
Computers & Security 116 (2022) 102586

Contents lists available at ScienceDirect

Computers & Security

journal homepage: www.elsevier.com/locate/cose

On the Expressive Power of Negated Conditions and Negative

Authorizations in Access Control Models

Padmavathi Iyer, Amirreza Masoumzadeh

∗, Paliath Narendran

Department of Computer Science, University at Albany – SUNY, New York, USA

a r t i c l e i n f o

Article history:

Received 2 December 2020

Revised 24 September 2021

Accepted 20 December 2021

Available online 25 December 2021

Keywords:

access control policy

expressiveness

negation

negated condition

negative authorization

a b s t r a c t

Access control policies specify which access requests should be allowed or denied in a system. Many

access control policy models have used the concept of “negation” as part of their policy language, to en-

able fine-grained specification of authorizations. We identify two forms of this concept in the literature,

namely, negated conditions and negative authorizations (deny rules). We argue that the choice of sup-

porting negated conditions or negative authorizations can affect the expressive power of a policy model.

Understanding their differences is crucial for designing an appropriate policy model for an intended ap-

plication. However, no prior work has concretely analyzed them.

In this work, we formally analyze the expressive power of negated conditions and negative authoriza-

tions. We formulate two abstract policy models that support negated conditions and negative autho-

rizations (including consideration of different meta-policies). Then, using a logic-based representation of

policies, we prove the relative expressive power of those models in the context of a formal access control

expressiveness analysis framework. The main result of our analysis is that models which support negated

conditions are more expressive than models that support negative authorizations. That is, using negated

conditions, we can represent all policies that can be expressed using negative authorizations. However,

the converse is not true, i.e., negative authorizations cannot fully represent policies supporting negated

conditions.

© 2021 Elsevier Ltd. All rights reserved.

1

t

a

m

m

s

a

a

a

w

s

a

F

t

l

t

M

a

i

a

o

a

r

I

a

a

t

n

a

F

c

p

n

r

h

0

. Introduction

Access control policies are the key security component of sys-

ems that determine what actions are authorized or not. There

re several formal models of access control policies. Lower-level

odels such as access control lists (ACL) rely on verbose enu-

eration of authorizations. Higher-level models rely on concepts

uch as grouping, as in role-based access control (RBAC) (Ferraiolo

nd Kuhn, 1992; Sandhu et al., 1996), and conditional rules, as in

ttribute-based access control (ABAC) (Hu et al., 2013; eXt, 2013)

nd relationship-based access control (ReBAC) (Crampton and Sell-

ood, 2014; Fong and Siahaan, 2011), to enable flexible but concise

pecification of policies. The use of conditions in policies allows

ssignments or rules to be only effective in certain circumstances.

or example, an ABAC policy in a university environment can state

hat users who meet the condition of being an employee are al-

owed to access the human resources portal. A natural considera-

ion when using conditions is allowing negated conditions . For ex-
∗ Corresponding author.

E-mail addresses: riyer2@albany.edu (P. Iyer), amasoumzadeh@albany.edu (A.

asoumzadeh), pnarendran@albany.edu (P. Narendran).

fl

e

i

s

ttps://doi.org/10.1016/j.cose.2021.102586

167-4048/© 2021 Elsevier Ltd. All rights reserved.
mple, we can further restrict the abovementioned policy by stat-

ng that users who are employees and not on leave are allowed to

ccess the portal. Such negated conditions allow the specification

f fine-grained conditional expressions. An alternative approach to

chieve similar flexibility is to allow negative authorizations (deny

ules), in addition to the commonly-used positive authorizations.

n contrast to a positive authorization which determines what is

llowed, negative authorization specifies what is not allowed. In

 policy system that allows both positive and negative authoriza-

ions, conflict situations can arise in cases where both positive and

egative authorization are applicable. In order to resolve conflicts,

 conflict resolution policy (such as deny-overrides) is employed.

or example, the abovementioned policy can be expressed as a

ombination of a positive and negative authorization: 1) an em-

loyee is allowed to access the portal, and 2) an on-leave user is

ot allowed to access the portal.

As seen above, both the negated condition and negative autho-

ization seem to provide comparable expressiveness for specifying

exible policies. For this reason, access control models in the lit-

rature typically adopt one of these approaches. While we can see

nstances of similar expressiveness of the two approaches, our re-

earch question is how they compare theoretically. Can both ap-

https://doi.org/10.1016/j.cose.2021.102586
http://www.ScienceDirect.com
http://www.elsevier.com/locate/cose
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cose.2021.102586&domain=pdf
mailto:riyer2@albany.edu
mailto:amasoumzadeh@albany.edu
mailto:pnarendran@albany.edu
https://doi.org/10.1016/j.cose.2021.102586

P. Iyer, A. Masoumzadeh and P. Narendran Computers & Security 116 (2022) 102586

p

e

t

t

p

i

t

f

c

c

t

e

W

w

2

fi

a

s

p

g

c

i

b

a

p

s

R

c

e

w

A

n

r

a

a

c

t

e

e

c

a

2

w

t

s

o

d

t

v

i

t

r

D

〈
q

o

t

e

E

q

F

t

c

t

d

D

{

a

o

t

t

o

E

a

m

i

t

roaches provide equivalent expressiveness? Is one of them more

xpressive than the other? Are they comparable at all? Answering

hese questions is critical for security engineers as it helps with

he choice of proper access control models for implementation de-

ending on the desired features and expressiveness. Furthermore,

t will influence the design of future access control models that in-

end to benefit from negated conditions or negative authorization.

In this paper, we investigate the above questions using a formal

ramework. We contextualize our discussions in a rule-based ac-

ess control model, which we define as a superset of modern poli-

ies such as ABAC and ReBAC. To the best of our knowledge, this is

he first work in the literature to formally analyze and compare the

xpressive power of negated conditions and negative authorization.

e summarize our key contributions as follows:

• We propose two abstract policy models, called Negation and

Deny , which model rule-based policies with negated condi-

tions and negative authorizations, respectively (Section 2). In

our models, we consider a comprehensive set of meta-policy

options that determine default authorization and conflict reso-

lution strategy.

• We further propose a representation of our policies in the form

of logic programs (Section 4), which serve as main construc-

tions for our formal analysis and proofs.

• We formalize the Negation and Deny schemes based on a state-

transition representation of the proposed models and the set

of queries for comparing their expressiveness (Section 3). We

formulate our expressiveness comparison problem based on the

seminal work by Tripunitara and Li (2007) .

• As the major result of this paper, we show that the Nega-

tion scheme is strictly more expressive than the Deny scheme

(Section 5). More specifically, we prove that the Deny scheme

is not as expressive as the Negation scheme (Section 6) and

that the Negation scheme is at least as expressive as the Deny

scheme (Section 7). Additionally, we prove the mapping from

the Deny scheme to the Negation scheme (Appendix A).

We provide a comprehensive overview of the closely related

ork in Section 8 and concluding discussions in Section 9 .

. Formal Policy Language Specification

In this section, we describe the formal policy language speci-

cation for the rule-based access control model. In the rule-based

ccess control paradigm, the authorizations are enforced on the ba-

is of a set of rules that specifies the conditions for accessing the

rotected objects. Our main goal in the design of the policy lan-

uage in this section is to formalize a comprehensive model that

an incorporate or be easily extended based on various proposals

n the literature. Our rule-based policy language is not supposed to

e yet another model to capture more expressive authorization or

dministrative policies.

We emphasize that the policy language specified in this pa-

er applies generically to rule-based access control models. For in-

tance, we illustrate how our policy language applies to ABAC and

eBAC. This is because our goal in this work is to provide a formal

omparison on the expressive power of two abstract policy mod-

ls, namely Negation and Deny, which model rule-based policies

ith negated conditions and negative authorizations, respectively.

s a significant consequence, the results regarding the expressive-

ess comparison demonstrated in this paper are applicable to any

ule-based access control model.

