
Generalized Mining of Relationship-Based Access Control
Policies in Evolving Systems

Padmavathi Iyer

University at Albany – SUNY

Albany, New York

riyer2@albany.edu

Amirreza Masoumzadeh

University at Albany – SUNY

Albany, New York

amasoumzadeh@albany.edu

ABSTRACT
Relationship-based access control (ReBAC) provides a flexible ap-

proach to specify policies based on relationships between system

entities, which makes them a natural fit for many modern informa-

tion systems, beyond online social networks. In this paper we are

concerned with the problem of mining ReBAC policies from lower-

level authorization information. Mining ReBAC policies can address

transforming access control paradigms to ReBAC, reformulating

existing ReBAC policies as more information becomes available,

as well as inferring potentially unknown policies. Particularly, we

propose a systematic algorithm for mining ReBAC authorization

policies, and a first of its kind approach to mine graph transition
policies that govern the evolution of ReBAC systems. Experimental

evaluation manifests efficiency of the proposed approaches.

CCS CONCEPTS
• Security and privacy→ Access control; Authorization.

KEYWORDS
relationship-based access control; policy mining; graph transition

ACM Reference Format:
Padmavathi Iyer and Amirreza Masoumzadeh. 2019. Generalized Mining

of Relationship-Based Access Control Policies in Evolving Systems. In The
24th ACM Symposium on Access Control Models and Technologies (SACMAT
’19), June 3–6, 2019, Toronto, ON, Canada. ACM, New York, NY, USA, 6 pages.

https://doi.org/10.1145/3322431.3325419

1 INTRODUCTION
In relationship-based access control model (ReBAC) [8, 7, 10, 11,

18, 19], system authorization information is modeled as a graph

comprising of entities (nodes) and relationships (edges), and policies

are specified based on relationship patterns between entities. For

example, a ReBAC policy to protect medical records could indicate

that Primary doctors can access their patients’ medical records.
In this paper, we are interested in mining ReBAC policies from

lower-level authorization information. One of our motivations is to

facilitate intact migration from legacy access control models such

as access control lists (ACL) to ReBAC in a time-efficient manner.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

SACMAT ’19, June 3–6, 2019, Toronto, ON, Canada
© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-6753-0/19/06. . . $15.00

https://doi.org/10.1145/3322431.3325419

ReBAC has been shown to be advantageous in domains beyond

online social networks, such as medical record systems [18], due to

its flexibility and expressiveness power. However, migrating from

existing models to ReBAC can be a tedious and error-prone task if

performed manually. Furthermore, ReBAC mining can be employed

to make existing policies more concise based on supplementary re-

lationship information extracted from entities over time. Moreover,

inferring enforced access control policy when the full specification

enforced by a system is not available [14] can be achieved through

mining.

Assuming that we can acquire a graph of entities in a system,

the problem of mining ReBAC authorization policies can be seen as

extracting authorization patterns (rules) from a given authorization

information such as a history of successful and unsuccessful access

requests. Moreover, we note that in a real-world system the graph

keeps evolving as new users and resources are added or removed

from the system and relationships form or disappear among them.

Many modern applications such as online social networks essen-

tially use the same system graph both for protecting their data as

well as serving their application. Therefore, capturing access con-

trol policies becomes even more challenging since the permissions

that were once granted may be denied in future or vice versa. As

information contained in system graph is used in authorization de-

cisions, there needs to be also policies that authorize modification

of system graph itself which we call graph transition policies. We

note that such rules have also been considered as part of recent

administrative ReBAC models [19, 7]. Our main contributions in

this work can be summarized as:

• Proposing an optimal algorithm for mining ReBAC autho-

rization policy rules, avoiding heuristic procedures.

• Introducing the problem of mining graph transition policies

and extending our solution to address the problem. To the

best of our knowledge, this is a first of its kind approach of

mining authorization rules in an evolving system.

• Demonstrating the feasibility and effectiveness of the pro-

posed algorithms through experiments, in addition to com-

paring performance with a previous work [4].

