
Active Learning of Relationship-Based Access Control Policies
Padmavathi Iyer

University at Albany – SUNY

Albany, New York

riyer2@albany.edu

Amirreza Masoumzadeh

University at Albany – SUNY

Albany, New York

amasoumzadeh@albany.edu

ABSTRACT
Understanding access control policies is essential in understanding

the security behavior of systems. However, often times, a complete

and accurate specification of the enforced access control policy in

a system is not available. In fact, scale and complexity of a system,

or unavailability of its source code, may prevent users and even its

developers from having access to such accurate specification.

In this paper, we propose a novel, systematic approach for learn-

ing access control policies where target systems are treated as black

boxes. In particular, we show how we can construct a deterministic

finite automaton (DFA) characterizing the relationship-based access

control (ReBAC) policy of a system by interacting with its access

control engine using minimal number of access requests. Our ex-

periments on realistic application scenarios and their promising

results demonstrate the feasibility, scalability and efficiency of our

learning approach.

CCS CONCEPTS
• Security and privacy→ Access control; Authorization.

KEYWORDS
relationship-based access control, authorization, black box, model

learning, active learning

ACM Reference Format:
Padmavathi Iyer and Amirreza Masoumzadeh. 2020. Active Learning of

Relationship-Based Access Control Policies. In Proceedings of the 25th ACM
Symposium on Access Control Models and Technologies (SACMAT ’20), June
10–12, 2020, Barcelona, Spain. ACM, New York, NY, USA, 12 pages. https:

//doi.org/10.1145/3381991.3395614

1 INTRODUCTION
An access control policy in a system specifies which access requests

will be granted/denied. Users need to know and understand the

enforced access control policy by a system in order to effectively

use the system. System developers also need to ensure that the

enforced (implemented) policy meets their security design goals.

Unfortunately, most systems today do not come with a clearly doc-

umented access control policy; they either completely lack such

documentation, or what is documented is inaccurate [30, 26]. This is

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

SACMAT ’20, June 10–12, 2020, Barcelona, Spain
© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-7568-9/20/06. . . $15.00

https://doi.org/10.1145/3381991.3395614

not necessarily a result of negligence by system developers. Even if

they start with a clear policy specification, the implemented system

might not conform with the intended specification. It is not trivial

to test the correctness of the enforced policy by a typical applica-

tion today once it has been developed; there will be a daunting

access space that needs to be explored. To make the matter worse,

many systems today are composed of multiple heterogeneous com-

ponents that each may impact the end result policy. Even if we

know the accurate policy specification for each component, it is

very challenging to determine the overall enforced policy as a re-

sult of combining those components. We approach this problem by

proposing a technique to actively learn the enforced access control

policy based on a black-box view of a system. This ensures that we

observe and learn the authorization behavior of the system as a

whole.

The objective of this paper is closely related to the problem of

mining access control policies, which has been extensively explored

in the context of role-based access control (RBAC) policies [28, 29,

24, 10], attribute-based access control (ABAC) policies [36, 27, 18,

20, 11, 21], and more recently for relationship-based access control

(ReBAC) policies [8, 7, 19, 6]. While mining access control poli-

cies is also a learning task it assumes that access control policy

information is fully available to learner. For example, most of the

above-mentioned work convert low-level policies such as access

control lists (ACLs) to a more modern/expressive policy model such

as ReBAC. Such an offline learning approach is in contrast with

our proposed active learning strategy that intends to minimize the

required knowledge (through observation) of the target system.

There are also previous work that intend to learn the policy behav-

ior of a system [22, 26]. However, those work assume that they can

exhaustively explore the access space first to generate an autho-

rization log. That problem is essentially reduced to access control

mining once such an authorization log has been gathered. Since ex-

haustive exploration of authorization space is impractical in many

real-world systems, those approaches turn to an expensive, manual

analysis and reverse engineering of the target system in order to

set up assumptions that would limit the considered authorization

space. Verifying the correctness of such a manual analysis will be

very challenging, if not impossible.

In this paper, we propose a novel approach to infer enforced

access control policies. We do not assume having access to source

code of the application and assume very minimal knowledge about

its data model (See § 2 for details). This approach makes our so-

lution suitable for broader scenarios: for example, when a third

party is interested to understand the enforced policy of a system,

or when complexities and fast development cycle makes traditional

approaches to verifying correctness of access control policies infea-

sible as discussed earlier. We choose to focus on learning ReBAC

policies, which are prevalent in social networking aspects of today’s

https://doi.org/10.1145/3381991.3395614
https://doi.org/10.1145/3381991.3395614
https://doi.org/10.1145/3381991.3395614

web applications and have been shown to be useful in expressing

policies in other domains such as health care as well [16, 12]. In

particular, we approach the problem of learning access control poli-

cies as amodel learning problem. Model learning [3, 35] is an active

learning paradigm to build a formal representation of a black-box

system based on a series of queries submitted to and responded by

an abstract entity called a minimally adequate teacher.
To the best of our knowledge, this is the first work in the litera-

ture to actively infer a formal representation of access control policy

enforced by a target system, in a black-box fashion. We summarize

our contributions in this work as follows.

• We present a novel and formal active learning approach for

learning ReBAC policies from a black-box access control en-

gine, while minimizing the amount of access control queries

submitted to observe its behavior (§ 3).

• We propose a learner component (§ 4) to actively infer a

deterministic finite automoton (DFA) model of a black-box

access control engine, based on our proposed representation

of a ReBAC policy as a DFA (§ 2).

• We introduce a mapper component (§ 5) that facilitates such

active investigation by abstracting the large access space of

target system into relationship patterns that are expressed

in ReBAC policies. Rather than static mapping, the mapper

component performs inferences that contribute to learning

efficiency.

• We propose practical solutions for implementing the equiva-

lence oracle component of our framework (§ 6) that is respon-

sible for evaluating the correctness of a policy DFA inferred

by learner.

• Our experiments on two realistic application scenarios, an

online social network and an electronic health records sys-

tem, demonstrates the feasibility, effectiveness and scalability

of the proposed solutions (§ 7).

2 DATA MODEL & POLICY MODEL
Table 1 summarizes the notations used in this section and the rest

of the paper. In this paper, we focus on applications with rich

data models that support relationship-based access control (ReBAC)
policies. In such applications, the data stored in the application

can be modeled in the form of a system graph [12], where nodes

indicate usersU and resources R created in the system, and edges

represent relationships between them. Let V = U ∪ R be the set

of entities (users and resources) in a system, L denote the set of

edge labels, and E represent the relationships between users and

resources in the system. The system graph, which captures the

authorization information, is a directed graph G(V ,E) where each
edge E ⊆ V ×V × L is labeled by a relationship type in L.

ReBAC policies utilize relationship information contained in the

system graph to make access control decisions. The ReBAC access

control model was originally developed for the domain of online

social networks [17, 16], but has been shown to be applicable to

general computing systems like project management and medical

records [12, 32]. In this section, we provide a reference model for

ReBAC based on the existing literature [16, 12, 32] that encapsulates

the necessary authorization-related features in the context of this

paper.

Notation Meaning
G System graph

U ,R,V ,E,L users, resources, vertices, edges, edge labels in G

ϕ ReBAC rule / relationship pattern

Φ General notation for set of relationship patterns

ΦI ReBAC policy of the SUL

Πr,u Set of paths between r and u in G

R Set of all possible relationship patterns over L

M General notation for DFA

MH ,MI Learner hypothesis DFA, DFA of SUL policy

Q ,F ,δ ,L(M) States, final states, transitions, language ofM

O Observation table of learner

OS , OE Prefix-closed, suffix-closed set of patterns

Oτ Function mapping patterns to {0, 1}

. Concatenation operator

P , I Mapper mapping table, inference table

PC Binary relation of pattern and access request

Iϕ , Iϕ̂ , Pϕ Set of relationship patterns

Iτ Function mapping patterns to {PERMIT, DENY}

C Possible access requests ⟨u, r ⟩ (concrete domain)

Table 1: List of Notations

2.1 Authorization Rules
Wedefine a relationship patternϕ as a sequence of relationship labels

[l1, l2, . . . , ln], where li ∈ L. Relationship patterns characterize

different arrangements of labeled edges between the entities in the

system graph. We assume that the target system determines the

maximum allowable length of relationship patterns. We denote the

domain of relationship patterns by R.

An authorization rule grants accesses based on a relationship

pattern. In this paper, we assume that all authorization rules are

about granting the same right. This will help simplify discussions by

using relationship patterns and authorization rules interchangeably.