In this section, we discuss the formats of various elements of

 rule-based access control model like conditions, access requests,

nd authorization rules and policy (Section 2.1). Further, we dis-

uss special rule-based access control models, namely the Nega-

ion model and the Deny model, which provide the basis for our
2
xpressiveness results (Section 2.2). Finally, we discuss the differ-

nt authorization behaviors that can result from a policy specifi-

ation, which is important in showing our expressiveness results

bout them (Section 2.3).

.1. Rule-Based Access Control

An access control policy specifies which subjects can perform

hat operations on which objects. In a typical system, subjects are

he users and objects are the protected resources. An access request

pecifies the user initiating the request and the protected resource

n which access is requested. In order to determine the access

ecision for an access request, the enforced access control needs

o check the satisfaction of conditions on users and resources in-

olved in the access request. We note that access requests may also

nclude a particular requested action, such as reading or writing to

he object. However, we omit actions in access requests and policy

ules, to simplify the presentation and the discussion of our results.

efinition 1 (Access request) . An access request , indicated by tuple

 sub ject, ob ject〉 ∈ S × O , contains the requesting subject and the re-

uested object , where S is the set of subjects and O is the set of

bjects in the system. An access decision ∈ { PERMIT , DENY } specifies

he result of evaluating the submitted access request against the

nforced policy.

xample 1 (Access request) . 〈 Al ice, F il e 1 〉 indicates an access re-

uest, where user Alice requests access to the protected resource

ile1 .

Metadata on subjects and objects are used in determining au-

horizations in a system. An access control policy makes use of

onstructs called conditions to determine access decisions based on

he evaluation of metadata on subjects and objects. We formally

efine conditions as follows.

efinition 2 (Condition) . A condition C, defined as C : S × O −→

 true, false } , evaluates to a Boolean value given a subject ∈ S and

n object ∈ O .

Note that the above definition is intentionally abstract in terms

f metadata structure and internal logic of a condition. This allows

he definition to be applicable to general rule-based policies. In

he following, we provide examples of conditions in the context

f ABAC and ReBAC.

xample 2 (Conditions) .

• ABAC: Metadata is specified in terms of attributes of users and

resources, so conditions are evaluated based on the attribute in-

formation. For instance, in an educational institution, the con-

dition “chairSbj” will be true if the given subject is the chair

of a department, “transcriptObj” will be true if the given object

is of type transcript, and “sameDeptSbjObj” will be true if the

given subject and object belong to the same department.

• ReBAC: Metadata is represented in the form of a graph where

nodes indicate users and resources, and edges indicate rela-

tionships between them. So, conditions are evaluated based on

the paths between a subject (user) and object (resource) in the

graph. For instance, in an online social network, the condition

“friend-owner” will be true if there is such a path in the graph

between the given subject and object. In other words, the sub-

ject should be a friend of the person who is the owner of the

object.

Note that, although a condition takes both subject and object

s parameters, the logic of a condition can ignore one of the argu-

ents during evaluation. This is because in some cases a condition

s evaluated only on a subject or only on an object in access con-

rol. For instance, in the above example, the condition “chairSbj ”

P. Iyer, A. Masoumzadeh and P. Narendran Computers & Security 116 (2022) 102586

c

d

s

“

j

t

j

d

a

v

r

i

c

t

b

a

D

b

c

s

E

c

E

r

m

r

n

w

c

s

e

c

m

c

o

e

t

o

c

l

D

i

〈

i

t

2

e

a

r

t

f

s

f

t

c

a

c

t

o

m

c

i

D

i

w

[

o

t

d

t

w

P
a

D

r

C

w

b

a

q

d

D

p

m

m

e

m

t

c

a

t

a

e

A

i

t

a

h

r

i

q

t

f

p

D

s

onsiders only the given subject, and ignores the object argument,

uring access request evaluation. Similarly, the condition “tran-

criptObj ” is evaluated only on the given object. But, the conditions

sameDeptSbjObj ” and “friend-owner ” consider both subject and ob-

ect for evaluation.

Rule-based policies consist of authorization rules . An authoriza-

ion rule includes the conjunction of multiple conditions on sub-

ects and objects, and an access decision, called rule effect , that in-

icates the effect of that rule. When all the specified conditions in

n authorization rule are satisfied by the subject and object in-

olved in an access request, the rule becomes applicable to the

equest and the corresponding rule effect would be applied; sat-

sfaction of all conditions is necessary due to the conjunction of

onditions in a rule. Moreover, a condition within a rule can be ei-

her positive or negative, indicating whether the condition should

e satisfied or not, respectively, for the corresponding rule to be

pplicable.

efinition 3 (Authorization rule) . An authorization rule is indicated

y the tuple 〈 φ, decision 〉 where φ = [¬] C 1 ∧ [¬] C 2 ∧ · · · ∧ [¬] C n is a

onjunction of conditions that are evaluated on the access request

ubject and object, and decision ∈ { PERMIT , DENY } is the rule effect.

ach condition can be optionally negated (using ¬) to indicate a

ondition that should not be satisfied for the rule to be applicable.

xample 3 (Authorization rules) .

• ABAC: The authorization rule in an educational institution “The

chair of a department can view the transcripts of students in

that department ” can be written as: 〈 chai rSbj ∧ tran scri ptObj ∧

same Dept SbjO bj , PERMIT 〉
• ReBAC: The authorization rule in an online social network

“Friends of a user can access her posts ” can be represented as:

〈 frie nd - owner , PERMIT 〉
Evaluating an access decision against a set of authorization

ules can lead to ambiguities, which can be addressed using a

eta-policy . Specifically, while checking the applicability of autho-

ization rules to an access request, there could be scenarios where

o authorization rule applies to the request, or more than one rule

ith conflicting (different) decisions are applicable. In order to ac-

ount for these scenarios, a meta-policy indicates a default deci-

ion and a conflict resolution strategy . The default decision is consid-

red when no authorization rule applies to an access request. The

onflict resolution strategy is considered when an access request

atches more than one rule with conflicting rule effects. In the

ontext of this paper, we consider DENY -overrides and PERMIT -
verrides conflict resolution strategies. The DENY -overrides strat-

gy gives priority to the DENY decision as long as at least one of

he applicable rules indicates the DENY effect. Similarly, PERMIT -
verrides gives priority to the PERMIT decision.

Putting together the aforementioned discussion about various

omponents, we define a rule-based access control policy as fol-

ows:

efinition 4 (Access control policy) . A rule-based access control pol-

cy or authorization policy , denoted as P, is represented as a tuple

 R, δ, ρ〉 , where R is a set of authorization rules, δ ∈ { PERMIT , DENY }
s the default decision and ρ ∈ { PERMIT - ov er r ides, DENY - ov er r ides } is
he conflict resolution strategy.

.2. Negation Model and Deny Model

Our goal in this paper is to compare the expressiveness of mod-

ls that employ negated conditions with those that employ neg-

tive authorizations. The negated conditions and negative autho-

izations are typically used in access control policies to deny cer-

ain users from accessing certain resources. In order to facilitate
3
ormal discussion on the expressiveness comparison between two

ystems, we need formal policy models that can be utilized to en-

orce authorizations in the considered systems, and also regulate

he evolution of the system authorization state. In this paper, we

onsider two abstract policy models, namely the Negation model

nd Deny model which, respectively, represent the access control

onfigurations for systems utilizing negated conditions and sys-

ems utilizing negative authorizations (deny rules).