At a high level, our mining algorithms for authorization policies

and graph transition policies work as follows. By adopting ideas

from rule mining [5] and frequent graph-based pattern mining [22],

the former conducts a systematic search on a combination of a

system graph and an authorization log in order to mine concise

path conditions in the graph that model authorization decisions in

the log. In the latter case, we can consider that each record in the

authorization log is accompanied with a snapshot of the system

graph used for making a grant or deny decision. Alternatively, we

https://doi.org/10.1145/3322431.3325419
https://doi.org/10.1145/3322431.3325419

can model the same behavior using a system graph with times-

tamped edges. A pleasant consequence of this alternative model

is that it enables our mining process to work on a single system

graph instead of a history of graph snapshots, which in turn allows

us to follow a strategy similar to our first algorithm while addi-

tionally account for consistency of mined patterns with regards to

timestamps.

2 POLICY MODEL & MINING CHALLENGES
In this section, based on existing ReBAC models [11, 8, 7], we

present a reference model for ReBAC that captures the necessary

features in the context of this paper.

The authorization information in a system is captured as a di-

rected graph G(V ,E), called system graph [8], where V is the set of

system entities and E ⊆ V ×V × R represents relationships among

them. Each edge in the graph is labelled by a relationship in R.

2.1 Authorization Policies
A ReBAC authorization policy consists of a set of authorization

rules. An authorization rule is of the form ⟨ϕ,acts ⊆ ACT ⟩ where
ϕ is a condition composed itself of a set of relationship patterns. A
relationship pattern is defined as a sequence of relationship types

that can be used to characterize patterns of paths in a system graph.

Access request applicable to these policies is of the form ⟨s,o,act⟩
where s ∈ V requests performing action act ∈ ACT on o ∈ V . Here,

ACT is a set of all abstract actions depending on the application

domain. An access request matches an authorization rule if it satis-

fies all relationship patterns in the rule condition. Condition ϕ in

authorization rule is formally defined using the following grammar:

ϕ ::= relpattern [; relpattern]
relpattern ::= [−]r [, relpattern]

Here, −r represents an edge of type r ∈ R traversed in inverse

direction. For example, edge ⟨Bob,Alice, has-primary-doctor⟩ in a

health-care system (Alice is Bob’s primary doctor) can also be repre-

sented as ⟨Alice,Bob,−has-primary-doctor⟩. Consider a sample au-

thorization rule that allows primary doctors to read their patients’

medical records: ⟨“ − has-primary-doctor, − has-owner”, {read}⟩.
The following relationship instance match the condition in the rule,

and therefore, allows Alice to read Bob’s record:

Alice
−has-pr imary-doctor
−−−−−−−−−−−−−−−−−−−−→ Bob

−has-owner−−−−−−−−−−−→ Bob_Rec

An example of a rule with multiple conditions in the context

of an OSN could be ⟨“friend, friend, owns; city, -city, owns”, {read}⟩
that allows access by only friends of friends living in the same city

as the owner.

2.2 Graph Transition Policies
Graph transition policies govern modifications to the system graph.

Therefore, the system graph is used as authorization information

as well as target for action. We assume that a subject modifying the

system graph is also an entity in the graph itself. A graph transition

request is of the form ⟨s,x ,y, r ,op⟩ where subject s ∈ V requests

performing operation op ∈ {create,delete} on edge ⟨x ,y, r ⟩. We

do not consider operations on system graph vertices as they can be

System

Graph

Candidate Path

Generation

Access Log
Tag Non-Permitted

Paths

Relationship Pattern

Extraction and

Refinement

Consolidate Rel. Patterns into Rules

Based on Information Gain

Maximization

Relationship-Based

Ruleset

Figure 1: High level flow of ReBAC mining algorithms for
authorization and graph transition policies

captured using operations on adjacent edges. A vertex is created

when an edge with that vertex as one of its end-point is created; a

vertex is deleted when all its adjacent edges are deleted.

A graph transition rule needs to specify permissions on an

affected edge. It is formally represented by a tuple ⟨ϕs ,ϕt , r ∈
R,ops ⊆ {create,delete}⟩. Here, ϕs and ϕt represent the condi-

tions that need to be satisfied between the subject and the source

(beginning vertex) and the target (ending vertex) of the affected

edge, respectively. They follow the same format defined in § 2.1.

r and ops indicate the relationship type of affected edge and the

permitted operations, respectively.