Extending the rules to consider an extra component that determines

applicable right is straightforward.

Finally, the ReBAC policy regulating access control in the target

system is a set of authorization rules ϕi , and is denoted by ΦI .

RunningExample. We choose a running example in an electronic

medical records system that regulates access by doctors, nurses,

agents, etc. to patients’ medical records. An example authorization

rule in this system that allows its doctors to access their patient’s

medical records could be [owner , doctor].

2.2 Authorization Evaluation
We represent an access request as tuple ⟨u, r ⟩, where user u ∈ U
requests to access resource r ∈ R. As discussed in § 2.1, we use an

abstract notion of an access right for simplicity; therefore, the right

does not need to be specified in an access request.

An access request would be permitted only if it matches at least

one of the rules in the policy. Let Πr,u be the set of paths inG from

r to u constrained by the maximum allowable length of relation

patterns. Path π matches an authorization rule ϕ if and only if the

sequence of edge labels in π matches the sequence of the labels in

ϕ. If a given access request does not match any of the authorization

rules in the policy then it will be denied access to the resource.

With regards to our running example, suppose Bob issues a

request for accessing Alice’s record to the electronic application.

Access request ⟨Bob,Alice_Record⟩ is permitted if, for example, the

following path exists in the system graph that matches the rule

given in the example:

Alice_Record
owner
−−−−−−→ Alice

doctor
−−−−−−→ Bob

2.3 ReBAC Representation as DFA
Our objective is to infer the access control policy enforced by a

system in a black-box manner. We approach this problem by formal-

izing policy representation as automaton and adopting the frame-

work used for active learning of automata [3]. In the following, we

show how a ReBAC policy can be represented as a deterministic
finite automaton (DFA) and how we bridge the expressiveness gap

between the two representations.

A DFA M is a 5-tuple ⟨Q,L,δ ,q0, F ⟩ where Q is a finite set

of states, L is the set of alphabets (or relationship labels in our

context), δ : Q × L −→ Q is the state transition function, q0 is

the initial state, and F ⊆ Q is the set of accepting (final) states.

For brevity of DFA presentation, we use the notation ¬l to imply

{l ′ ∈ L|l ′ , l}, i.e., any relationship label but l . Any sequence of

transitions t1, t2, . . . , tn inM , where qi−1
ti
−→ qi , forms a string of

relationship labels which is equivalent to a relationship pattern.

An accepting string in M starts from initial state q0 and ends in

an accepting state qn ∈ F . The language of M , denoted by L(M),

is the set of all its accepting strings. In our representation of Re-

BAC as DFA, we consider each accepting string in the DFA as the

relationship pattern ϕi of an authorization rule. Therefore, L(M)

can represent an authorization policy Φ. Figure 2 shows an exam-

ple of a ReBAC policy expressed as a DFA. [owner ,doctor] and
[owner ,doctor ,nurse] are two of the accepting patterns.

The ReBAC policy model discussed in § 2.1 is not as expressive

as a DFA. In particular, our policy does not support relationship

patterns with infinite length (which are typically specified using

symbols ∗ and + in regular expressions). Therefore, our algorithm

learns a constrained DFA model in which any state on an accepting

string should not be involved in a cycle. Avoiding cycles on accept-

ing strings ensures that all accepting strings are finite. For example,

as shown in Figure 2, the states q0, q1, q2 and q3 on accepting string

[owner ,doctor ,nurse] are not part of any cycle.

Converting between ReBAC and DFA representations. To further

clarify our representation, we briefly discuss how the abovemen-

tioned constrained DFA model and ReBAC can be converted to

each other. Generating the ReBAC policy corresponding to a DFA

is as simple as enumerating its accepting strings as individual rules

of the policy. A naive approach for converting a ReBAC policy Φ
to its DFA representation would be as follows. Start with a DFA

with only an initial state. For any authorization rule ϕ ∈ Φ in the

form of [l1, l2, . . . , ln], create a set of n states and transitions, where

q0
l1
−→ q1

l2
−→ q2

l3
−→ . . .

ln
−−→ qn , and mark qn as a final state. This

approach can of course be optimized to construct a minimal DFA.

Learner

Observation
Table

(I) Membership Query

[owner, doctor]

Teacher

Mapper

System
Under

Learning
(SUL)

(Learner Understandable
Format)

(III) Access Decision

<Bob, Alice_Record>

(SUL Understandable
Format)

Permitted

(II) Access Request

(IV) Membership Decision
(Inferred by Mapper)

Permitted

Inference
Table

(a) Interaction Between Learner, Mapper and SUL

Learner

Teacher

SUL Mapper

Equivalence Oracle
(Conformance

Tester)

Hypothesis Policy DFA

Equivalent / Counterexample Relationship Pattern

q0q1

owner

¬ (agent or doctor)

q0

¬ owner
doctor, agent

[owner, doctor, nurse]

(b) Equivalence Oracle for Conformance Testing of Policy DFA

Figure 1: Learning Access Policies from Black-Box Systems

3 OVERVIEW OF PROPOSED APPROACH
Our objective is to extract the underlying authorization rules from

a black box system. In addition to inferring the correct policy, we

want to minimize the number of access control queries submitted

to the system, since such queries are costly and cannot be exhaus-

tively explored in practice. For this reason, we adopt ideas from the

minimally adequate teacher (MAT) framework [3] for query-based

learning of finite automata.

In the MAT framework, a learner has to infer a DFA of a system
under learning (SUL). In our context, SUL is the policy decision point
(PDP) that makes authorization decisions for given access requests.

So the goal of our learner is to infer a DFA of ReBAC policy enforced

in SUL that we refer to as policy DFA (§ 2.3). A learner has no prior

information about the structure of the policy DFA that it has to infer.

However, learner can ask two types of queries, namely membership
and equivalence queries:

• A membership query about a string z asks whether z is accepted
by SUL. In our context, z is a relationship pattern and the response
depends on authorization decision by SUL.

• An equivalence query checks whether a hypothesis DFA is correct.

In our context, the hypothesis DFA is the policy DFA inferred so

far by learner.

Figure 1 shows the architecture of our black-box approach for

learning authorization rules. It comprises of four components,

namely learner, mapper, equivalence oracle and system under learn-
ing (SUL), where the latter three are contained within a larger com-

ponent called teacher. In this figure, the bottom of arrows shows

(in bold) the type of query/request submitted and the response

received. The top of arrows shows their instances based on our

running example (§ 2.1).

The learning procedure works in an iterative manner as follows.

Learner submits membership queries about relationship patterns to

the teacher. The SUL within teacher accepts only access requests as

inputs, so we cannot directly input the relationship patterns from

learner to SUL. To tackle this problem, we introduce a mapper com-

ponent between learner and SUL that accepts relationship patterns

from learner and replies authorization decisions by interacting with

the SUL (Figure 1a). But a major challenge of this design involves

correctly answering the membership queries from learner; errors in

the answers to membership queries can impede learner’s operation.

This could happen because an authorization check by SUL tests

if a user can access a resource, but there could be multiple paths

between that user and resource in the system graph, out of which

only certain paths may be authorized according to the enforced

access policies. § 3.2 describes the mapper component in more de-

tail including its strategy for answering membership queries from

learner and a crucial challenge in executing that strategy.

After a few rounds of the process described above, based on

its observations, learner generates a hypothesis policy DFA and

submits it to equivalence oracle for conformance. Equivalence or-

acle interacts with SUL for obtaining authorization decisions of

access requests. If equivalence oracle returns equivalent, then the

hypothesis is correct and learner has correctly inferred the policy

DFA from the system. Otherwise, equivalence oracle replies with a

counterexample pattern to the hypothesis, and the learning proce-

dure is resumed after processing the counterexample (Figure 1b).

An interesting challenge to note here is that the input to equiva-

lence oracle is a policy DFA whose language comprises of a set of

relationship patterns, whereas SUL accepts only access requests.

The methodology used by equivalence oracle to verify learner’s

DFA using SUL is discussed in § 3.3.

Note that in our architecture, the SUL is responsible for perform-

ing authorization checks, which is its fundamental purpose as PDP.

Execution of membership and equivalence queries is carried out by

the learner, mapper and equivalence oracle components. Thus, our

learning paradigm can be applied on a legacy implementation of

PDP. § 4 describes the working of learner in detail.

3.1 Assumptions and Design Considerations
The followings are our assumptions and considerations regarding

the design of the proposed learning architecture.

System graph accessibility We assume that mapper has access

to the system graph that consists of relationships among users and

resources. We note that our focus is inferring the authorization

policy imposed partly based on system graph; inferring the system

graph itself is out of the scope of this paper.

