classifications PERMIT and DENY, PRISM creates

rules containing the identifier attributes like the unique user iden-

tifier attribute and unique resource identifier attribute. As a result,

the output is verbose since it contains large number of rules. Our

policy mining algorithm, although based on PRISM, overcomes this

drawback by also considering attribute-attribute pairs, along with

attribute-value pairs, while constructing a rule for PERMIT or DENY.

8 DISCUSSIONS AND CONCLUSIONS
In this paper, we proposed an algorithm for mining ABAC policies

capable of discovering both positive and negative authorization

rules simultaneously. While previous approaches in access control

policy mining literature had focused on positive-only authorization

rules (including more recent work on ABAC mining [26]), our work

significantly contributes to the area by discovering negative autho-

rization rules as well. We evaluated our policy mining algorithm on

logs generated from two synthetic but realistic policies. Our obser-

vations from experiments show that themined rules never reference

identity-based attributes like user identifier and resource identifier

attributes. Also, the results demonstrate that the mined rules are

equivalent to the original ABAC policy, and that the mined policies

are concise compared to them. Furthermore, we demonstrated that

our approach outperforms previous ABAC mining algorithm [26]

through the experiments and theoretical analysis.

Our mining algorithm attempts to mine positive and negative

rules simultaneously. An alternative strategy would be to mine all

possible positive rules first and then combine rules in a way to

resolve in more general set of positive and negative rules. However,

such an alternative strategywill lead tomany granular positive rules

which then need to be considered for generalization. Combining

granular rules is a complex problem itself to solve optimally. We

note that the previous ABAC mining approach [26] followed such

an strategy (for positive rules only). But it relied on heuristics for

generalization (by considering only pairs of rules). A main objective

of design of our mining approach was to avoid such heuristic, sub-

optimal strategies.

The proposed mining algorithm is feasible to be employed in

practice based on our experimental results and theoretical analysis.

Running time of the algorithm was in the order of a few minutes

for the synthetic policies. Theoretically, the time complexity of our

policy mining algorithm depends on size of complete log, which is

exponential to number of attributes. While we acknowledge this

limitation, we note that it is applicable to any log mining algorithm

that aims to avoid false positives/negatives. Moreover, we note that

policy mining is inherently an offline and less time-sensitive task.

As future work, we plan to extend our approach to incorporate

other ABAC features such as support for numerical data and other

relational operators such as subset in attribute expressions. We

will also explore algorithmic improvements, and more extensive

quantitative analysis based on policies of different sizes.

ACKNOWLEDGEMENTS
We would like to thank the anonymous reviewers for their valuable

comments and helpful suggestions that guided us in improving the

final manuscript.

REFERENCES
[1] Apache Tutorials - Apache HTTP Server. url: https://httpd.

apache.org/docs/2.0/misc/tutorials.html.

[2] E. Bertino, P. Samarati, and S. Jajodia. An extended autho-

rization model for relational databases. IEEE Transactions
on Knowledge and Data Engineering, 9(1):85–101, Jan. 1997.
issn: 1041-4347.

[3] E. Bertino, S. Jajodia, and P. Samarati. A Flexible Authoriza-

tion Mechanism for Relational Data Management Systems.

ACM Trans. Inf. Syst., 17(2):101–140, Apr. 1999. issn: 1046-
8188.

[4] J. Cendrowska. PRISM: An algorithm for inducing mod-

ular rules. International Journal of Man-Machine Studies,
27(4):349–370, Oct. 1, 1987. issn: 0020-7373.

[5] A. Colantonio, R. Di Pietro, and A. Ocello. A Cost-driven

Approach to Role Engineering. In Proceedings of the 2008
ACM Symposium onApplied Computing, SAC ’08, pages 2129–

2136, New York, NY, USA. ACM, 2008.

[6] eXtensible Access Control Markup Language (XACML) Ver-

sion 3.0. url: http://docs.oasis-open.org/xacml/3.0/xacml-

3.0-core-spec-os-en.html.

[7] D. F. Ferraiolo, R. Sandhu, S. Gavrila, D. R. Kuhn, and R.

Chandramouli. Proposed NIST standard for role-based ac-

cess control. ACM Transactions on Information and System
Security, 4(3):224–274, 2001.