2.3 Challenges
Given an access log and a system graph, the procedure of mining

ReBAC policies is a non-trivial task. Suppose a certain user is autho-

rized to perform an action on a certain object as per the access log.

There can exist multiple paths between the user and the object in

the system graph that could have resulted in that authorization. The

challenge is to find the most concise combination of path conditions

that holds for all similar accesses in the log.

In the case of actions causing system graph transition, the search

for candidate paths needs to be performed across multiple temporal

snapshots of the system graph. Furthermore, along with multiple

paths between the subject and end-points of the modified edge, we

also need to take the relative timestamps of edges into consideration.

For instance, for mining a rule that states users can tag friends in
their posts in an OSN, the timestamp of tag relationship should

be greater than that of the owner and friend relationships for all

matching instances.

3 ALGORITHM
Figure 1 shows an overview of the steps taken by our authorization

and graph transition policy mining algorithms. In this section, we

describe the details of each of the steps.

3.1 Mining Authorization Policies
3.1.1 Inputs. There are two inputs to our ReBACmining algorithm,

namely system graph data and access control log. Ifnode1 andnode2
are end-points of an edge of type edge-label, then an entry in the

input graph data can be represented as ⟨node1, node2, edдe-label⟩.

Algorithm 1: mineReBACPolicy

Input :L (access log), G (system graph)

Output :ReBAC ruleset

1 foreach node ∈ G .V do
2 paths ← getCandidatePaths(node, L,G)
3 R ← group paths based on relationship pattern

4 Remove patterns containing only deny paths from R
5 while PERMIT ∈ L do
6 subloд← loд; rule .ϕ ← empty

7 while ¬(subloд contains only PERMIT) do
8 pr , siz, cov ← calculate conditional probability, size

and coverage for each rel_pattern ∈ R
9 best ← relationship pattern with lexicographically

maximal value of the triple ⟨pr,siz,cov⟩
10 Append best to rule .ϕ

11 subloд← subloд subset containing only best instances

12 Append rule to ruleset ; L← L \ subloд

13 return ruleset

Algorithm 2: getCandidatePaths
Input :source (source node), L (access log),G (system graph),

T [optional] (timestamp), EL [optional] (edge label)

Output : set of paths from source
1 permit_loд← Get all permit records of loд

2 if EL not defined then
3 paths ← Get all paths in G from source

4 else
5 paths ← Get those paths in G from source s.t. every edge

on the path has timestamp value less than T

6 foreach path ∈ paths do
7 if EL not defined then
8 if path end-points not in permit_loд then
9 Mark path as deny

10 else
11 if ⟨path end-points, EL⟩ not in permit_loд then
12 Mark path as deny

13 return paths

The access control log enumerates all possible access requests in

the graph. Each entry in our input log file can be represented as a

tuple of the form ⟨requestinд-user , requested-resource,decision⟩.

3.1.2 Consolidate Patterns into Rules. Algorithm 1 works in an it-

erative manner as follows. For each candidate relationship pattern,

the conditional probability for PERMIT given that candidate pattern

is calculated, followed by measuring the candidate’s coverage in

given log and the size of the candidate (Line 8). Then the best can-
didate pattern is chosen according to the lexicographical ordering

⟨conditional-probability, size, coveraдe⟩ (Line 9). Subsequently, we
append the best pattern computed above to rule’s condition set,

and filter the log based on log records satisfied by this candidate

relationship pattern. The above steps are repeated until the filtered

log contains records with PERMIT decisions only (Line 7). At this

point, we obtained a positive authorization rule which would be

a conjunction of best relationship patterns found so far, and thus

this grant rule is added to ReBAC ruleset. Next, the filtered log is

removed from the original log. In other words, all records satisfied

by the rule are removed from the log. The outer while loop (Line 5)

repeats this entire procedure until there are no more records in

the log that have PERMIT decision i.e. all the positive authorization

rules have been mined.