Immutable system graph An application builds the system graph

based on its business logic. Therefore, we cannot assume any

fine-grained control over the system graph structure (i.e., directly

inserting or deleting nodes/edges).

3.2 Mapper and Infinite User Access Space
As previously mentioned, the SUL in our context is a PDP that can

take an access request (i.e., ⟨user , resource⟩) as input and output

corresponding access decision according to the application’s en-

forced policies. However, as we are interested in learning a ReBAC

policy DFA, our learner component is interested in membership

queries in the form of relationship patterns. Therefore, we introduce

a mapper component as a middleman between learner and SUL.

The notion of mapper [2] has been shown to be useful in the MAT

framework by dividing the concrete domain of SUL into abstract

equivalence classes in a history-dependent manner, thus, reducing

the load on learner to infer a finite machine. Our mapper will infer

the response to the membership query based on its interactions

with SUL, i.e., observing SUL’s response to individual access re-

quests. As part of this inference process, mapper produces access

requests corresponding to a membership query’s relationship pat-

tern and submit them to SUL for evaluation. Moreover, mapper

keeps a record of its current inferences about membership queries

in an inference table.
A significance of our design of mapper is to avoid submitting

exhaustive access requests to SUL for evaluation. This design con-

sideration inevitably results in mapper inferring responses to mem-

bership queries based on incomplete information. Some of such

responses, thus, could be uncertain. This uncertain behavior is lim-

ited to some positive responses. Mapper addresses those uncertain

responses based on feedback it receives from equivalence oracle.

We further explain the details of mapper’s inference mechanism

and its strategy for updating its inferences in § 5.

Figure 1a shows a sample membership query (relationship pat-

tern [owner ,doctor]), an access request (⟨Bob, Alice_Record⟩) cor-
responding to the query pattern that mapper issues to SUL (assum-

ing that [owner ,doctor] holds between Bob and Alice’s record in

the system graph), and the response it receives from SUL (PERMIT).
Mapper infers its response to the membership query based on SUL’s

response and its own inference table, and forwards it to learner.

3.3 Equivalence Oracle and Queries
When learner submits hypothesis policy DFA to equivalence oracle,

the latter should find if there is any authorization rule misjudged

by learner leading to over-assignment or under-assignment of per-

missions. If there is no counterexample then equivalence oracle

approves the hypothesis generated by learner. Thus, it provides cru-

cial support to learner for comprehending the correct set of access

control rules from a black-box system. Figure 1b shows a sample

equivalence query (hypothesis DFA) based on our running exam-

ple (§ 2.1). Suppose the system allows nurse to access the medical

records of her doctor’s patients. However, this rule is not captured

in the hypothesis DFA submitted by learner since the transitions

owner -doctor -nurse reach the non-accepting state q0, leading to

permission under-assignment. So, equivalence oracle responds with

the pattern [owner ,doctor ,nurse] to learner’s hypothesis.

In order to carry out its task of finding counterexamples, equiva-

lence oracle employs system graph information from mapper, along

with the ground-truth details about pattern authorizations from

mapper’s inference table. Besides, equivalence oracle queries the

SUL for access decisions to be able to further validate authorized

patterns in the hypothesis. A pleasing characteristic of our architec-

ture is that the counterexamples from equivalence oracle can also

be used by mapper for rectifying its wrong inference on pattern

authorizations (more details in § 5).

It is indeed challenging to provide equivalence oracle in many

real-world learning settings. Equivalence oracle can be approx-

imated using conformance testing. However, to the best of our

knowledge, there has been no work in the literature on formal con-

formance testing of ReBAC policies. To cope with these challenges,

in this paper, we present three solutions for implementing equiva-

lence oracle based on various degrees of access space exploration.

§ 6 explains the operation of equivalence oracle in detail.

4 LEARNER: INFERRING POLICY DFA
In this section, we discuss working of the learner component for

actively learning unknown policy DFA in the context of MAT frame-

work as briefly overviewed in § 3.

4.1 Inference Model
LetMI be the policy DFA, corresponding to ReBAC policy ΦI , that
is enforced by SUL. Learner does not know about the structure of

MI . However, it can submit two types of queries to the teacher in

the context of MAT framework:

• Membership Query: Learner submits relationship pattern ϕ of its

choice to the teacher and obtains whether ϕ ∈ L(MI).

• Equivalence Query: Learner submits hypothesis DFAMH and the

teacher replies with a yes if L(MH) = L(MI), or otherwise with

a counterexample pattern ϕ ∈ L(MI) ∆ L(MH)where ∆ denotes

the symmetric difference operation.

4.2 Observation Table
Observation table is the primary data structure utilized by learner

to accommodate knowledge about a finite collection of relationship

patterns, distinguishing them as accepted or not accepted. It is

defined as triple ⟨OS ,OE ,Oτ⟩. OS ⊆ R is a non-empty finite prefix-

closed set of relationship patterns. OE ⊆ R is a non-empty finite

suffix-closed set of patterns. A prefix (suffix)-closed set means that

every prefix (suffix) of every member of the set is also a member

of the set. Oτ is a finite function ((OS ∪ OS . L) . OE) → {0, 1}

where “.” is the concatenation operator. If Oτ(ϕ)=1 then the access

decision is PERMIT and learner expects that ϕ corresponds to a rule

in ΦI , else Oτ(ϕ)=0. Learner augments the observation table by

submitting membership queries about relationship patterns to the

teacher, to which the latter replies with a PERMIT or DENY decision

depending on ΦI .
An observation table can be visualized as a two-dimensional

array whose rows are (OS ∪ OS . L) and columns are OE . The

entry for row s and column e is Oτ(s .e). Let row(ϕ) be the row

of pattern ϕ in observation table. An observation table is called

closed if for every string ϕ ′ in (OS . L) there is a string ϕ in OS
such that row(ϕ ′)=row(ϕ). An observation table is called consis-
tent if whenever ϕ1,ϕ2 ∈ OS and row(ϕ1)=row(ϕ2) then ∀l ∈ L,
row(ϕ1 . l)=row(ϕ2 . l). The intuition behind observation table is

that the rows labeled by elements of OS are candidates for states

of the automaton being constructed, and rows labeled by elements

of (OS . L) are employed to establish the transition function. Thus,

q0q1

owner doctor

q0

¬ owner

q0q2

nurse

q0q3

agent

¬ (agent or doctor)

true
¬ nurseq4

true

Figure 2: Example DFA for an Electronic Medical Records
System

an observation table is eventually used to build a deterministic

finite-state automaton.

4.3 Learner Methodology
At the beginning, learner populates the observation table with

OS=OE={σ }, where σ is the empty pattern, by submitting member-

ship queries to the teacher for σ and each l ∈ L. Learner checks
the current observation table to see if it is closed and consistent. If

not consistent, then learner notes ϕ1,ϕ2 ∈ OS , ϕe ∈ OE and l ∈ L
such that row(ϕ1)=row(ϕ2) but Oτ(ϕ1 . l . ϕe) , Oτ(ϕ2 . l . ϕe).
Then, learner adds the pattern (l . ϕe) to OE and augments Oτ to

(OS ∪ OS . L) . (l . ϕe) through membership queries for missing el-

ements. If the table is not closed then learner looks for ϕ ′ ∈ OS and

l ∈ L such that row(ϕ ′ . l) , row(ϕ . l) for all ϕ ∈ OS , and extends

OS by adding the string (ϕ ′ . l) and augments the observation table

by asking membership queries for missing entries.

As soon as the observation table becomes closed and consis-

tent, learner constructs conjecture policy DFAMH and submits to

teacher. If equivalence oracle within teacher confirms the hypothe-

sis and returns equivalent then learner successfully terminates with

MH being the final output. On the contrary, if equivalence oracle

replies with a counterexample pattern ϕ, then ϕ along with all its

prefixes are added to the set OS (if they don’t already exist in OS)

and the function Oτ is expanded to ((OS ∪ OS . L) . OE) by asking

membership queries for the missing entries. Learner then repeats

the entire procedure on this new observation table ⟨OS ,OE ,Oτ⟩.

In summary, learner issues queries about membership of rela-

tionship patterns to the teacher and updates its observation table.

Once observation table becomes closed and consistent, learner sub-

mits hypothesis policy DFA to teacher. If the teacher replies with

a counterexample, then learner updates its observation table to

account for the erroneous pattern, and repeats the whole process.

Else, learner successfully terminates with right hypothesis.