[8] E. Ferrari. Access Control in Data Management Systems.

Synthesis Lectures on Data Management, 2(1):1–117, Jan. 1,
2010. issn: 2153-5418.

[9] N. Gal-Oz, E. Gudes, and E. Fernández. A Model of Methods

Access Authorization in Object-oriented Databases. In Proc
VLDB, pages 52–61, Jan. 1, 1993.

[10] V. C. Hu, D. Ferraiolo, R. Kuhn, A. R. Friedman, A. J. Lang,

M. M. Cogdell, A. Schnitzer, K. Sandlin, R. Miller, and K.

Scarfone. Guide to attribute based access control (abac) def-

inition and considerations (draft). NIST special publication,
800(162), 2013.

[11] F. Huonder. Conflict Detection and Resolution of XACML

Policies. Master’s thesis, University of Applied Sciences Rap-
perswil, 2010.

[12] X. Jin, R. Krishnan, and R. Sandhu. A Unified Attribute-Based

Access Control Model Covering DAC, MAC and RBAC. In

IFIP Annual Conference on Data and Applications Security and
Privacy, LNCS, pages 41–55. Springer, Berlin, Heidelberg,
July 11, 2012.

[13] M. A. Al-Kahtani and R. Sandhu. Rule-based RBAC with

negative authorization. In 20th Annual Computer Security
Applications Conference, pages 405–415, Dec. 2004.

[14] H. Lu, J. Vaidya, and V. Atluri. Optimal Boolean Matrix De-

composition: Application to Role Engineering. In 2008 IEEE
24th International Conference on Data Engineering, pages 297–
306, Apr. 2008.

[15] A. Lunardelli, I. Matteucci, P. Mori, andM. Petrocchi. A proto-

type for solving conflicts in XACML-based e-Health policies.

In Proceedings of the 26th IEEE International Symposium on
Computer-Based Medical Systems, pages 449–452, June 2013.

[16] M. St-Martin and A. P. Felty. A Verified Algorithm for Detect-

ing Conflicts in XACML Access Control Rules. In Proceedings
of the 5th ACM SIGPLAN Conference on Certified Programs
and Proofs, CPP 2016, pages 166–175, New York, NY, USA.

ACM, 2016.

[17] E. Medvet, A. Bartoli, B. Carminati, and E. Ferrari. Evolu-

tionary inference of attribute-based access control policies.

In International Conference on Evolutionary Multi-Criterion
Optimization, pages 351–365. Springer, 2015.

[18] B. Mitra, S. Sural, J. Vaidya, and V. Atluri. A Survey of Role

Mining. ACM Comput. Surv., 48(4):50:1–50:37, Feb. 2016. issn:
0360-0300.

[19] I. Molloy, N. Li, Y. A. Qi, J. Lobo, and L. Dickens. Mining Roles

with Noisy Data. In Proceedings of the 15th ACM Symposium
on Access Control Models and Technologies, SACMAT ’10,

pages 45–54, New York, NY, USA. ACM, 2010.

[20] R. S. Sandhu and P. Samarati. Access Control: Principles and

Practice. IEEE Communications Magazine, 32(9):40–48, 1994.
[21] M. Satyanarayanan. Integrating Security in a Large Dis-

tributed System. ACM Trans. Comput. Syst., 7(3):247–280,
Aug. 1989. issn: 0734-2071.

[22] D. Servos and S. L. Osborn. HGABAC: Towards a Formal

Model of Hierarchical Attribute-Based Access Control. In

International Symposium on Foundations and Practice of Se-
curity, LNCS, pages 187–204. Springer, Cham, Nov. 3, 2014.

[23] J. Vaidya, V. Atluri, and Q. Guo. The Role Mining Problem: A

Formal Perspective. ACM Trans. Inf. Syst. Secur., 13(3):27:1–
27:31, July 2010. issn: 1094-9224.

[24] J. Vaidya, V. Atluri, Q. Guo, and H. Lu. Edge-RMP: Minimiz-

ing administrative assignments for role-based access control.

Journal of Computer Security, 17(2):211–235, Jan. 1, 2009. issn:
0926-227X.