One of the prime functionalities in the mineReBACPolicy al-

gorithm is to estimate the best candidate pattern based on the

triple ⟨conditional-probability, size, coveraдe⟩. Calculation of con-

ditional probability (probability for getting PERMIT given relation-

ship pattern) utilizes the candidate patterns from Line 4 and iter-

atively estimates the information yield of each candidate about

the PERMIT class. Size calculation estimates the size of each candi-

date pattern which equals the number of edges in that relationship

pattern. Finally, coverage calculation estimates the candidate’s cov-

erage in the access log, where, the coverage of a relationship pattern

in a log is the total number of log records satisfied by that pattern.

A relationship pattern satisfies a log record if the end-points of

an instance of that pattern is same as the log record. An instance
covered by a path’s relationship pattern is simply the sequence of

nodes in that path.

3.1.3 Candidate Path Generation. Initially, Algorithm 2 explores

paths of length 1 from the source node (Line 3), in which each “non-

permitted” path is tagged with a deny label (Line 9). Non-permitted

paths do not have their end-points in the permit_log (we refer to

the log records having PERMIT decision as permit_log), or in other

words the underlying system policy does not grant access to request

where the requesting and requested parties are connected by the

non-permitted path. Then paths of length 2 from the source node

are explored, and this procedure is repeated until all possible paths

in the system graph have been explored from the source node.

To be able to deal with large real-world networks containing

several nodes with high degree, the proposed mining algorithm is

provisioned with a user-specified constraint indicating the maximal

pattern length in rule conditions. This is because large graphs and

high degrees increases the computational complexity of the mining

process, or more particularly, the possible path combinations that

need to be evaluated magnifies substantially.

3.1.4 Relationship Pattern Extraction and Refinement. After gen-
erating candidate paths, the next step is to group the set of all

paths according to relationship patterns (Algorithm 1 Line 3). In

the following example, node sequences ⟨Alice,Bob,Bob_Rec⟩ and
⟨Tom,Carol ,Carol_Rec⟩ follow the same pattern, so are grouped

into ⟨−has-primary-doctor ,−has-owner ⟩:

Alice
−has-pr imary-doctor
−−−−−−−−−−−−−−−−−−−−→ Bob

−has-owner−−−−−−−−−−−→ Bob_Rec

Tom
−has-pr imary-doctor
−−−−−−−−−−−−−−−−−−−−→ Carol

−has-owner−−−−−−−−−−−→ Carol_Rec

Finally, we prune the grouped paths so that it contains only

those patterns that were permitted at least once according to the

access log (Algorithm 1 Line 4). Particularly, for each relationship

pattern in grouped paths we check if the end-points of any instance

following that pattern is in the permit_log, with the help of deny
tag. If none of the instances, satisfying the pattern, has end-points

Algorithm 3: mineGraphTransitionRules

Input :L (timed access log), G (initial system graph)

Output :ReBAC ruleset

1 foreach newly inserted edge new_E in L do
2 Set timestamp of new_E to incremented time

3 G ← G ∪ new_E

4 foreach unique edдe_label in newly inserted edges do
5 edдes ← Get edges with label edдe_label from G

6 foreach edдe ∈ edдes with end-points node1 and node2 do
7 if node1.timestamp < edдe .timestamp then
8 paths ← getCandidatePaths(node1,L,G,

edдe .timestamp, edдe_label)
9 if node2.timestamp < edдe .timestamp then

10 paths ← getCandidatePaths(node2,L,G,
edдe .timestamp, edдe_label)

11 Produce key-value pairs of

⟨relationship pattern, instances covered⟩
12 Generate rules and append ⟨rule, edge_label⟩ to ruleset
13 return ruleset

in the permit_log i.e. all the candidate paths associated with that

pattern are marked deny, then it simply implies that all access

requests between nodes connected by that pattern have been denied,

thus removing the relationship pattern from the candidates. The

resultant patterns are stored as key-value pairs that basically reflect

the coverage of each relationship pattern in the given access log.

3.2 Mining Graph Transition Policies
3.2.1 Overview. For the purpose of simplicity of presentation, we

assume that edges are always inserted into the graph. Therefore,

if G1,G2, ...,GT represent graph snapshots at consecutive time in-

stances, then G1 ⊆ G2 ⊆ G3 ⊆ ⊆ GT . Extending the proposed
algorithm for mining rules that authorize deletion of edges is part

of future work.