4.4 Automaton Construction
LetQ be set of states, q0 be initial state, F be accepting (final) states

and δ be transition function, then the DFA M corresponding to

a closed, consistent observation table ⟨OS ,OE ,Oτ⟩ and over the

alphabet L can be constructed as follows:

Q = {row(ϕ): ϕ ∈ OS },

q0 = row(σ),

F = {row(ϕ): ϕ ∈ OS and Oτ(ϕ)=1},
δ (row(ϕ), l) = row(ϕ . l).

The transitions in hypothesis policy DFA MH either comprise

of l ∈ L or ¬l (its negation). If pattern ϕ=[l1, l2, . . . , ln] and ϕ ∈

L(MH), then the transition sequence l1, l2, . . . , ln inMH from the

initial state q0 results in the accepting state row(ϕ) ∈ F . That is,
starting from the initial state, traversing the transitions to an ac-

cepting state in the hypothesis DFA would yield an authorization

rule containing the relationships along the path from the start

state to the final state. For example, in Figure 2, the access con-

trol rule [owner ,doctor] is captured by the sequence of transitions

q0
owner
−−−−−−→ q1

doctor
−−−−−−→ q2 whereq2 is an accepting state. The special

transition true matches all the elements in the set of relationships.

4.5 Cycle Removal Algorithm
The policy DFA outputted by learner may contain cycles on ac-

cepting strings of the automaton, which our ReBAC policies do

not support (§ 2.3). Therefore, such cycles need to be removed. To

ensure that the policy DFA generated by learner conforms with

the specification of our automaton model, we follow a two-step

process, namely identifying the cycles and identifying the nodes’

reachability to accepting states. This way only those cycles that are

on the path to accepting states will be removed.

Following is the pseudo code to detect and prune any cycle

present in the accepting strings of automaton M , where the DFA

structure is considered as a graph.

(1) Staring from the initial state q0 of M , traverse the entire au-

tomaton in a depth-first manner.

(2) Identify the back edges B in the depth-first tree, i.e., those edges

(u,v) that connects a vertex u to an ancestor vertex v in the

tree, including self-loops. This set B of edges are responsible

for cycles in the automatonM .

(3) For every back edge (u,v) ∈ B, determine if v is reachable to

any of the accepting states of M . If true, then mark the edge

(u,v) for removal.

Once we marked all those edges that are responsible for creating

cycles in accepting strings, we want to direct each of the marked

edges to a dead state in DFAM . For detecting a dead state, we first

determine the connected components ofM . Then, the component

containing no accepting state is selected and its nodes are marked

as dead states. We create a dead state if no such state is found.

4.6 Counterexample Processing
Counterexamples are created when learner’s hypothesis fails to

correctly capture certain authorization rules. This could be caused

in our learner due to two reasons:

• Faults during the inference process on learner’s side

• Faults induced as a result of incorrect inference of relationship

pattern authorizations by mapper

Suppose that ϕ is the counterexample pattern having length

|ϕ|. For all i ∈ {0, . . . , |ϕ|} let αi be the access decision produced

by processing the first i symbols of ϕ with the hypothesis MH ,

and the remaining with the implementationMI . So, it follows that

α0 , α |ϕ | , which in turn implies that ∃i0 ∈ {0, . . . , |ϕ | − 1} such

that αi0 , αi0+1 where such i0 can be found using a binary search

through O(log|ϕ|) membership queries. Interestingly, the suffix of

pattern ϕ starting after the i-th element excluding the first symbol

would produce the segment of the ϕ pattern, say p, that causes
inconsistency in the observation table.

During counterexample processing, we check if any of the pre-

fixes of the counterexample pattern causes inconsistency in the

observation table. If no inconsistency has been caused by any of

the prefixes then it indicates that the counterexample ϕ was caused

as a result of mapper’s incorrect inference. In such a case, we do

not process the pattern ϕ as described in § 4.3, rather add a row cor-

responding to ϕ in the set of rows labeled by (OS . L). Subsequently,
another equivalence query is submitted and the process continues

until a counterexample ϕ ′ is found in which some prefix causes in-

consistency, or the observation table ⟨OS ,OE ,Oτ⟩ becomes either

not closed or not consistent.

5 MAPPER: ACCESS SPACE ABSTRACTION
This section describes the design and working of the mapper com-

ponent that mediates between learner and SUL, for learner to infer

a DFA. Mapper considers concrete domain of access requests when

interacting with SUL, while considering abstract domain of rela-

tionship patterns when receiving membership queries from learner.

5.1 Design of the Mapper Component
IfU is the set of all users, R is the set of all resources andV is the set

of vertices in the system graph G(V ,E), then the concrete domain

of access requests, C ⊆ V × V , comprises of collection of access

requests ⟨u, r ⟩ where u, r ∈ V . The abstract domain of membership

queries (relationship patterns) comprises of all possible relationship

patterns R formed over the relationship labels set L in the system

graph G (§ 2). The output of the SUL consists of only two values,

PERMIT and DENY, depending on the decision of access request, and

is used to infer membership query responses. So, learner’s output

domain is the same as that of SUL.

Mapper infers the response to a membership query based on

its interactions with SUL and stores its inferences. As part of the

inference process, mapper produces an access request associated

with the membership query’s relationship pattern and submits

it to SUL for determining the access decision. Particularly, for a

membership query from learner’s abstract domain ϕ ∈ R, mapper

produces individual access request from SUL’s concrete domain

⟨u, r ⟩ ∈ C . Mapper constructs C based on system graph G(V ,E).
Ideally, mapper should return correct responses to learner’s mem-

bership queries. However, the design of our mapper is such that the

access space of SUL is not exhaustively explored. So, it is inevitable

that mapper wouldmake inferences about responses to membership

queries based on incomplete information. Thus, some of mapper’s

responses to membership queries could be uncertain. This uncer-

tain behavior is restricted to some positive responses. The inference

mechanism used by mapper and its strategy for tackling uncertain

responses will be discussed in the rest of this section.

5.1.1 Mapping Table. The mapping table is used by mapper to

record the associations between relationship patterns and access

requests as defined in the system graph. The mapping table is

denoted by P , and is specified as a tuple of the form ⟨Pϕ , PC ⟩. Pϕ ⊆

R indicates the set of relationship patterns in system graph G.

PC ⊆ Pϕ ×C denotes a binary relation that associates each pattern

ϕ ∈ Pϕ with its corresponding access requests ⟨u, r ⟩ ∈ C such that

∃π ∈ Πr,u , π matches the pattern ϕ.
For obtaining access requests ⟨u, r ⟩ corresponding to a given

relationship pattern ϕ, we employ the following procedure. Using a

graph traversal algorithm, like Breadth-First Search (BFS), we sys-

tematically explore the system graph G(V ,E) for various relation-
ship patterns defined on the labels set L. For every path π ∈ Πr,u
between resource r ∈ R and user u ∈ U encountered during graph

traversal, we record the mapping between ϕ (relationship pattern

associated with π) and ⟨u, r ⟩ into mapper’s mapping table P . Since
this procedure is repeated for all V nodes in the directed system

graph, the time complexity for obtaining the mapping table con-

taining relationship patterns and their associated access requests is

O(V 3
). For tackling large graphs with several high-degree nodes,

our algorithm is provisioned with a user-specified constraint indi-

cating the maximal length of relationship pattern in SUL’s enforced

policy. So, the graph traversal procedure is length-limited.

5.1.2 Inference Table. The inference table contains mapper’s cur-

rent inferences about responses to learner’s membership queries.

Formally, the inference table I can be defined as a tuple ⟨Iϕ , Iϕ̂ , Iτ⟩.

Iϕ ⊆ R is a set of relationship patterns (corresponding to member-

ship queries) for which mapper has inferred a response. Iϕ̂ ⊆ Iϕ

indicates those relationship patterns for which mapper is certain

about their responses. Finally, function Iτ : Iϕ −→ {PERMIT, DENY}
maps each relationship pattern ϕ ∈ Iϕ to its corresponding inferred

response by mapper.

5.2 Working of the Mapper Component
A major design consideration of our mapper is to avoid exhaustive

exploration of SUL access space. To this end, mapper infers its

responses to membership queries based on minimal interaction

with SUL (which may result in uncertain inferences). It also caches

its inference in the inference table. The operation of mapper and

building its inference table is described as follows.

• At the beginning of the algorithm, the inference table I is empty,

and is augmented as queries are generated by learner.

• Whenever learner submits a pattern query ϕ to mapper, map-

per checks its inference table for decision corresponding to that

pattern. Specifically, mapper returns Iτ(ϕ) if ϕ ∈ Iϕ̂ .