Based on Definitions 3 and 4 , we provide specialized definitions

f access control policies for the Negation model and the Deny

odel to formally highlight the differences in the policy specifi-

ations between the two models. We employ the dot notation to

ndicate an element within a concept.

efinition 5 (Negation model) . Negation model , denoted as P N ,

s a special rule-based access control defined as 〈 R, { DENY } , ∅〉 ,
here ∀ r ∈ R : r.decision = PERMIT and r.φ = [¬] C 1 ∧ [¬] C 2 ∧ · · · ∧

 ¬] C n . Here, [¬] denotes that the negation operator is optional.

In the Negation model, an access request is permitted if at least

ne of the authorization rules is applicable to the request. Note

hat in the Negation model the meta-policy is fixed: the default

ecision δ is DENY and there is no need for the conflict resolu-

ion strategy ρ since the Negation model does not include rules

ith DENY decision. Also note that the default decision cannot be

ERMIT , since otherwise no access request would be denied (un-

ble to specify any access control restrictions).

efinition 6 (Deny model) . Deny model , denoted as P D , is a special

ule-based access control defined as 〈 R, δ, ρ〉 , where ∀ r ∈ R : r.φ =
 1 ∧ C 2 ∧ · · · ∧ C n .

In the Deny model, if an access request satisfies all conditions

ithin an authorization rule, then its access decision is determined

y the applicable rule’s effect, which can be PERMIT or DENY . The

mbiguities that can arise during the evaluation of an access re-

uest are solved using a meta-policy, which includes the default

ecision δ and the conflict resolution strategy ρ . Note that in the

eny model we can have different combinations of meta-policy de-

ending on the value of δ and ρ .

A major difference between the behaviors of the Negation

odel and the Deny model stems from the fact that the for-

er models with positive-only authorizations while the latter mod-

ls with positive/negative authorizations. The positive-only policy

odel consists of a set of only PERMIT rules, and consequently,

he default decision is DENY in case no rule is applicable to an ac-

ess request. Furthermore, there is no conflict resolution strategy

ssociated with positive-only authorizations. On the other hand,

he positive/negative policy model consists of a set of PERMIT
nd DENY rules, requiring the need for a conflict resolution strat-

gy which could be either PERMIT -overrides or DENY -overrides.

lso, the default decision could be either PERMIT or DENY in pos-

tive/negative authorizations.

Another important distinction between the Negation model and

he Deny model is that the former supports both positive as well

s negated conditions within each authorization rule. On the other

and, the Deny model only supports positive conditions within a

ule. A positive condition within an authorization rule requires sat-

sfaction of the condition by the user and resource of an access re-

uest in order for the corresponding rule to be applicable. In con-

rast, a negated condition requires that a condition not be satisfied

or a rule to be applicable.

In the following example, to clarify the differences between

olicies that can be represented in the Negation model and the

eny model, we use a Venn diagram to specify the authorization

pace of a policy:

P. Iyer, A. Masoumzadeh and P. Narendran Computers & Security 116 (2022) 102586

Fig. 1. Authorization space of an abstract policy on two conditions C 1 and C 2 . Green

area (solid) indicates PERMIT authorization space while red area (dashed) indicates

DENY authorization space.

E

t

b

p

C

a

2

r

a

t

fl

r

o

o

t

d

c

o

b

T

s

o

p

p

t

c

t

a

s

{

o

t

w

c

t

Fig. 2. The effect of different meta-policies (combination of default decision and

conflict resolution strategy) on authorization decision. An abstract policy on two

conditions C 1 and C 2 is considered, where a PERMIT rule applies to requests satis-

fying C 1 and a DENY rule applies to requests satisfying C 2 .

c

t

d

m

o

d

D

p

2

s

e

p

s

a

p

a

s

a

d

s

s

2

i

B

i

l

i

s

t

a

t

a

r

xample 4 (Negation and Deny models) . We illustrate how the au-

horization space of some abstract policy as depicted in Fig. 1 can

e expressed in the two models. Here, the universe represents all

ossible access requests and corresponding decisions in a system.

 1 and C 2 indicate the conditions that can be specified on subjects

nd objects in the system.

• The given authorization scenario can be represented in the

Negation model using the following policy rules: P N .R =

{ 〈 C 1 , PERMIT 〉 , 〈¬ C 2 , PERMIT 〉 }. Note that the entire region corre-

sponding to the rule 〈 C 1 , PERMIT 〉 is permitted, even though the

rule 〈¬ C 2 , PERMIT 〉 exists in the policy. This is because, in the

Negation model, even if one rule is applicable to a given access

request, the authorization decision would be PERMIT .
• The authorization scenario given in Fig. 1 can be ex-

pressed in the Deny model using the following policy: P D =

〈{〈 C 1 , PERMIT 〉 , 〈 C 2 , DENY 〉} , PERMIT , PERMIT - over rides 〉 . The ac-

cess requests in the overlap area C 1 ∩ C 2 have two applicable

rules with different rule effects, and so the PERMIT -overrides

strategy is used to resolve this conflict.

.3. Different Combinations in Meta-Policy

A rule-based access control policy consists of authorization

ules and meta-policy, which in turn includes a default decision

nd a conflict resolution strategy (Definition 4). Different combina-

ions of meta-policy, by varying the default decision and the con-

ict resolution strategy, will result in different behavior of autho-

ization policies. We note that the discussion in this section applies

nly to the Deny model since, in the Negation model, there is just

ne possible meta-policy as there is no concept of conflict resolu-

ion and the default decision is fixed to DENY .
Within an access control policy, we consider two values for

efault decision, that is PERMIT and DENY , and two values for

onflict resolution strategy, that is PERMIT -overrides and DENY -
verrides (Definition 4). Thus, in total, we would have four possi-

ilities for the meta-policy component in an authorization policy.

he distinction between these meta-policy choices is important in

howing the applicability of our expressiveness comparison results

ver a wide scope of access control scenarios that usually arise in

ractice (as discussed in Sections 6 and 7).

Fig. 2 depicts authorization spaces for a very simple example

olicy when different meta-policy combinations are chosen. Here,

he green (solid) and the red (dashed) areas, respectively, indi-

ate the PERMIT authorization space and the DENY authoriza-

ion space. The universe represents all possible access requests

nd corresponding decisions in the system. For clarity of discus-

ions, we consider a very simple abstract policy ruleset P D .R =

〈 C 1 , PERMIT 〉 , 〈 C 2 , DENY 〉} . Each circle in the figure corresponds to

ne of the rules (and corresponding condition) and encompasses

he access instances to which it is applicable. So all access requests

ithin the C 1 region would be permitted, and vice-versa for C 2 . In

ase an access request does not lie within either C 1 or C 2 , then

he appropriate default decision is applied. Moreover, when an ac-
4
ess request exists within C 1 ∩ C 2 , the appropriate conflict resolu-

ion strategy is employed (as discussed in Section 2.1).

As shown in the figure, the policy specification will lead to

rastically different authorizations depending on the choice of

eta-policy combination. We now explain the practicality of each

f the above-mentioned meta-policy combinations. However, as we

etail here, we limit our consideration to two of those cases (DD-

O and DP-PO) as the most practical choices in the rest of the pa-

er.

.3.1. Default DENY and DENY -Overrides (DD-DO)

This choice of meta-policy is utilized for systems with very

trict security requirements such that only those users who are

xplicitly given permission are authorized to perform accesses on

rotected resources. Moreover, if an access request is permitted by

ome rules, but denied by some other rules, then it will be eventu-

lly denied. DD-DO meta-policy is based on the “fail-safe defaults”

rinciple (Saltzer, Schroeder, 1975) according to which whenever

 “failure” happens during the evaluation of an access request, the

afest option is to deny that request. The default case when no rule

pplies as well as the conflict case are considered as failure. Fig. 2 a

emonstrates the DD-DO scenario where the access requests that

trictly satisfy only the condition C 1 (i.e., C 1 \ C 2 where the back-

lash denotes set difference operator) are permitted access.