Each edge is annotated with a creation time to keep track of

edges present in the system at any time. Because a node is always

associated with an edge, the timestamp of a node will implicitly be

the timestamp of that edge of the node that appeared first in the

system graph.

3.2.2 Inputs. There are two inputs to the ReBAC graph transi-

tion policy mining algorithm, access log and initial system graph.

A log record is ⟨modifier, node1, node2, edge_label, action, decision⟩
where, modifier is the user requesting to perform (action) on edge,

with label edдe_label , connecting the nodes node1 and node2.
Each record in the input initial graph specifies an edge, whose for-

mat can be denoted as ⟨node1,node2, edдe_label⟩ where the nodes
node1 and node2 are related by the edge having label edдe_label .

3.2.3 Create Timestamped Graph. In the beginning, Algorithm 3

(Line 1) sets the timestamp of all nodes and edges in the given

preliminary graph to zero assuming the graph denotes inception

state of the system under observation. Then each successful attempt

to insert an edge in the system, indicated by PERMIT decision for

the corresponding access log record, happens in one time instance.

So each new authorized edge is supplemented to the current graph

structure, assigning incremented time to the edge and its associated

nodes, if necessary (that is if any of the edge’s nodes is newly added).

An agreeable outcome of this strategy is that our mining approach

needs to process just a single graph instead of a chronological

sequence of graph snapshots, thereby significantly optimizing the

space usage.

3.2.4 Candidate Path Generation and Mining. For each distinct

modified edge label, we check if the nodes connected by that edge

already existed in the system (referred as existing nodes) or were
they added as a result of edge insert operation (new nodes). This

is because the user responsible for inserting an edge must be “re-

lated” to the existing node(s) of that modified edge. Based on this

interesting observation, our algorithm generates candidate paths

from the existing nodes associated with the edge (over all modified

edge labels) (Line 6).

While exploring an edge, we need to account for edge times-

tamps (Algorithm 2 Line 5). Particularly, during the graph traversal

only those edges already existing in the system should be consid-

ered. Furthermore, while pruning the set of candidate relationship

patterns, along with the end-points of node sequences, we also

need to check if the label of modified edge is in permit_log, since
the interest in graph transitions is to understand the authorizations

enforced on network edges.

The candidate paths are grouped according to relationship pat-

terns and those having only deny-marked paths are eliminated from

the candidate key-value pairs. Subsequently, rules are produced by

following the process described in Algorithm 1 (Line 5), append-

ing the label of modified edges, along with rules, into the ReBAC

ruleset.

4 EVALUATION
The general flow for all of our experiments is as follows. We begin

with an original ReBAC policy (ground-truth), create a sample sys-

tem graph based on the policy, generate access log by employing the

system graph (or initial system graph for graph transition policies)

and the original policy, mine ReBAC rules, and finally compare

the measurements. We executed all our experiments on a 64-bit

Windows 10 machine with Intel Core i7-6700HQ processor and 12

GB of RAM. All experiments were performed 10 times each and we

report the average time measurement in each experiment.

4.1 Setup and Configurations
We assess the performance of our algorithms on following policies

that are inspired by real-world applications. EHR deals with autho-

rizing medical staff to electronic health records [10]. eWorkForce
adopts ReBAC policies in an electronic workforce management

system that regulates access to work-orders, appointments and

other services [9]. We also consider graph transition rules for in-

serting various edges such as work-orders, appointments, tasks, etc.

Project controls access of organization employees such as project

leaders and contractors to resources such as task, schedule and

budget [4]. We slightly modified the specifications of this dataset

to confirm with the policy model of this paper.