• If the record does not exist for patternϕ in inference table, mapper

randomly selects an access request ⟨u, r ⟩ from its mapping table

P where (ϕ, ⟨u, r ⟩) ∈ PC , and forwards ⟨u, r ⟩ to SUL.

• If mapper receives DENY decision from SUL, then none of the

relationship patterns Φ between r and u of the submitted access

request ⟨u, r ⟩ can be candidate for authorization rule, and so

mapper updates its inference tableI with certain responses. That

is, ∀ϕ ′ ∈ Φ, I is augmented with Iτ(ϕ
′
) = DENY and Iϕ̂ = Iϕ̂ ∪ϕ

′
.

• For a permitted pattern ϕ, any ⟨u, r ⟩ where (ϕ, ⟨u, r ⟩) ∈ PC cho-

sen by mapper would result in correct access decision (PERMIT)
from the SUL. For a permitted request ⟨u, r ⟩, if the set of paths
between resource r and user u be Πr,u = {π1,π2, . . . ,πn } that
are associated respectively with the patterns ϕ1,ϕ2, . . . ,ϕn and

∀i ∈ {1, 2, . . . ,n − 1} Iτ(ϕi)=DENY, then it is intuitive that I

would be updated as Iτ(ϕn)=PERMIT and Iϕ̂ = Iϕ̂ ∪ ϕn .

• However, for a non-permitted pattern ϕ, mapper could be uncer-

tain about its response since instead of replying DENY to learner,

it might forward the PERMIT answer that it received from SUL for

some ⟨u, r ⟩ where (ϕ, ⟨u, r ⟩) ∈ PC . This would happen because

of the existence of some permitted pattern ϕ ′, along with the

non-permitted ϕ, between r and u in the system graph G. The
scenario described here depicts the other case of counterexample

occurrence for learner’s conjecture whose processing by learner

has been already described in § 4.6.

• On mapper’s side, such uncertain response about ϕ, where ϕ ∈

Iϕ but ϕ < Iϕ̂ , is handled by utilizing the feedback received

from equivalence oracle during evaluation of learner’s conjecture.

That is, the inference table is lazily updated with Iτ(ϕ)=DENY
record when a counterexample from equivalence oracle arises

due to the acceptance of a non-authorized pattern ϕ by learner’s

hypothesis attributed to mapper’s uncertain response. Moreover,

I is updated as Iϕ̂ = Iϕ̂ ∪ ϕ.

6 EQUIVALENCE ORACLE: POLICY TESTING
The correctness of a hypothesis constructed by learner is assessed

by submitting an equivalence query to the equivalence oracle com-

ponent. Equivalence oracle needs to verify the validity of learner’s

conjecture about access controls enforced in SUL. This is performed

using conformance testing. Equivalence oracle employs information

from mapper’s mapping table and inference table to perform con-

formance testing. However, note that equivalence oracle does not

have direct knowledge about the enforced access control policies

since that is a black-box element in the context of this work.

The equivalence oracle component plays a significant role in

determining if the conjecture constructed by learner contains any

over-assignments or under-assignments of access permissions, and

should allow learner to obtain a better comprehension of the access

control policy. In this section, we propose three strategies for im-

plementing equivalence oracle each with varying degrees of access

space coverage that could be suitable for different scenarios. We

note that our implementation of equivalence oracle is the first work

in the literature to address conformance testing of ReBAC policies.

We provide details of our general algorithm for conformance

testing in the context of our first strategy, i.e., complete access space

coverage. However, we note that the first strategy is not efficient

for many real-world applications. Our next two strategies limit the

access space exploration. Our experimental evaluation shows the

effectiveness of such strategies in practice.

6.1 Complete Access Space Coverage
For a given hypothesis DFAMH , equivalence oracle initially checks

the validity ofMH against the ground-truth details about relation-

ship pattern authorizations recorded in mapper’s inference table

I. In other words, ∀ϕ ∈ L(MH), if mapper is certain about the

response for pattern ϕ, i.e. ϕ ∈ Iϕ̂ , then Iτ(ϕ) should equal PERMIT.

Otherwise, ϕ is returned as counterexample. This evaluation can

be applied analogously to patterns not accepted by the hypothesis

DFA against the deny records in I.

To further validate relationship patterns in the inferred DFA,

equivalence oracle inspects the complete authorization space of

SUL. Specifically, it determines the authorizations for every access

request ⟨user , resource⟩ ∈ C by consulting the SUL. Equivalence

oracle employs mapper’s mapping table P in order to evaluate

relationship patterns in hypothesis DFA based on the authorizations

of access requests returned by SUL. Subsequently, the following

access control considerations are employed by equivalence oracle

to determine if there are errors in the constructed hypothesis:

• For a denied request ⟨u, r ⟩ all paths between resource r and user

u based on the system graph should be denied by the hypothesis.

Formally, ∀ϕ such that (ϕ, ⟨u, r ⟩) ∈ PC , it should hold that ϕ <
L(MH). Otherwise, ϕ would be a counterexample.

• For a permitted request ⟨u, r ⟩ at least one of the paths between
r and u should be permitted according to learner’s hypothesis.

Formally, ∃ϕ such that (ϕ, ⟨u, r ⟩) ∈ PC , ϕ ∈ L(MH) should be

satisfied. Else, the pattern ϕ would be a counterexample.

Since multiple counterexamples could exist in a given hypothesis

DFA, various optimization strategies could be used for selecting the

counterexample to be returned to learner. Some of such strategies,

which we also used in our experiments, considers pattern length

and coverage in access space. Particularly, during counterexample

generation, we ensure that smaller patterns are considered before

longer counterexample patterns. Besides, if two patterns have the

same length then the one with larger number of access requests

is selected to ensure that the counterexample pattern with greater

coverage in the authorization space is given priority for processing.

Time Complexity Analysis. Suppose the complete user access space

in SUL contains |C | recordswhich in theworst casewould beO(|V |2)

where V is the vertex set in system graph G . The cost of traversing
the DFA would be O(|Q |2) using a graph traversal algorithm like

BFS where Q is the set of states in the DFA. We store the results of

exploring the DFA as a mapping between relationship pattern and

decision, where the decision specifies if the corresponding pattern

ends in an accepting or a non-accepting state.

Assume that we already have the pattern-to-access-request as-

sociation from mapper’s mapping table (§ 5.1.1), and also that the

number of different patterns that can exist between any two nodes

in the system graph is bounded by b. Since equivalence oracle

checks the hypothesis DFA against every access request, in the

worst case, the time complexity for executing a complete confor-

mance test would be O(|Q |2 + b |V |2). Practically, |Q | << |V | and
thus the complexity becomes O(b |V |2).

6.2 Randomized Approach
The randomized approach selects access requests of users and re-

sources arbitrarily to test the correctness of the access policy hy-

pothesis machine inferred by learner against those selected test

cases. Formally, given the complete space of access requestsC ofU
users and R resources such that C = {∀u ∈ U ∀r ∈ R : ⟨u, r ⟩}, the
randomized procedure arbitrarily selects a subset of C which we

refer to as Csub ⊆ C and verifies learner’s conjecture MH against

this subset Csub of access requests.

The randomized approach for testing the conformity of learner’s

conjecture is similar to the approach described in the previous

section; nevertheless instead of exploring the complete access space,

the number of test cases is reduced by a factor of C / Csub, which

is more realistic since it is practically infeasible to generate the

test cases for the entire user access space. The randomized method

would be generally suitable for large applications with huge number

of users and resources that are tolerant to small learning inaccuracy

due to incomplete test cases.

6.3 Background Knowledge
At times, a domain expert or security administrator may have some

domain-specific knowledge regarding the accesses regulated by the

target application. For instance, in the scenario of an educational

policy, we can expect that instructor of a course should be able to

access students’ grades for that course. Similarly, in an electronic

medical records system, doctors should be given access to their

patients’ medical records to be able to provide the correct treat-

ment. This kind of domain-related background knowledge about a

system’s access policy can play an important role during the test

case generation phase of the inference process.

Assume that we know that the access control policy should be

consistent with rule ϕ = [l1, l2, . . . , ln]. Then, we can directly exam-

ine the conformance of the learner’s DFAMH instead of consulting

the user access space. Specifically, we check if there is a sequence of

transitions t1, t2, . . . , tn in the automatonMH from the start state

q0 to any accepting state qf ∈ F such that li = ti . This way, we
can avoid generating any test cases between a user and resource

whenever they have relationship pattern ϕ between them. Possess-

ing background knowledge about the access controls regulated

by a system can significantly aid us in narrowing the space for

generating test cases using the randomized approach.