.3.2. Default DENY and PERMIT -Overrides (DD-PO)

According to this meta-policy, if an access request does not sat-

sfy any rule in the authorization policy then it would be denied.

ut if it satisfies more than one rule with conflicting decisions then

t would be eventually permitted to ensure availability of privi-

eges. This kind of meta-policy is generally not practical since the

nconsistent choices for the default decision and conflict resolution

eem counter-intuitive. With this kind of meta-policy, the effect of

he negative rules in an authorization policy is never taken into

ccount. In other words, the system authorizations would remain

he same even when all the negative rules are removed from the

ccess control policy. For example, as shown in Fig. 2 b, even if we

emove the rule 〈 C , DENY 〉 , the authorization space of access re-
2

P. Iyer, A. Masoumzadeh and P. Narendran Computers & Security 116 (2022) 102586

q

t

2

i

p

w

m

F

e

2

T

n

a

c

s

F

s

3

F

w

(

d

s

n

3

a

c

t

s

v

n

L

t

r

i

c

t

i

t

s

c

D

L

t

D

a

,

q

a

D

s

B

p

γ

l

p

λ

D

t

i

t

t

B

r

t

3

s

m

t

j

p

r

p

s

D

γ
j

a

t

t

t

b

p

r

D

w

f

b

uests still remains the same, so C 2 basically has no effect on au-

horizations in this case.

.3.3. Default PERMIT and DENY -Overrides (DP-DO)

This meta-policy scenario is the converse of the above one,

.e., access requests that do not satisfy any authorization rule are

ermitted, while access requests with conflicting access decisions

ould be denied. Again, like in the previous case, this kind of

eta-policy is not practical because of redundant positive rules.

or instance, in Fig. 2 c, the authorization rule 〈 C 1 , PERMIT 〉 has no

ffect while determining the authorizations of access requests.

.3.4. Default PERMIT and PERMIT -Overrides (DP-PO)

This kind of meta-policy is the converse of the DD-DO scenario.

his is used when there is a group of users who are explicitly de-

ied access to certain resources, while everyone else is entitled to

ll permissions. If a conflict arises during the evaluation of an ac-

ess request, i.e., it is permitted by some rules while denied by

ome other rules, then the access request is granted permission.

or instance, in Fig. 2 d, only the access instances that exist exclu-

ively within the C 2 region, i.e., C 2 \ C 1 , are denied.

. State-Transition Model & Expressiveness Comparison

ramework

In this section, we discuss the framework on the basis of

hich we compare the expressiveness of the Negation model

 Definition 5) and the Deny model (Definition 6). In addition, we

escribe how a system with rule-based policy can be seen as a

tate-transition model, which is a requirement for our expressive-

ess analysis.

.1. Expressiveness Comparison Framework

A real-world system keeps evolving as users and resources are

dded/removed, conditions on them are updated, and/or access

ontrol policy is updated to reflect new security requirements in

he system. So, the state of the system is dynamic, and the permis-

ions that were once granted may be denied in the future or vice

ersa. We employ a state-transition paradigm for modeling this dy-

amic behavior.

We adopt the approach proposed by Tripunitara and

i (2007) to compare the expressiveness of the Negation and

he Deny systems, based on the preservation of enforced autho-

izations. This is accomplished using the notion of queries , which

s used for understanding the authorization behavior of an access

ontrol system. In the context of this paper, queries correspond

o access requests used to determine which accesses are allowed

n a given state of a system. When we discuss about comparing

he expressive power, we need to be specific about the queries,

tates, and state-transition policies while specifying an access

ontrol model, which we refer to as an access control scheme .

efinitions 7 , 8 , and 9 adopted from the work of Tripunitara and

i (2007) describe access control scheme, state-matching reduc-

ion, and expressiveness comparison, respectively.

efinition 7 (Access control scheme) . An access control scheme is

 state-transition system represented in the form of tuple 〈 �, Q, �

 �〉 in which � denotes the set of states, Q indicates the set of

ueries, � : � × Q −→ { T rue , F alse } is called the entailment relation,

nd � denotes the set of state-transition policies.

efinition 8 (State-matching reduction) . Given two access control

chemes B = 〈 �, Q, � , �〉 and B ′ = 〈 �′ , Q

′ , �

′ , � ′ 〉 , a mapping from

 to B ′ is represented as λ : (� × �) ∪ Q −→ (�′ × � ′) ∪ Q

′ . A map-

ing λ from B to B ′ is called a state-matching reduction if, for every
5
∈ � and every ψ ∈ � , 〈 γ ′ , ψ

′ 〉 = λ(〈 γ , ψ〉) conforms to the fol-

owing two properties:

• Property 1: For every state γ1 in scheme B reachable from γ ,

that is, γ
∗� −→ ψ

γ1 , there exists state γ ′
1

in scheme B ′ such that

γ ′ ∗� −→ ψ

′ γ ′
1 and that the states γ1 and γ ′

1 are equivalent under

the mapping λ.

• Property 2: For every state γ ′
1

in scheme B ′ reachable from γ ′
(= λ(γ)), that is, γ ′ ∗� −→ ψ

′ γ ′
1

, there exists state γ1 in scheme

B such that γ
∗� −→ ψ

γ1 and that the states γ1 and γ ′
1

are equiv-

alent under the mapping λ.

Two states γ and γ ′ are said to be equivalent under the map-

ing λ whenever for every query q ∈ Q , γ � q if and only if γ ′ �

′
(q) .

efinition 9 (Expressiveness Comparison) . Given two access con-

rol schemes, B and B ′ , we say that B is at least as expressive as B ′ ,
f there exists a state-matching reduction from the scheme B ′ to

he scheme B . Further, if there also exists a state-matching reduc-

ion from B to B ′ , then B and B ′ are equivalent in expressive power . If

 is at least as expressive as B ′ , and there exists no state-matching

eduction from B to B ′ , then scheme B is strictly more expressive

han scheme B ′ .

.2. Modeling Security System as a State-Transition Model

A protection state of a system is the subset of the system

tate that determines authorizations. For example, in the ReBAC

odel, authorizations are determined based on a set of rules

hat evaluate some specified conditions (i.e., paths between sub-

ect and object) in the system graph (see Example 2). So, the

rotection state in a ReBAC model consists of users (subjects),

esources (objects), relationships among them, and authorization

olicy (Masoumzadeh, 2018). We formally define the protection

tate of a rule-based access control model as follows:

efinition 10 (Protection state) . A protection state , represented as

= 〈C, P 〉 , consists of the set of conditions C on subjects and ob-

ects in a system, and the access control policy P that determines

uthorizations in the current system state based on evaluations of

he conditions in C.

Based on the above definition, a protection state can be al-

ered either through changes to the evaluations of system condi-

ions (i.e., updating the truth assignment of a condition C ∈ C), or

y amending the access control policy P. Changes to access control

olicy can be made through either insertion or deletion of a rule

 ∈ P .R or modifying the meta-policy 〈 δ, ρ〉 within P (in case of the

eny model). In other words, any change to the protection state

ould result in a different set of permissions in the application.

In the context of our rule-based access control model, the dif-

erent components of an access control scheme (Definition 7) can

e described as given below:

• State : A state γ ∈ � is defined as in Definition 10 , and contains

all the information necessary for determining access controls at

a given time instant.

• Query : We consider only authorization queries (i.e., access re-

quests). Particularly, a query q ∈ Q is of the form “Given the con-

ditions on subjects and objects, can a certain subject be autho-

rized to access a specific object ?”. In the context of expressive-

ness comparison, we consider the conjunction of all the possi-

ble access requests in a system since we are interested in pre-

serving the access permissions of the system.