Based on the rules given in datasets, we create the (initial) system

graph pseudo-randomly using information about entities and edge

Table 1: Performance Evaluation of Proposed ReBAC Mining Algorithms

Mining Alg. Policy |V | |E| |R| |L| |ρor iд | |ρmined | WSCorig WSCmined SemSim Time (s)

Authorization

EHR 36 52 8 180

8 8 22 22 1 2

[4] 8 8 22 22 1 28

Authorization

eWorkForce 126 197 29 10660

22 22 57 57 1 86

[4] 22 23 57 50 0.9 240

Authorization

Project 55 82 7 638

11 11 48 48 1 13

[4] 11 11 48 48 1 32

Graph Transition eWorkForce 64 80 22 824 6 6 15 15 1 17

types in the system. In Table 1, |V |, |E| and |R| are as defined in § 2,

and |L| is size of access log. For access log generation, in the case of

authorization policies, we create all possible access requests from

the set of users (U) and resources (R) in the system, and determine if

the decision is permit or deny associatedwith each request, based on

system graph and access control policy. For graph transition policy,

we create requests by randomly selecting users and resources in the

system and when an access request is successful, the requested edge

is inserted into the system graph. Since the authorization graph

is persistently evolving, we consult the most recent snapshot for

making authorization decisions.

Evaluation Metrics. To assess the correctness of proposed algo-

rithms, we use the notion of Semantic Similarity (SemSim) which is

the fraction of granted permissions shared between original and

mined rulesets. Further, we evaluate the quality of mined policy

based onWeighted Structural Complexity (WSC) [17, 4], that mea-

sures conciseness of the policy. Conciseness of a ReBAC rule can

be modeled as a weighted sum of the lengths of its conditions and

authorized actions:

WSC(rule) = w1
∑

relpatt∈rule.ϕ
|relpatt | + w2 |acts |

where |s | denotes the length of set s and wis are user-specified

weights. In our experiments, allwi s are assumed to be 1. WSC of a

ReBAC policy is the sum of WSC of each of the contained rules in

the policy.

4.2 Results
Table 1 summarizes important observations from the experiments.

Mining Alg. indicates whether it is the proposed algorithm (autho-

rization polices), or previous work’s algorithm [4]. |ρor iд |, |ρmined |,
WSCor iд andWSCmined identify the number of rules and WSC

measure of original and mined rulesets. Time gives the running
time in seconds for each demonstration.

As shown in the table, for all the datasets and the proposed

algorithms, the size and WSC of mined ReBAC ruleset is the same

as that of the original ruleset, inferring that the mined policy is at

least as concise as the original policy. We manually compared the

mined and original ruleset and noticed that they are syntactically

as well as semantically equivalent. Consequently, no rule is over-

fitted to just few instances, and hence our algorithm tries to find

general patterns of authorizations, reducing the overall complexity

of the mined policy. Furthermore, the running time is of the order

Fraction of deny records removed from log

F
r
a
c
t
i
o
n
o
f
c
o
r
r
e
c
t
o
u
t
p
u
t
i
n
m
u
l
t
i
p
l
e

r
u
n
s

Figure 2: Robustness ofmining graph transition rules versus
different sampling rates of DENY records from the log

of a few seconds, which is reasonable for the application domains

considered in the experiments.

4.2.1 Authorization Policies. Performance comparison between

our mining algorithm and [4] yields the following observations.

For smaller datasets like EHR and Project, both the algorithms

perform similar when concerned with the quality of mined rules,

that is, both yield mined policies that have the same ruleset size

and WSC as the original policies. However, for larger datasets like

eWorkForce, previous work does not output correct ReBAC ruleset,

as manifested by a semantic similarity lower than 1. Moreover, there

is a significant difference in the running time of both algorithms

for all the datasets. As depicted in the table, our algorithm takes

less than half the time taken by [4] to extract ReBAC policies.

4.2.2 Graph Transition Policies and Case of Missing Log Records. In
real-world systems, complete access logs might not be available, for

example, if certain access requests have not been exercised yet. To

this end, we run multiple experiments where we obtain a random

sample of DENY records from the access log, while not altering the

PERMIT records since they are used to determine the authorization

state of system. We estimate how correct the mined rules are (i.e.

how intact the mined policy is) as the log is randomly sampled.

Figure 2 depicts that the mined policy is intact until 40% of DENY
records are removed from the access log. As expected, after 40% the

graph gradually decreases, implying the influence of DENY records

in log on the mining process. Thus, this demonstration gives an

illustration of the lower bound on the number of records to be

present in the access log for our mining approach to work 100% cor-

rectly. Nevertheless, depending on the needs of an organization, if

minor errors in the mining phase are tolerable, then the correctness

of our algorithm’s output ruleset is reasonable even when around

60% DENY records are removed from the log. This demonstrate the

robustness and scope of our mining approach for real-world generic

applications.