7 IMPLEMENTATION AND EVALUATION
In this section, we discuss our prototype implementation of our

access control policy learning framework and evaluate its perfor-

mance on realistic application scenarios, while providing compar-

isons with other learning approaches. We perform two kinds of

assessments, one for the learning phase and the other for equiva-

lence oracle. The learning phase focuses on interaction between

learner, mapper and SUL to evaluate the learning cost in terms of

the number of access requests submitted to SUL to infer access

rules. To this end, we perform experiments under different learning

setups (§ 7.2), and also assess how scalable our approach is with

varying sizes of the system graph (§ 7.3). During the learning cost

assessment, equivalence oracle is implemented based on complete

access space coverage, so our assessment would be independent

of equivalence oracle. Finally, we assess the feasibility and perfor-

mance of implementing randomized equivalence oracle (§ 7.4).

We performed all our experiments on a 64-bit Windows 10 ma-

chine using Intel Core i7-6700HQ processor and 12 GB of RAM.

The prototype is written in Java v1.8.

7.1 Setup and Configurations
In this section, we describe our sample target applications, the

setup of system graph and SUL, and how we acquire the ground

truth policies in each case. We assume that relationship patterns in

the ground policies will not be more than length 5. So, for all the

experiments, we constrained the length of learner queries to 5.

For tackling large graphs with several high-degree nodes, our

algorithm is provisioned with a user-specified constraint indicating

the maximal length of relationship pattern in learner queries.

Table 2: Learning Cost Comparison Between Our Framework using the Proposed Mapper (Intelligent Mapper), Its Naive Al-
ternative, and An Offline Learning Method

App. |U | |R| |E| |L| Offline Learning Naive Mapper Intelligent Mapper

#Acc. Req. |Q | #Acc. Req. |Q | #Acc. Req.
EHR 714 306 25572 8 218484 8 774744 9 37510

Elgg 200 850 21500 4 170000 5 631125 5 6846

7.1.1 Applications Domains. We performed our evaluations on two

application domains, namely health-care and social network. We

employ a simulated SUL from the health-care domain called Elec-
tronic Health Records (EHR) that regulates access by doctors, nurses,
agents to patients’ medical records in a health-care system. From

the social network domain, we employ an actual, running appli-

cation called Elgg [14]. Elgg is an open-source social networking

software that allows users to add friends, create posts and comment

on their friends’ posts. The friend relation in Elgg is directional.

7.1.2 Setting Up System Graph and SUL Component.

EHR The system graph was generated by first creating a certain

number of user and resource nodes, and then arbitrarily connect-

ing the nodes by taking into account the domain-specific con-

straints in place. This produced a directed graph connecting users

and resources in the institution. The system graph and the access

rules (adapted from [16]) are used to simulate the SUL for making

authorization decisions for given access requests.

Elgg To create social networking environment comprising of users

and their friend network, we utilized random portions of the rela-

tionships data from a social network dataset, called soc-Pokec [23].

To generate resources like posts and comments, we mimic actual

user interaction with the web application by employing UI.Vision
RPA tool [34] for user simulation. Given the set of possible atomic

user operations, the crawler automatically explores the web appli-

cation, emulating normal human behavior, by clicking links and

filling in details for creating posts and comments.

To establish the SUL component, we used the functions provided

by Elgg that deal with authentication to inspect which users have

access to different contents. Moreover, we are concerned with

inferring the default access control policy provided by the appli-

cation, rather than the privacy settings available to users.

7.1.3 Ground Truth. For evaluating the correctness of the learned

authorization rule set, we utilized the access control policy pro-

vided by each target system as the ground truth for comparison.

We emphasize that such a ground truth policy is only used for

performance evaluation, and not during the learning process.

For EHR, we employed the policy specification borrowed from [16].

For Elgg, we referred to the portion of their documentation ex-

plaining access control services in the system. Furthermore, we

undertook manual inspection to verify conformance of the learned

access rules with the enforced policy in the system.

7.2 Learning Cost / Performance Evaluation
For each application, we generate a system graph as discussed

earlier and evaluate three different learning setups:

1

10

100

1000

10000

100000

1000000

EHR Elgg

A

cc
e

ss
 R

e
q

u
e

st
s

Experimental Applications

Offline Learning Naïve Mapper Intelligent Mapper

Figure 3: Comparison of #AccessRequests to SUL (Log Scale)

Offline Learning (Policy Mining) If no active-learning strategy

is used, then in worst case learner would have to explore the

complete authorization space of SUL (based on given system graph)

to be able to extract the precise system-enforced access policy.

Naive Mapper Whenever learner submits a relationship pattern

to naive mapper, the latter simply estimates all the access requests

⟨user , resource⟩ corresponding to the pattern, and queries the SUL
for access decision on each of those requests. Mapper replies with

a PERMIT only if all the access requests for the given relationship

pattern are granted access according to the authorization policy

of the system; otherwise the naive mapper replies DENY to learner.

Intelligent Mapper Our proposed mapper as described in § 5 that

continually learns and stores access information in its inference

table in a history-dependent manner for optimality.

Observations. Table 2 shows our results in each of the above cases.

|U |, |R|, |E|, |L| indicate the users, resources, edges and edge labels,

respectively, in the system graph. Corresponding to the naive and

intelligent mapper cases, |Q | is the number of states in the final

policy DFA. “#Acc. Req.” is the number of access requests submitted

to SUL. We evaluated our learning performance based on semantic

similarity (accuracy), privilege over-assignments (false positives)

and privilege under-assignments (false negatives). The semantic

similaritymetric is calculated by taking the ratio of correctly learned

access permissions to the whole permission space of ground truth

policies. Figure 3 compares the number of access requests submit-

ted to SUL for both applications (in log scale). Following are the

observations from our experiments on membership queries.

Least learning cost in intelligent mapper The number of ac-

cess requests to SUL is lowest for the intelligent mapper, followed

by offline learning scenario that requires about 6 times more ac-

cess requests, and the largest for naive mapper (Figure 3). This is

comment_post

post_owner

q0

q0q2 friend

comment_owner q3

q1

Figure 4: Excerpt of Authorization DFA Inferred from Elgg

because, compared to the offline approach, active learning over-

comes searching through the entire SUL access space by creating

hypothesis with just the enough information. Moreover, in con-

trast to naive mapper, intelligent mapper infers the response to the

membership query based on its interactions with SUL and keeps a

record of its current inferences about membership queries in its

inference table. Additionally, lesser queries in the offline scenario

compared to naive mapper is due to repeated querying of access

requests by the latter, since we did not cache any query result, that

is, its associated access requests and respective access decisions.

More States in intelligent mapper than naive mapper When

we inspected the DFA inferred by learner, involving naive mapper,

we observed that the learned policy DFA was minimal in terms of

number of states and transitions in the automaton. In case of EHR,

the policy DFA inferred using intelligent mapper is not minimal

unlike its naive counterpart, shown by the difference in the val-

ues of |Q | in Table 2. We attribute this to the intelligent mapper’s

uncertain behavior. Nevertheless, the difference in the DFA size is

reasonable compared to the substantial reduction of learning cost

in terms of number of access requests issued to SUL.

Accurately learned policy in EHR application For the case of

EHR, all the rules were correctly manifested through transitions

in the learned automaton. That is, we observed a perfect accuracy

score of 1.0, with 0.0 false positives and 0.0 false negatives. In other

words, there was no over-assignments or under-assignments of

permissions as a result of the learning process.

FN in learned policy of Elgg application Our policymodel does

not support rules that contain combination of patterns (§ 2). So,

accordingly, our learning approach does not consider policy rules

that need to satisfy multiple patterns. Experimenting on this real-

world social network system rendered interesting observations.

Our approach was able to learn rules such as owners can access
their contents including posts and comments, owners’ friends can
access their posts, and owners can access comments on their posts.
However, problem arises when extracting rules that are formed

by two or more patterns, for example, users can access comments
on others’ posts only if they are friends with the comment owner
as well as the post owner. Particularly, the rules containing pat-

tern combinations are denied since our approach functions over

one relationship pattern at a time instead of combination of pat-

terns, leading to under-assignment of permissions. The value of

semantic similarity was 0.87 and the false negative rate (ratio of

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

2500 (200) 5600 (370) 9000 (550) 12000 (650) 17000 (900) 21500 (1050)

A

cc
e

ss
 R

e
q

u
e

st
s

Size of System Graph: # Edges (# Nodes)

Offline Learning Naïve Mapper Intelligent Mapper

Figure 5: Scalabality Evaluation in Elgg

under-assignments to permitted accesses) was about 0.63. There

was no over-assignments (i.e. 0.0 false positives) in the observed

values. The high false negative rate is due to the presence of sig-

nificantly lesser permitted access requests compared to the denied

ones in a practical deny-by-default system.