• Entailment : The entailment relation � checks the validity of a

query in a given state. We write γ � q whenever a query q ∈ Q

P. Iyer, A. Masoumzadeh and P. Narendran Computers & Security 116 (2022) 102586

e

fl

i

c

c

4

t

i

w

p

a

d

o

e

r

i

o

4

s

r

c

t

w

t

H

a

t

i

s

b

a

t

e

a

i

c

a

t

e

a

a

n

p

t

c

f

δ

ρ

d

l

d

r

d

c

r

c

p

a

i

t

c

s

fi

r

p

t

is satisfied in the state γ , that is if the involved access request

is granted permission in that state. Otherwise, γ �� q .

• State-transition policy : A state-transition policy ψ ∈ � is a bi-

nary relation (denoted by �→ ψ

) defined over �. Given γ , γ ′ ∈ �,

γ �→ ψ

γ ′ indicates that the state γ transitions to γ ′ under the

regulation of ψ . We write γ
∗� −→ ψ

γ ′ to denote transitive and

reflexive closure of �→ ψ

, and γ ′ is said to be reachable from γ
in zero or more allowed transitions.

A state-transition policy determines how the protection state

changes over time. As mentioned earlier, the state changes in

our rule-based access control model occur with modifications

either to the system conditions C or to the access control pol-

icy P of the current state. In the access control literature, such

transitions are commonly referred to as administrative opera-

tions (Cheng et al., 2016; Crampton and Sellwood, 2016; Jin

et al., 2012; Rizvi et al., 2015; Stoller, 2015). We consider the

following administrative operations:

• add_rule(r) : Adding a rule r to authorization policy in the

current state γ . P

• delete_rule(r) : Deleting a rule r from the current authoriza-

tion policy γ . P

• update_condition(C, C ′) : Changing the evaluation (i.e., truth

assignment) of a condition C in γ . C to C ′

Note that we are limiting our definition of administrative op-

rations to keep our analysis presentation manageable. Otherwise,

exible administrative policies such as conditions on the subject

nitiating the state-change request and modifying the meta-policy

omponent of authorization policy (in the case of the Deny model)

an be considered too.

. Logic-Based Representation of Rule-Based Policies

In this section, we describe a logic-based (clausal) representa-

ion of the Negation and the Deny policies, defined in Section 2 ,

n order to present their semantics and provide a unified frame-

ork for our theoretical analysis. 1 Note that even though there are

revious works that have proposed logic-based representation for

ccess control policies (Bertino et al., 1999; Chomicki et al., 2003;

i Vimercati et al., 2005; Jajodia et al., 1997; Wang et al., 2004),

ur focus is to provide a simple representation sufficient for our

xpressiveness comparison.

We utilize the following predicates in our logic program for

epresenting access control policies:

• C i indicates a condition predicate that evaluates metadata asso-

ciated with subjects and objects. Condition predicates are used

within policy rules to determine authorizations.

• exec_permit and exec_deny predicates indicate the rule effect

(PERMIT and DENY , respectively) for the associated authoriza-

tion rule.

• permit and deny predicates are used to determine the final ac-

cess decision after applying the included meta-policy.

All predicates are parameterized in terms of access requests,

.e., all predicates have two arguments, one for the subject and the

ther for the object.

.1. Logic Program for the Deny Model

As shown in Section 2.2 , a Deny policy consists of a disjunctive

et of positive and negative authorization rules and meta-policy for

esolving ambiguities during access request evaluation.
1 We use the logic programming formalism for representing authorization poli-

ies; but not all of them are Horn clauses, as readers would notice.

t

C

e

(

6
Positive Authorization Rules . In order to represent a positive au-

horization rule in logic format, we create a conditional statement

ith the exec_permit predicate as the consequent and the conjunc-

ion of conditions in the rule as the antecedent, as given in (#1) .

ere, ?u and ?r denote variables on users and resources and they

re universally quantified, i.e., for any user and for any resource in

he system the given statement holds. We use the subscript D to

ndicate that a predicate belongs to the Deny model in contrast to

imilar predicates that belong to the Negation model (subscripted

y N). If any of the positive authorization rules in a policy becomes

pplicable to an access request, then the exec_permit predicate for

hat access request would be true.

xec _ per mit D (? u, ? r) :- C i (? u, ? r) , . . . , C j (? u, ? r) . (#1)

Negative Authorization Rules . The conditional statement associ-

ted with a negative authorization rule is similar to that of a pos-

tive rule, except that it includes the exec_deny predicate as the

onsequent as given in (#2) . So, if a negative rule is applicable to

n access request, then the exec_deny predicate corresponding to

hat access request would be true.

xec _ deny D (? u, ? r) :- C n (? u, ? r) , . . . , C p (? u, ? r) . (#2)

We note that, as shown in Definition 6 , all conditions in the

ntecedent of conditional statements associated with the positive

s well as the negative authorization rules are positive (i.e., un-

egated).

Access Decision and Meta-Policy Rules . After checking the ap-

licability of rules to an access request, there can be four, mu-

ually exclusive scenarios while determining its authorization de-

ision, which is represented in the form of a logic program as

ollows:

D (? u, ? r) :- ¬ exec _ per mit D (? u, ? r) , ¬ exec _ deny D (? u, ? r) . (#3a)

D (? u, ? r) :- exec _ per mit D (? u, ? r) , exec _ deny D (? u, ? r) . (#3b)

per mit D (? u, ? r) :- exec _ per mit D (? u, ? r) , ¬ exec _ deny D (? u, ? r) . (#3c)

eny D (? u, ? r) :- ¬ exec _ per mit D (? u, ? r) , exec _ deny D (? u, ? r) . (#3d)

As mentioned earlier, the permit and deny predicates in our

ogic-based representation indicate the PERMIT and DENY access

ecisions, respectively. We refer to (#3a) and (#3b) as meta-policy

ules , in which the δ and the ρ are replaced with the permit and

eny predicates (corresponding to the PERMIT and the DENY ac-

ess decisions). We refer to (#3c) and (#3d) as access decision

ules .

When none of the authorization rules within a policy is appli-

able to an access request, i.e., neither exec_permit nor exec_deny

redicate is true, the default decision δ ∈ { PERMIT , DENY } would be

pplied (see (#3a)). When both exec_permit and exec_deny pred-

cates are true for an access request, we need a conflict resolu-

ion strategy to produce a final access decision (see (#3b)). If the

onflict resolution strategy is DENY -overrides, then the final deci-

ion is given by ρ = DENY ; otherwise, for PERMIT -overrides the

nal decision would be ρ = PERMIT . When only positive autho-

ization rule(s) are applicable to an access request, the exec_permit

redicate will be true corresponding to that access request, but

he exec_deny predicate will not be. So, naturally, the final au-

horization decision would be PERMIT in this case (see (#3c)).

onversely, if only the exec_deny predicate is true, and not the

xec_permit predicate, the final decision would be DENY (see

#3d)).

P. Iyer, A. Masoumzadeh and P. Narendran Computers & Security 116 (2022) 102586

4

j

e

s

c

f

w

t

i

g

t

a

o

u

N

t

t

c

e

p

t

d

t

c

c

b

c

a

a

c

d

5

c

fi

s

s

o

l

f

s

a

a

t

o

s

t

t

a

f

t

c

t

n

Fig. 3. Authorization configuration of protection state ̂ γ N in Negation scheme. C 1 ,

C 2 and C 3 indicate three conditions in ̂ γ N . Authorization decisions for each com-

bination of condition evaluations depicted as: green (solid) for PERMIT and red

(dashed) for DENY .

t

j

t

N

l

i

q

a

s

t

T

D

t

c

N

f

a

6

t

t

t

S

i

6

w

s

T

o

.2. Logic Program for the Negation Model

As shown in Section 2.2 , a Negation policy consists of a dis-

unctive set of positive authorization rules. So, we have only

xec_permit predicate and no exec_deny predicate. In addition, as

hown in Definition 5 , we can have positive as well as negative

onditions within an authorization rule.