5 RELATEDWORK
There is a vast literature on role mining which deals with obtain-

ing optimal set of roles from user-permission relation [16, 17].

Subsequently, researchers have looked into transforming policies

modeled as access control lists (ACLs) or role-based policies into

attribute-based access control (ABAC) policies, by mining autho-

rization rules based on attributes of users and resources [12, 20,

15]. We borrow some ideas from PRISM [5] rule mining algorithm,

which was also adopted in ABAC mining [12]. However, compared

to these previous policy mining problems, in this paper, we deal

with extracting relational policies rather than unary predicates like

attributes or roles.

Bui et al. presents a greedy solution for the ReBAC policy min-

ing problem [4] that can be summarized as follows: iterate over

the tuples of subject-permission relation (ACL); generate candidate

ruleset that together cover the entire subject-permission relation

and select highest-quality rules based on a rule-quality metric; fi-

nally, optimize the candidate ruleset by merging and simplifying

the rules. The authors have also extended this work recently to

a grammar-based evolutionary algorithm [3]. Compared to [4],

we render a systematic solution that generates rules by optimiz-

ing information gain about the PERMIT authorizations. In contrast,

[4] performs pairwise rule combining, while other combinations

(triples, quadruples, etc.) could be more optimal. Moreover, while

generating candidate rules, their approach generates all possible

paths between the user and resource for every selected subject-

permission tuple that increases their search space tremendously.

On the contrary, we traverse the graph from all nodes in the system

only once and store the candidate patterns in key-value pairs for

future retrieval, thus improving performance significantly.

Our work is related to frequent subgraph mining [6, 13, 21, 22]

that extracts maximal, frequently occurring patterns from a given

graph database or a single graph. However, we deal with an addi-

tional constraint about matching patterns with access log, which

makes mining ReBAC policies a challenging task.

Our proposed algorithm for mining graph transition rules is

related to approaches to discover local structural patterns that

occur frequently as the graph evolves [1, 2]. However, we account

for the additional authorization data based on the access log along

with considering frequently occurring patterns and relative edge

timestamps. To the best of our knowledge, we are the first to propose

an algorithm for mining authorization rules in an evolving system.

6 CONCLUSION
In this paper, we presented approaches for mining two categories of

ReBAC policies: authorization policies and graph transition policies.

Experimental evaluations show that both proposed algorithms are

efficient in terms of running time and mining capability, and outper-

forms the previous work [4]. In future, we will extend our ReBAC

mining framework for extracting relationship-based conditions that

consider topological patterns beyond paths.

REFERENCES
[1] M. Berlingerio, F. Bonchi, B. Bringmann, and A. Gionis. Mining graph evolution

rules. In joint European conference on machine learning and knowledge discovery
in databases, pages 115–130. Springer, 2009.

[2] B. Bringmann, M. Berlingerio, F. Bonchi, and A. Gionis. Learning and Predicting

the Evolution of Social Networks. IEEE Intelligent Systems, 25(4):26–35, July
2010. issn: 1541-1672.

[3] T. Bui, S. D. Stoller, and J. Li. Greedy and evolutionary algorithms for mining

relationship-based access control policies. Computers & Security, 80:317–333,
2019.

[4] T. Bui, S. D. Stoller, and J. Li. Mining Relationship-Based Access Control Policies.

In Proceedings of the 22Nd ACM on Symposium on Access Control Models and
Technologies, SACMAT ’17 Abstracts, pages 239–246. ACM, 2017.

[5] J. Cendrowska. PRISM: An algorithm for inducing modular rules. International
Journal of Man-Machine Studies, 27(4):349–370, Oct. 1, 1987. issn: 0020-7373.

[6] Y. Chi, Y. Xia, Y. Yang, and R. R. Muntz. Mining closed and maximal frequent

subtrees from databases of labeled rooted trees. IEEE Transactions on Knowledge
and Data Engineering, 17(2):190–202, Feb. 2005. issn: 1041-4347.