The abovementioned rule considers a combination of relation-

ship patterns which are [comment_post, post_owner, friend] and
[comment_owner, friend]. Figure 4 depicts part of our inferred pol-

icy DFA. Learner has constructed an extra non-accepting state

q3, which is reached by both of those relationship patterns. This

implies that its authorization space is identified as distinct com-

pared to other rules. However, as mentioned above, our current

algorithms do not support conjunction of relationship patterns

which will be in the scope of our future work.

7.3 Scalability Assessment
We examine if our proposed approach is capable of learning autho-

rizations from systems having varying sizes of system graph while

submitting least number of access requests to the SUL. For exam-

ining the performance of our algorithm with respect to different

sizes of the system graph, we obtained random samples of various

sizes from the soc-Pokec relationships dataset, and simulated them

on the Elgg application. Then, with regards to each of the network

sizes, we generate a system graph as explained in § 7.1.2 and ex-

ecuted our learning approach 10 times, and reported the average

number of access requests to SUL over the 10 runs.

Observations. Figure 5 demonstrates the number of access requests

submitted to SUL in Elgg for learning its policy based on differ-

ent sizes of system graphs. The horizontal axis depicts the graph

growth in terms of # edges as well as # nodes (in brackets), while

maintaining certain domain integrity constraints. As the size of sys-

tem graph increases, both offline and naive mapper graphs increase

drastically. However, in the case of intelligent mapper, the number

of access requests to SUL is much smaller than those of the other

two and also it is growing relatively much slower as the size of the

application increases.

7.4 Equivalence Oracle Evaluation
We implemented our equivalence oracle using the randomized

strategy (discussed in § 6.2) and evaluated the performance of our

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Se
m

an
ti

c
Si

m
ila

ri
ty

 o
f

P
o

lic
y

Equivalence Oracle Test Size (Total # Access Requests)

Active Learning Offline Learning

Figure 6: Comparison of Mining Performance Between Ac-
tive Learning (Proposed Approach) and an Offline Learning
Approach [19] for EHR Application.

learning approach depending on the amount of available test cases.

Test cases are the randomly selected access requests of users and

resources. All reported results are average values over 10 runs.

Figure 6 demonstrates our observations about the accuracy of

learned policy for different sizes of equivalence oracle test set for

EHR. Here, the horizontal axis represents percentage of user access

space considered for equivalence oracle with total access requests

submitted to SUL in parentheses. As shown in the figure, with only

30% of access requests provided to equivalence oracle, we achieve an

accuracy of about 0.98. Interestingly, with just 1% of access requests,

equivalence oracle attains 0.5 accuracy, which manifests the power

of our model learning approach for inferring the authorization

behavior.

Performance Comparison with Offline Approach. To demonstrate

the significance of learning access policies actively, we compare the

learning performance of our approach with that of a state-of-the-art

offline algorithm from the literature [19] that mines ReBAC policy

employing access information provided in the form of access log.

We provided the same access data to the offline algorithm, as

was given to our randomized equivalence oracle, based on the total

number of queries, including membership and equivalence, issued

to SUL in our approach (indicated in parenthesis on the horizontal

axis in Figure 6). The results demonstrated in the figure show that,

only when more than 80% of the access space is provided, the offline

algorithm performs similar to our approach in terms of the accuracy

of mined policy. Moreover, the rate at which their approach’s accu-

racy decreases is much faster than that of the proposed algorithm.

So, when for 20% of access requests (involving 10% of equivalence

oracle test cases) we attain accuracy score of about 0.9, the previous

work could reach only around 0.6 accuracy.

8 RELATEDWORK
8.1 Mining Access Control Policies
There has been an extensive literature on mining access control

policies for different access control models. In role-based access

control (RBAC), the idea is to obtain the optimal set of roles from

user-permission relation [28, 29]. Subsequently, researchers have

looked into the problem of obtaining attribute-based access control

(ABAC) policies from role-based policies or Access Control Lists

(ACLs) by mining rules based on the attributes associated with users

and resources [20, 27, 36, 11, 21]. Furthermore, there has been work

on inferring policies expressed as relationships between users and

resources (ReBAC) from ACLs or access logs [8, 7, 19, 6]. However,

these previous policy mining algorithms assume the provision of

complete access request space and that the implementation can

be queried regarding access decisions exhaustively. Compared to

these previousworks on access policymining, our approach actively

infers authorizations through minimal number of queries submitted

to the system under learning. To the best of our knowledge, our

policy learning algorithm is the first of its kind to employ model

learning for inferring policies from black-box applications.

There has been some previous work on mining access control

policies from web applications in a black-box fashion. To validate

the enforcement of access control policies in web applications, Le et

al. present a semi-automated approach to infer those policies even

though they may not be clearly specified or documented [22]. Their

approach employs the RandomTree classifier on a system’s user

permission space to infer access rules. On the other hand, the focus

of this work is to systematically construct the DFA for a black-box

system’s access control policies in such a way that the number of

queries to the implementation is minimized.

8.2 Model Learning
In the recent years, model learning has been applied to numer-

ous practical scenarios spanning over a wide variety of spheres.

In the domain of network protocols, researchers have employed

combination of model learning and model checking to study differ-

ent software components including Windows, Linux and FreeBSD

implementations of TCP, and their interactions [15]. In addition,

there has been work on applying black-box testing to investigate

presence of possible flaws in TLS protocol implementations [13].

In the security domain, researchers have proposed a black-box

differential testing framework called SFADIFF [4] to automatically

detect differences between a set of programs with comparable func-

tionality. Furthermore, model learning has been utilized to analyze

regular expression (RE) filters and string sanitizers in a black-box

manner [5]. In addition, model learning has been used to deploy

active defense mechanism, in a resource-constrained environment,

to protect against sophisticated PDF malware [31].

Model learning has also been applied for refactoring legacy em-

bedded software [25, 33] and for reverse engineering smartcards

and smartcard readers [1, 9]. To the best of our knowledge, we are

the first in the literature to apply model learning for systematically

inferring authorization behavior of applications. This is challenging

since along with relationship patterns (language of access policy au-

tomaton), we deal with overhead of how those patterns correspond

to access requests to SUL based on system graph.

9 CONCLUSION AND DISCUSSION
We proposed an active learning methodology for systematically

inferring ReBAC policies in a black-box fashion. Our learner compo-

nent infers the authorizations DFA of the system under learning by

employing minimal number of queries to the implementation. Our

mapper component works as an intermediary between learner and

the system under learning. Once learner constructs a conjecture

of the target automaton, equivalence oracle determines its valid-

ity based on conformance testing and returns a counterexample

relationship pattern if the testing fails.

We implemented a prototype of our framework and experi-

mented on applications from two domains, electronic health records

and online social networks, in order to evaluate the performance

of our approach. Our observations demonstrate that our learning

algorithm issues significantly lesser number of queries compared

to a recently proposed offline learning strategy for ReBAC poli-

cies. Moreover, our algorithm is scalable across different sizes of a

target system, as manifested by our assessment on the Elgg social

network application. Our results show that our proposed random-

ized approach for implementing equivalence oracle is practical and

can achieve significantly better learning accuracy when presented

with same amount of test data in comparison to an offline learning

approach. We expect that policy background knowledge would fur-

ther reduce the cost of implementing equivalence oracle, and defer

experimenting on real-world scenarios involving such knowledge

to future work. Our future work will also include deeper formal

analysis of the proposed framework in terms of its learning be-

havior. We will also explore the effect of other factors on learning

performance such as size of the set of relationship labels.

A limitations of our current approach is that our learning pro-

cess depends on the system graph structure since the mapper and

equivalence oracle components depend on it for their respective

functionalities. In particular, the system graph structure should

be representative of the implemented policy by the system under

learning. As future work, we plan to investigate the effect of sys-

tem graph and formalize the minimum requirements for it to be

representative of a policy. Furthermore, extending support for learn-

ing more complex and expressive relationship patterns would be

of interest. We will explore employing concepts such as product

construction of DFAs for this purpose.

REFERENCES
[1] F. Aarts, J. De Ruiter, and E. Poll. Formal models of bank cards for free. In

2013 IEEE Sixth International Conference on Software Testing, Verification and
Validation Workshops, pages 461–468. IEEE, 2013.