[25] WSO2 Balana. url: https://github.com/wso2/balana.

[26] Z. Xu and S. D. Stoller. Mining Attribute-Based Access Con-

trol Policies. IEEE Transactions on Dependable and Secure
Computing, 12(5):533–545, Sept. 2015. issn: 1545-5971.

[27] Z. Xu and S. D. Stoller. Mining Attribute-Based Access Con-

trol Policies from Logs. In IFIP Annual Conference on Data
and Applications Security and Privacy, LNCS, pages 276–291.
Springer, Berlin, Heidelberg, July 14, 2014.

[28] X. Zhang, Y. Li, and D. Nalla. An Attribute-based Access

Matrix Model. In Proceedings of the 2005 ACM Symposium on
Applied Computing, SAC ’05, pages 359–363, New York, NY,

USA. ACM, 2005.

A POLICY DATASETS
In the following tables, we list the rules in the policies that we

used in the experiments. Table 3 lists the rules in the ProjectP
policy. In addition to those rules, the ProjectPN policy includes

the DENY rules listed in Table 4. Tables 5 and 6 show the rules in

the UniversityP and UniversityPN policies, respectively.

https://httpd.apache.org/docs/2.0/misc/tutorials.html
https://httpd.apache.org/docs/2.0/misc/tutorials.html
http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-os-en.html
http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-os-en.html
https://github.com/wso2/balana

• ⟨u .adminRole =manaдer ; r .type = budдet ;u .depar tment = r .depar tment ;action = r ead, PERMIT⟩
• ⟨u .adminRole =manaдer ; r .type = budдet ;u .depar tment = r .depar tment ;action = approve, PERMIT⟩
• ⟨r .type = schedule ;u .projectLed = r .project ;action = r ead, PERMIT⟩
• ⟨r .type = budдet ;u .projectLed = r .project ;action = r ead, PERMIT⟩
• ⟨r .type = schedule ;u .projectLed = r .project ;action = write, PERMIT⟩
• ⟨r .type = budдet ;u .projectLed = r .project ;action = write, PERMIT⟩
• ⟨r .type = schedule ;u .project = r .project ;action = r ead, PERMIT⟩
• ⟨r .type = task ;u .task = r .r id ;action = setStatus, PERMIT⟩
• ⟨r .type = task ; r .propr ietary = f alse ;u .project = r .project ;u .exper t ise = r .exper t ise ;action = r ead, PERMIT⟩
• ⟨r .type = task ; r .propr ietary = f alse ;u .project = r .project ;u .exper t ise = r .exper t ise ;action = r equest, PERMIT⟩
• ⟨u .isEmployee = true ; r .type = task ;u .project = r .project ;u .exper t ise = r .exper t ise ;action = r ead, PERMIT⟩
• ⟨u .isEmployee = true ; r .type = task ;u .project = r .project ;u .exper t ise = r .exper t ise ;action = r equest, PERMIT⟩
• ⟨u .adminRole = auditor ; r .type = budдet ;u .project = r .project ;action = r ead, PERMIT⟩
• ⟨u .adminRole = accountant ; r .type = budдet ;u .project = r .project ;action = r ead, PERMIT⟩
• ⟨u .adminRole = accountant ; r .type = budдet ;u .project = r .project ;action = write, PERMIT⟩
• ⟨u .adminRole = accountant ; r .type = task ;u .project = r .project ;action = setCost, PERMIT⟩
• ⟨u .adminRole = planner ; r .type = schedule ;u .project = r .project ;action = write, PERMIT⟩
• ⟨u .adminRole = planner ; r .type = task ;u .project = r .project ;action = setSchedule, PERMIT⟩

Table 3: ProjectP policy rules

• ⟨u .adminRole =manaдer ;u .depar tment = dept2; r .type = budдet ;action = r ead, DENY⟩
• ⟨u .adminRole =manaдer ; r .type = budдet ; r .project = proj21;action = approve, DENY⟩
• ⟨u .adminRole = planner ;u .depar tment = dept3;u .exper t ise = test inд; r .type = schedule ;action = r ead, DENY⟩
• ⟨r .type = task ; r .depar tment = dept2, DENY⟩