[7] J. Crampton and J. Sellwood. ARPPM: Administration in the RPPM Model. In

Proceedings of the Sixth ACM Conference on Data and Application Security and
Privacy, CODASPY ’16, pages 219–230. ACM, 2016.

[8] J. Crampton and J. Sellwood. Path Conditions and Principal Matching: A New

Approach to Access Control. In Proceedings of the 19th ACM Symposium on
Access Control Models and Technologies, SACMAT ’14, pages 187–198. ACM,

2014.

[9] M. Decat, J. Bogaerts, B. Lagaisse, and W. Joosen. The workforce management

case study: functional analysis and access control requirements. CW Reports,
volume CW655, 40, 2014.

[10] P. W. Fong. Relationship-based access control: protection model and policy

language. In Proc. CODASPY ’11, pages 191–202. ACM, 2011.

[11] P. W. Fong and I. Siahaan. Relationship-based access control policies and their

policy languages. In Proc. 16th ACM Symposium on Access Control Models and
Technologies, SACMAT ’11, pages 51–60. ACM, 2011.

[12] P. Iyer and A. Masoumzadeh. Mining Positive and Negative Attribute-Based

Access Control Policy Rules. In Proceedings of the 23Nd ACM on Symposium
on Access Control Models and Technologies, SACMAT ’18, pages 161–172. ACM,

2018.

[13] M. Kuramochi and G. Karypis. Finding frequent patterns in a large sparse

graph. In Proceedings of the 2004 SIAM International Conference on Data Mining,
pages 345–356. SIAM, 2004.

[14] A. Masoumzadeh. Inferring unknown privacy control policies in a social net-

working system. In Proceedings of the 14th ACM Workshop on Privacy in the
Electronic Society, pages 21–25. ACM, 2015.

[15] E. Medvet, A. Bartoli, B. Carminati, and E. Ferrari. Evolutionary inference of

attribute-based access control policies. In International Conference on Evolu-
tionary Multi-Criterion Optimization, pages 351–365. Springer, 2015.

[16] B. Mitra, S. Sural, J. Vaidya, and V. Atluri. A Survey of Role Mining. ACM
Comput. Surv., 48(4):50:1–50:37, Feb. 2016. issn: 0360-0300.

[17] I. Molloy, N. Li, Y. A. Qi, J. Lobo, and L. Dickens. Mining roles with noisy

data. In Proceedings of the 15th ACM symposium on Access control models and
technologies, pages 45–54. ACM, 2010.

[18] S. Z. R. Rizvi, P. W. Fong, J. Crampton, and J. Sellwood. Relationship-Based

Access Control for an Open-Source Medical Records System. In Proceedings of
the 20th ACM Symposium on Access Control Models and Technologies, SACMAT

’15, pages 113–124. ACM, 2015.

[19] S. D. Stoller. An Administrative Model for Relationship-Based Access Control.

In SpringerLink. IFIP Annual Conference on Data and Applications Security

and Privacy, pages 53–68. Springer, Cham, July 13, 2015.

[20] Z. Xu and S. D. Stoller. Mining Attribute-Based Access Control Policies. IEEE
Transactions on Dependable and Secure Computing, 12(5):533–545, Sept. 2015.
issn: 1545-5971.

[21] X. Yan, H. Cheng, J. Han, and P. S. Yu. Mining Significant Graph Patterns by

Leap Search. In Proceedings of the 2008 ACM SIGMOD International Conference
on Management of Data, SIGMOD ’08, pages 433–444. ACM, 2008.

[22] X. Yan and J. Han. Gspan: graph-based substructure pattern mining. In 2002
IEEE International Conference on Data Mining, 2002. Proceedings. Pages 721–724.
IEEE, 2002.

	Abstract
	1 Introduction
	2 Policy Model & Mining Challenges
	2.1 Authorization Policies
	2.2 Graph Transition Policies
	2.3 Challenges

	3 Algorithm
	3.1 Mining Authorization Policies
	3.2 Mining Graph Transition Policies

	4 Evaluation
	4.1 Setup and Configurations
	4.2 Results

	5 Related Work
	6 Conclusion