Authorization Rules . To represent authorization rules in the logic

ormat, similar to Section 4.1 , we create a conditional statement

ith exec_permit as the consequent and the conjunction of condi-

ions as the antecedent. For an authorization rule with only pos-

tive conditions, the conditional statement would be of the form

iven in (#1) . Whereas, for an authorization rule with both posi-

ive and negative conditions, the conditional statement would be

s given in (#4) . Again, the predicates are parameterized in terms

f access requests, and the variables are universally quantified. We

se the subscript N to indicate that a predicate belongs to the

egation model. If an access request satisfies all positive condi-

ions and does not satisfy any negative condition in an authoriza-

ion rule, then the exec_permit predicate corresponding to that ac-

ess request would be true.

xec _ per mit N (? u, ? r) :- C i (? u, ? r) , . . . , C j (? u, ? r) ,
¬ C n (? u, ? r) , . . . , ¬ C p (? u, ? r) .

(#4)

Access Decision and Meta-Policy Rules . After evaluating the ap-

licability of authorization rules to an access request, there can be

wo, mutually exclusive scenarios, given in (#5a) and (#5b) , while

etermining its final authorization decision. Again, the permit and

he deny predicates indicate the PERMIT and the DENY access de-

isions, respectively. When no authorization rule applies to an ac-

ess request, the exec_permit predicate corresponding to it will not

e true, so the default decision DENY is the final authorization de-

ision for that access request (see (#5a)). On the other hand, when

t least one of the positive authorization rules is applicable to an

ccess request, i.e., the exec_permit predicate is true, the final ac-

ess decision is PERMIT (see (#5b)).

eny N (? u, ? r) :- ¬ exec _ per mit N (? u, ? r) . (#5a)

per mit N (? u, ? r) :- exec _ per mit N (? u, ? r) . (#5b)

. Expressive Power: Negation Scheme vs. Deny Scheme

In this section, we state our main result on the expressiveness

omparison between the Negation and the Deny models (as de-

ned in Section 2). The detailed proof for the result will be pre-

ented in Sections 6 and 7 . We rely on the framework for expres-

iveness comparison that was presented in Section 3 , particularly

n state-matching reductions (Definition 8). We also rely on the

ogic-based representation of policies (as presented in Section 4)

or our proofs.

As mentioned in Section 3 , our formal expressiveness compari-

on will be done based on schemes . As described in Definition 7 , an

ccess control scheme specifies the states, state-transition policies,

nd queries about an access control model. Given the Negation and

he Deny schemes, we investigate whether one can simulate the

ther. In other words, given the Negation scheme, can the Deny

cheme preserve all the authorizations? As we will demonstrate,

here exists a protection state in the Negation scheme for which

here exists no equivalent protection state in the Deny scheme. In

ddition, can the Negation scheme preserve the authorizations en-

orced by the Deny scheme? Interestingly, as we will demonstrate,

he Negation scheme can represent all authorization policies that

an be expressed in the Deny scheme.

In order to facilitate our discussion, we make certain assump-

ions about the environment in which we develop our expressive-

ess comparison results. We assume that both schemes operate in
7
he same evaluation environment. Therefore, conditions on sub-

ects and objects used by authorization policies are evaluated in

he same manner and shared by the Negation and Deny schemes.

ote that we did not use subscripts N and D for conditions in the

ogic programs, described in Section 4 , for this reason. For instance,

n Fig. 2 , evaluations of the conditions C 1 and C 2 for all access re-

uests are the same for both the schemes. However, note that the

uthorization policy can vary between the Negation and the Deny

chemes.

We state our main result on the expressiveness comparison in

he following theorem:

heorem 1. The Negation scheme is strictly more expressive than the

eny scheme based on state-matching reductions.

We prove the above theorem in the next two sections. In par-

icular, we prove the following results:

• There exists no state-matching reduction from the Negation

scheme to the Deny scheme (Section 6). Therefore, the Deny

scheme is not as expressive as the Negation scheme.

• There exists a state-matching reduction from the Deny scheme

to the Negation scheme (Section 7). Therefore, the Negation

scheme is at least as expressive as the Deny scheme.

Informally, Theorem 1 states that all authorization policies that

an be represented in the Deny scheme can be represented in the

egation scheme as well, whereas the converse is not true. There-

ore, the Negation scheme can cover wider authorization policies,

nd can replace the Deny policies if desired.

. Expressive Power of Deny Scheme

In this section, we show that the Deny scheme cannot cap-

ure all the authorizations enforced by the Negation scheme. For

his purpose, we consider a specific protection state in the Nega-

ion scheme in Section 6.1 . Based on state-matching reductions, in

ection 6.2 , we show that no equivalent protection state can exist

n the Deny scheme.

.1. A Protection State in Negation Scheme

Suppose we have a protection state in the Negation scheme,

hich we refer to as ̂ γ N , with the authorization configuration as

hown in Fig. 3 . ̂ γ N . C consists of three conditions C 1 , C 2 and C 3 .

he figure depicts authorization decisions for each combination

f condition evaluations: green (solid) indicates PERMIT and red

P. Iyer, A. Masoumzadeh and P. Narendran Computers & Security 116 (2022) 102586

(

e

e
e
e
e

c

a

m

r

p

6

w

s

i

d

t

r

m

t

t

p

i

a

e

b

s

a

I

t

(

t

g

p

s

t

t

s

a

p

i

d

d

t

a

(

C

s

P

c

a

s

l

e

s

a

C
¬
¬

a

N

p

t

s

i

s

e

¬

b

r

e

t

C
C
¬

d
d

f

t

T

¬

a

fi

w

i

w

〈
e

e

D

(

r

e

e

dashed) indicates DENY . This authorization configuration can be

xpressed using the following ruleset in

̂ γ N . P :

xec _ per mit N (? u, ? r) :- C 1 (? u, ? r) , C 2 (? u, ? r) , C 3 (? u, ? r) .
xec _ per mit N (? u, ? r) :- C 1 (? u, ? r) , ¬ C 2 (? u, ? r) , ¬ C 3 (? u, ? r) .
xec _ per mit N (? u, ? r) :- ¬ C 1 (? u, ? r) , ¬ C 2 (? u, ? r) , C 3 (? u, ? r) .
xec _ per mit N (? u, ? r) :- ¬ C 1 (? u, ? r) , C 2 (? u, ? r) , ¬ C 3 (? u, ? r) .

(#6)

If any of the authorization rules in (#6) is applicable to an ac-

ess request, then the exec_permit predicate corresponding to that

ccess request would be true. We note that the conditional state-

ents for determining the final authorization decisions for access

equests, indicated by the permit and deny predicates, were shown

reviously in (#5a) and (#5b) .

.2. Deny is Not As Expressive As Negation

Assuming a particular reachable state in the Negation scheme,

e want to show that there is no equivalent (i.e., enforcing the

ame set of authorizations) state in the Deny scheme. More specif-

cally, considering the reachable state ̂ γ N in the Negation scheme,

iscussed in Section 6.1 , our goal is to show that none of the pro-

ection states in the Deny scheme can precisely express the autho-

ization configuration of state ̂ γ N . We assume that there exists a

apping λ that is a state-matching reduction (Definition 8) from

he Negation scheme to the Deny scheme. So, there exists a pro-

ection state, which we refer to as ̂ γ D , in the Deny scheme that

reserves the authorization configuration in

̂ γ N . Also, as discussed

n Section 5 , we consider that the three conditions C 1 , C 2 and C 3

re shared between the Negation and the Deny schemes, so the

valuations of the conditions on access requests is the same for

oth schemes.