Table 4: DENY rules in ProjectPN policy. PERMIT rules are the same as in ProjectP (Table 3)

• ⟨r .type = дradebook ;u .courseT aken = r .course ;action = r eadScore, PERMIT⟩
• ⟨r .type = дradebook ;u .courseT auдht = r .course ;action = r eadScore, PERMIT⟩
• ⟨u .posit ion = f aculty ; r .type = дradebook ;u .courseT auдht = r .course ;action = assiдnGrade, PERMIT⟩
• ⟨u .posit ion = student ; r .type = transcr ipt ;u .uid = r .student ;action = r eadT ranscr ipt, PERMIT⟩
• ⟨u .posit ion = f aculty ;u .isChair = true ; r .type = transcr ipt ;u .depar tment = r .depar tment ;action = r eadT ranscr ipt, PERMIT⟩

Table 5: UniversityP policy rules

• ⟨r .type = дradebook ;u .courseT aken = r .course ;action = r eadMyScores, PERMIT⟩
• ⟨r .type = дradebook ;u .courseT auдht = r .course ;action = addScore, PERMIT⟩
• ⟨r .type = дradebook ;u .courseT auдht = r .course ;action = r eadScore, PERMIT⟩
• ⟨u .posit ion = f aculty ; r .type = дradebook ;u .courseT auдht = r .course ;action = chanдeScore, PERMIT⟩
• ⟨u .posit ion = f aculty ; r .type = дradebook ;u .courseT auдht = r .course ;action = assiдnGrade, PERMIT⟩
• ⟨u .isChair = true ; r .type = дradebook ;u .depar tment = r .depar tment ;action = r eadScore, PERMIT⟩
• ⟨r .type = дradebook ;u .courseT aken = r .course ;action = addScore, DENY⟩
• ⟨r .type = дradebook ;u .courseT aken = r .course ;action = r eadScore, DENY⟩
• ⟨r .type = дradebook ;u .courseT aken = r .course ;action = chanдeScore, DENY⟩
• ⟨r .type = дradebook ;u .courseT aken = r .course ;action = assiдnGrade, DENY⟩
• ⟨u .depar tment = r eдistrar ; r .type = roster ;action = r ead, PERMIT⟩
• ⟨u .depar tment = r eдistrar ; r .type = roster ;action = write, PERMIT⟩
• ⟨u .posit ion = f aculty ; r .type = roster ;u .courseT auдht = r .course ;action = r ead, PERMIT⟩
• ⟨r .type = transcr ipt ;u .uid = r .student ;action = r ead, PERMIT⟩
• ⟨u .posit ion = student ;u .depar tment = dept1; r .type = transcr ipt ;action = r ead, DENY⟩
• ⟨u .isChair = true ; r .type = transcr ipt ;u .depar tment = r .depar tment ;action = r ead, PERMIT⟩
• ⟨u .depar tment = r eдistrar ; r .type = transcr ipt ;action = r ead, PERMIT⟩
• ⟨r .type = application;u .uid = r .student ;action = checkStatus, PERMIT⟩
• ⟨u .depar tment = admissions ; r .type = application;action = r ead, PERMIT⟩
• ⟨u .depar tment = admissions ; r .type = application;action = setStatus, PERMIT⟩
• ⟨u .depar tment = admissions ; r .type = application; r .depar tment = dept2;action = r ead, DENY⟩
• ⟨u .depar tment = admissions ; r .type = application; r .depar tment = dept2;action = setStatus, DENY⟩

Table 6: UniversityPN policy rules

	Abstract
	1 Introduction
	2 ABAC Policy Model
	2.1 Policy Specification
	2.2 Authorization Process

	3 Problem Statement
	4 Mining ABAC Policies
	4.1 Positive/Negative Rule Mining Algorithm
	4.2 Time Complexity

	5 Generating Access Logs
	5.1 Determining domains for each attribute

	6 Evaluation
	6.1 Datasets
	6.2 Implementation
	6.3 Experiments with Positive Authorizations
	6.4 Experiments with Positive and Negative Authorizations
	6.5 Discussion of Results

	7 Related Work
	8 Discussions and Conclusions
	A Policy Datasets