[2] F. Aarts, B. Jonsson, J. Uijen, and F. Vaandrager. Generating models of infinite-

state communication protocols using regular inference with abstraction. For-
mal Methods in System Design, 46(1):1–41, 2015.

[3] D. Angluin. Learning regular sets from queries and counterexamples. Infor-
mation and computation, 75(2):87–106, 1987.

[4] G. Argyros, I. Stais, S. Jana, A. D. Keromytis, and A. Kiayias. Sfadiff: automated

evasion attacks and fingerprinting using black-box differential automata

learning. In Proceedings of the 2016 ACM SIGSAC conference on computer and
communications security, pages 1690–1701. ACM, 2016.

[5] G. Argyros, I. Stais, A. Kiayias, and A. D. Keromytis. Back in black: towards

formal, black box analysis of sanitizers and filters. In 2016 IEEE Symposium
on Security and Privacy (SP), pages 91–109. IEEE, 2016.

[6] T. Bui, S. D. Stoller, and H. Le. Efficient and extensible policy mining for

relationship-based access control. In Proceedings of the 24th ACM Symposium
on Access Control Models and Technologies, pages 161–172, 2019.

[7] T. Bui, S. D. Stoller, and J. Li. Greedy and evolutionary algorithms for mining

relationship-based access control policies. Computers & Security, 80:317–333,
2019.

[8] T. Bui, S. D. Stoller, and J. Li. Mining relationship-based access control policies.

In Proceedings of the 22nd ACM on Symposium on Access Control Models and
Technologies, pages 239–246. ACM, 2017.

[9] G. Chalupar, S. Peherstorfer, E. Poll, and J. De Ruiter. Automated reverse

engineering using lego®. In 8th {USENIX}Workshop on Offensive Technologies
({WOOT} 14), 2014.

[10] A. Colantonio, R. Di Pietro, and A. Ocello. A Cost-driven Approach to Role

Engineering. In Proceedings of the 2008 ACM Symposium on Applied Computing,
SAC ’08, pages 2129–2136, New York, NY, USA. ACM, 2008.

[11] C. Cotrini, T. Weghorn, and D. Basin. Mining abac rules from sparse logs. In

2018 IEEE European Symposium on Security and Privacy (EuroS&P), pages 31–
46. IEEE, 2018.

[12] J. Crampton and J. Sellwood. Path conditions and principal matching: a new

approach to access control. In Proceedings of the 19th ACM symposium on
Access control models and technologies, pages 187–198. ACM, 2014.

[13] J. De Ruiter and E. Poll. Protocol state fuzzing of TLS implementations. In

24th {USENIX} Security Symposium ({USENIX} Security 15), pages 193–206,
2015.

[14] Elgg. https://elgg.org/, 2004.

[15] P. Fiterău-Broştean, R. Janssen, and F. Vaandrager. Combining model learn-

ing and model checking to analyze tcp implementations. In International
Conference on Computer Aided Verification, pages 454–471. Springer, 2016.

[16] P. W. Fong. Relationship-based access control: protection model and policy

language. In Proceedings of the first ACM conference on Data and application
security and privacy, pages 191–202. ACM, 2011.

[17] P. W. Fong and I. Siahaan. Relationship-based access control policies and their

policy languages. In Proceedings of the 16th ACM symposium on Access control
models and technologies, pages 51–60. ACM, 2011.

[18] M. Gautam, S. Jha, S. Sural, J. Vaidya, and V. Atluri. Poster: constrained policy

mining in attribute based access control. In Proceedings of the 22nd ACM on
Symposium on Access Control Models and Technologies, pages 121–123. ACM,

2017.

[19] P. Iyer and A. Masoumzadeh. Generalized mining of relationship-based access

control policies in evolving systems. In Proceedings of the 24th ACM Symposium
on Access Control Models and Technologies, pages 135–140. ACM, 2019.

[20] P. Iyer and A. Masoumzadeh. Mining positive and negative attribute-based

access control policy rules. In Proceedings of the 23nd ACM on Symposium on
Access Control Models and Technologies, pages 161–172. ACM, 2018.

[21] L. Karimi and J. Joshi. An unsupervised learning based approach for mining

attribute based access control policies. In 2018 IEEE International Conference
on Big Data (Big Data), pages 1427–1436. IEEE, 2018.

[22] H. T. Le, C. D. Nguyen, L. Briand, and B. Hourte. Automated inference of

access control policies for web applications. In Proceedings of the 20th ACM
Symposium on Access Control Models and Technologies, pages 27–37. ACM,

2015.

[23] J. Leskovec and A. Krevl. SNAP Datasets: Stanford large network dataset

collection. http://snap.stanford.edu/data, June 2014.

[24] H. Lu, J. Vaidya, and V. Atluri. Optimal Boolean Matrix Decomposition: Ap-

plication to Role Engineering. In 2008 IEEE 24th International Conference on
Data Engineering, pages 297–306, Apr. 2008.

[25] T. Margaria, O. Niese, H. Raffelt, and B. Steffen. Efficient test-based model

generation for legacy reactive systems. In Proceedings. Ninth IEEE Interna-
tional High-Level Design Validation and Test Workshop (IEEE Cat. No. 04EX940),
pages 95–100. IEEE, 2004.

[26] A. Masoumzadeh. Inferring unknown privacy control policies in a social

networking system. In Proceedings of the 14th ACM Workshop on Privacy in
the Electronic Society, pages 21–25. ACM, 2015.

[27] E. Medvet, A. Bartoli, B. Carminati, and E. Ferrari. Evolutionary inference of

attribute-based access control policies. In International Conference on Evolu-
tionary Multi-Criterion Optimization, pages 351–365. Springer, 2015.

[28] B. Mitra, S. Sural, J. Vaidya, and V. Atluri. A Survey of Role Mining. ACM
Comput. Surv., 48(4):50:1–50:37, Feb. 2016. issn: 0360-0300.

[29] I. Molloy, N. Li, Y. A. Qi, J. Lobo, and L. Dickens. Mining roles with noisy

data. In Proceedings of the 15th ACM symposium on Access control models and
technologies, pages 45–54. ACM, 2010.

[30] T. OWASP. 10: ten most critical web application security risks, 2013.

[31] Z. Perumal and K. Veeramachaneni. Towards building active defense sys-

tems for software applications. In International Symposium on Cyber Security
Cryptography and Machine Learning, pages 144–161. Springer, 2018.

[32] S. Z. R. Rizvi, P. W. Fong, J. Crampton, and J. Sellwood. Relationship-based

access control for an open-source medical records system. In Proceedings of the
20th ACM Symposium on Access Control Models and Technologies, pages 113–
124. ACM, 2015.

[33] M. Schuts, J. Hooman, and F. Vaandrager. Refactoring of legacy software

using model learning and equivalence checking: an industrial experience

report. In International Conference on Integrated Formal Methods, pages 311–
325. Springer, 2016.

[34] Ui.vision rpa. https://ui.vision/rpa, 2016.

[35] F. Vaandrager. Model learning. Commun. ACM, 60(2):86–95, Jan. 2017. issn:

0001-0782.

[36] Z. Xu and S. D. Stoller. Mining attribute-based access control policies. IEEE
Transactions on Dependable and Secure Computing, 12(5):533–545, 2014.

https://elgg.org/
http://snap.stanford.edu/data
https://ui.vision/rpa

	Abstract
	1 Introduction
	2 Data Model & Policy Model
	2.1 Authorization Rules
	2.2 Authorization Evaluation
	2.3 ReBAC Representation as DFA

	3 Overview of Proposed Approach
	3.1 Assumptions and Design Considerations
	3.2 Mapper and Infinite User Access Space
	3.3 Equivalence Oracle and Queries

	4 Learner: Inferring Policy DFA
	4.1 Inference Model
	4.2 Observation Table
	4.3 Learner Methodology
	4.4 Automaton Construction
	4.5 Cycle Removal Algorithm
	4.6 Counterexample Processing

	5 Mapper: Access Space Abstraction
	5.1 Design of the Mapper Component
	5.2 Working of the Mapper Component

	6 Equivalence Oracle: Policy Testing
	6.1 Complete Access Space Coverage
	6.2 Randomized Approach
	6.3 Background Knowledge

	7 Implementation and Evaluation
	7.1 Setup and Configurations
	7.2 Learning Cost / Performance Evaluation
	7.3 Scalability Assessment
	7.4 Equivalence Oracle Evaluation

	8 Related Work
	8.1 Mining Access Control Policies
	8.2 Model Learning

	9 Conclusion and Discussion