We consider generic authorization policy for the Deny scheme

ince we need to find the particular specification, including rules

nd meta-policy, that can express the given permissions of ̂ γ N .

n the Deny scheme, we have positive and negative authoriza-

ion rules in the form of conditional statements as given in

#1) and (#2) , respectively. The conditional statements for de-

ermining the final authorization decision for access requests are

iven in (#3a) - (#3d) . In the following claims, we consider different

ossibilities for meta-policy by varying the values of default deci-

ion δ (see (#3a)) and conflict resolution strategy ρ (see (#3b))

o generate different policies in the Deny scheme. We show that

here does not exist a protection state ̂ γ D with any of those pos-

ible policies in the Deny scheme that is able to represent all the

uthorizations of state ̂ γ N in the Negation scheme.

We first examine the Deny scheme implementing DD-DO meta-

olicy. In this case, both δ (see (#3a)) and ρ (see (#3b)) would be

nstantiated to the deny predicate as follows:

eny D (? u, ? r) :- ¬ exec _ per mit D (? u, ? r) , ¬ exec _ deny D (? u, ? r) .

(#7a)

eny D (? u, ? r) :- exec _ per mit D (? u, ? r) , exec _ deny D (? u, ? r) . (#7b)

(#7a) shows the default decision statement and (#7b) indicates

he conflict resolution strategy. The conditional statements for the

uthorization rules (see (#1) and (#2)) and the access decisions

see (#3c) and (#3d)) remain the same.

laim 1. There exists no state-matching reduction from the Negation

cheme to the Deny scheme implementing DD-DO meta-policy.

roof. Let ̂ γ N be the protection state in the Negation scheme dis-

ussed in Section 6.1 . Assume that there exists a mapping that is

 state-matching reduction from the Negation scheme to the Deny
8
cheme implementing DD-DO meta-policy. Let ̂ γ D be the equiva-

ent state in the Deny scheme under such a mapping.

Consider the policy represented in Fig. 3 . Without loss of gen-

rality, we consider an access request 〈 u 1 , r 1 〉 that lies in the inter-

ection C 1 ∩ ¬ C 2 ∩ ¬ C 3 , i.e., 〈 u 1 , r 1 〉 satisfies only the condition C 1 ,

nd does not satisfy either C 2 or C 3 :

 1 (u 1 , r 1) .
 C 2 (u 1 , r 1) .
 C 3 (u 1 , r 1) .

(#8)

The access request 〈 u 1 , r 1 〉 is permitted in

̂ γ N . Since we are

ssuming that there exists a state-matching reduction from the

egation scheme to the Deny scheme implementing DD-DO meta-

olicy, the state ̂ γ D should capture that 〈 u 1 , r 1 〉 is permitted:

permit N (u 1 , r 1) .
permit D (u 1 , r 1) .

(#9)

In case of DD-DO meta-policy, the PERMIT authorization in

he Deny scheme can only be obtained from the access decision

tatement in (#3c) . Therefore, given (#9) , we can make the follow-

ng inferences about the authorization of access request 〈 u 1 , r 1 〉 in
tate ̂ γ D :

xec _ permit D (u 1 , r 1) . (#10a)

 exec _ deny D (u 1 , r 1) . (#10b)

Since we cannot use any negated condition in the Deny scheme,

ased on (#10a) and (#8) , we can infer the following authorization

ule in

̂ γ D . P :

xec _ per mit D (? u, ? r) :- C 1 (? u, ? r) . (#11)

Next, we consider an access request 〈 u 2 , r 2 〉 that lies in the in-

ersection C 1 ∩ C 2 ∩ ¬ C 3 :

 1 (u 2 , r 2) .
 2 (u 2 , r 2) .
 C 3 (u 2 , r 2) .

(#12)

〈 u 2 , r 2 〉 is denied in

̂ γ N , so it should be denied in

̂ γ D as well:

eny N (u 2 , r 2) .
eny D (u 2 , r 2) .

(#13)

In the Deny scheme, the DENY authorization can be obtained

rom the default decision statement in (#7a) , the conflict resolu-

ion statement in (#7b) , or the access decision statement in (#3d) .

he default decision and the access decision statements require

 exec _ permit D (u 2 , r 2) to be true (see (#7a) and (#3d)). However,

ccording to our inferred rule in (#11) and given that 〈 u 2 , r 2 〉 satis-

es the condition C 1 (see (#12)), the exec _ permit D (u 2 , r 2) predicate

ill be true. So, our only way to obtain the predicate deny D (u 2 , r 2)

s through the conflict resolution statement in (#7b) . Therefore,

e can make the following inferences about the authorization of

 u 2 , r 2 〉 :
xec _ permit D (u 2 , r 2) . (#14a)

xec _ deny D (u 2 , r 2) . (#14b)

Based on the condition predicates in (#12) and the fact that the

eny scheme cannot support negated conditions, the predicate in

#14b) can be inferred from one of the following potential autho-

ization rules in

̂ γ D . P :

xec _ deny D (? u, ? r) :- C 1 (? u, ? r) . (#15a)

xec _ deny D (? u, ? r) :- C 2 (? u, ? r) . (#15b)

P. Iyer, A. Masoumzadeh and P. Narendran Computers & Security 116 (2022) 102586

e

i

C
C
C

w

o

t

e

¬

t

q

e

e

r

p

S

r

r

i

d

C

s

P

c

a

s

l

e

s

C
¬
¬

s

t

t

f

e

b

r

e

t

C
C
¬

d
d

t

t

t

d

(

t

t

P
(

t

o

e

C

s

D

P

c

a

s

e

r

¬
¬
¬

s

d
d

f

i

(

c

c

b
xec _ deny D (? u, ? r) :- C 1 (? u, ? r) , C 2 (? u, ? r) . (#15c)

Finally, we consider an access request 〈 u 3 , r 3 〉 that lies in the

ntersection C 1 ∩ C 2 ∩ C 3 :

 1 (u 3 , r 3) .
 2 (u 3 , r 3) .
 3 (u 3 , r 3) .

(#16)

〈 u 3 , r 3 〉 is permitted in

̂ γN , so it should be permitted in

̂ γ D as

ell:

permit N (u 3 , r 3) .
permit D (u 3 , r 3) .

(#17)

In the Deny scheme, since PERMIT authorization can only be

btained from (#3c) , we can make the following inferences about

he authorization of 〈 u 3 , r 3 〉 in

̂ γ D :

xec _ permit D (u 3 , r 3) . (#18a)

 exec _ deny D (u 3 , r 3) . (#18b)

Since 〈 u 3 , r 3 〉 satisfies both the conditions C 1 and C 2 (see (#16)),

he inferred rules in (#15a) - (#15c) are applicable to the access re-

uest. Therefore, we infer the following predicate in

̂ γ D :

xec _ deny D (u 3 , r 3) . (#19)

However, the two predicates in (#18b) and (#19) contradict

ach other. Therefore, our earlier assumption that a state-matching

eduction exists is incorrect. �

We next examine the Deny scheme implementing DD-PO meta-

olicy. Although this case is generally not practical, as discussed in

ection 2.3 , we still include it for the sake of completeness of our

esults and also to clarify any doubt about this possibility for the

eaders. The default decision δ in (#3a) and conflict resolution ρ
n (#3b) are instantiated as follows:

eny D (? u, ? r) :- ¬ exec _ per mit D (? u, ? r) , ¬ exec _ deny D (? u, ? r) .

(#20a)

per mit D (? u, ? r) :- exec _ per mit D (? u, ? r) , exec _ deny D (? u, ? r) .

(#20b)

laim 2. There exists no state-matching reduction from the Negation

cheme to the Deny scheme implementing DD-PO meta-policy.

roof. Let ̂ γ N be the protection state in the Negation scheme dis-

ussed in Section 6.1 . Assume that there exists a mapping that is

 state-matching reduction from the Negation scheme to the Deny

cheme implementing DD-PO meta-policy. Let ̂ γ D be the equiva-

ent state in the Deny scheme under such a mapping.

Consider the policy represented in Fig. 3 . Without loss of gen-

rality, we consider an access request 〈 u 1 , r 1 〉 that lies in the inter-

ection C 1 ∩ ¬ C 2 ∩ ¬ C 3 :

 1 (u 1 , r 1) .
 C 2 (u 1 , r 1) .
 C 3 (u 1 , r 1) .

(#21)

〈 u 1 , r 1 〉 is permitted in state ̂ γ N of the Negation scheme, so it

hould also be permitted in state ̂ γ D of the Deny scheme:

permit N (u 1 , r 1) .
permit D (u 1 , r 1) .

(#22)

In the Deny scheme, this PERMIT authorization can be ob-

ained from either the conflict resolution statement in (#20b) or

he access decision statement in (#3c) . Therefore, we can make the
9
ollowing inference about the authorization of 〈 u 1 , r 1 〉 in state ̂ γ D :

xec _ permit D (u 1 , r 1) . (#23)

Since we cannot use any negated condition in the Deny scheme,

ased on (#21) and (#23) , we can infer the following authorization

ule in

̂ γ D . P :

xec _ per mit D (? u, ? r) :- C 1 (? u, ? r) . (#24)

Next, we consider an access request 〈 u 2 , r 2 〉 that lies in the in-

ersection C 1 ∩ C 2 ∩ ¬ C 3 :

 1 (u 2 , r 2) .
 2 (u 2 , r 2) .
 C 3 (u 2 , r 2) .

(#25)

〈 u 2 , r 2 〉 is denied in

̂ γ N , so it should be denied in

̂ γ D as well:

eny N (u 2 , r 2) .
eny D (u 2 , r 2) .

(#26)

In the Deny scheme, this DENY authorization can be ob-

ained from either the default decision statement in (#20a) or

he access decision statement in (#3d) . Both of them require

hat ¬ exec _ permit D (u 2 , r 2) should be true in order to infer the

eny D (u 2 , r 2) predicate. However, based on our inferred rule in

#24) and the condition predicates in (#25) , exec _ permit D (u 2 , r 2) is

rue, thereby causing contradiction. Therefore, our earlier assump-

ion that a state-matching reduction exists is incorrect. �

Finally, we examine the Deny scheme implementing default

ERMIT meta-policy. In this case, the default decision δ in

#3a) would be instantiated to the permit predicate as follows:

per mit D (? u, ? r) :- ¬ exec _ per mit D (? u, ? r) , ¬ exec _ deny D (? u, ? r) .

(#27)

We do not choose a specific value for the conflict resolu-

ion strategy, so it could be either PERMIT -overrides or DENY -
verrides. Correspondingly, the ρ in (#3b) can be replaced with

ither permit or deny predicate.

laim 3. There exists no state-matching reduction from the Negation

cheme to the Deny scheme implementing default PERMIT (including

P-DO and DP-PO) meta-policy.

roof. Let ̂ γ N be the protection state in the Negation scheme dis-

ussed in Section 6.1 . Assume that there exists a mapping that is

 state-matching reduction from the Negation scheme to the Deny

cheme implementing default PERMIT meta-policy. Let ̂ γ D be the

quivalent state in the Deny scheme under such a mapping.

Consider the policy represented in Fig. 3 . We consider an access

equest 〈 u 1 , r 1 〉 that satisfies neither C 1 , nor C 2 , nor C 3 :

 C 1 (u 1 , r 1) .
 C 2 (u 1 , r 1) .
 C 3 (u 1 , r 1) .

(#28)

〈 u 1 , r 1 〉 is denied in state ̂ γ N of the Negation scheme, so it

hould be denied in state ̂ γ D of the Deny scheme as well:

eny N (u 1 , r 1) .
eny D (u 1 , r 1) .

(#29)

In the Deny scheme, this DENY authorization can be obtained

rom either the conflict resolution statement in (#3b) (by replac-

ng ρ with the deny predicate) or the access decision statement in

#3d) . Both of these conditional statements require that the predi-

ate exec _ deny D (u 1 , r 1) be true in state ̂ γ D . However, based on the

ondition predicates in (#28) , none of the conditions are satisfied

y 〈 u , r 〉 , and based on the fact that the Deny policy cannot have
1 1

P. Iyer, A. Masoumzadeh and P. Narendran Computers & Security 116 (2022) 102586

n

t

a

T

t

P

7

e

t

b

f

i

p

7

i

Q

b

p

Q

d

t

s

s

b

s

s

t

t

s

C

s

i

u

n

D

m

t

s

a

i

p

i

〈
〈
H

r

t

〈

r

w

〈
〈
〈
〈

a

r

t

s

c

t

t

7

s

s

T

s

P

s

a

D

t

t

P

m

γ

γ

w

γ

γ

S

s

egated conditions, there is no possible negative authorization rule

hat can infer exec _ deny D (u 1 , r 1) predicate. Therefore, our earlier

ssumption that a state-matching reduction exists is incorrect. �

heorem 2. There exists no state-matching reduction from the Nega-

ion scheme to the Deny scheme.

roof. Direct result of Claims 1 , 2 and 3 . �

. Expressive Power of Negation Scheme

In this section, we show that the Negation scheme can precisely

xpress all the authorizations enforced by the Deny scheme, i.e.,

he Negation scheme is at least as expressive as the Deny scheme

ased on state-matching reductions. We first present a mapping

rom the Deny scheme to the Negation scheme in Section 7.1 . Then,

n Section 7.2 , we show that the proposed mapping satisfies the

roperties of a state-matching reduction.

.1. Mapping from Deny Scheme to Negation Scheme

Let γ D = 〈C γ D , P γ D 〉 be the given state of the Deny scheme, ψ

D

ts state-change rule, and Q

D the set of queries. Let γ N , ψ

N , and

N be the corresponding elements in the Negation scheme. Let λ
e the mapping from the Deny scheme to the Negation scheme. In

articular, λ maps 〈 γ D , ψ

D 〉 to 〈 γ N , ψ

N 〉 . Also, λ maps each q D ∈

D to q N ∈ Q

N .

We will discuss the mapping of states and state transitions in

etail in the rest of this section. We already discussed queries and

heir entailment in Section 3.2 . Note that we consider the same

et of authorization queries for the Negation scheme and the Deny

cheme, i.e., q N = q D . Since the conditions are also shared between

oth the schemes, the queries essentially ask whether the two

chemes enforce the same set of authorizations. We will use the

ubscripts D and N in the rules to indicate whether a rule belongs

o the Deny or the Negation scheme.

We first define γ N = 〈C γ N , P γ N 〉 . Since we assume the evalua-

ions of conditions are the same for the Deny and the Negation

chemes, we have:

 γ N = C γ D (#30)

P γ N is defined depending on the meta-policy in the Deny

cheme as follows:

• In the case of DP-PO meta-policy in the Deny scheme: Corre-

sponding to the set of all deny rules { 〈 φi , DENY 〉 D } in P γ D , we

add the following rule:

〈 ∧

i

¬ φi , PERMIT 〉 N (#31)

We preserve all permit rules, i.e., for each 〈 φ j , PERMIT 〉 D in P γ D ,

we add the following rule:

〈 φ j , PERMIT 〉 N (#32)

• In the case of DD-DO meta-policy in the Deny scheme: For each

permit rule 〈 φ j , PERMIT 〉 D in P γ D , we add the following rule that

considers the set of all deny rules { 〈 φi , DENY 〉 D }:

〈 φ j ∧ (
∧

i

¬ φi) , PERMIT 〉 N (#33)

In (#31) , (#32) , and (#33) , φ is a condition expression compris-

ng of a singleton condition or a conjunction of conditions eval-

ated on the access request subject and object. Also, it is worth

oting that, in order to respect the Negation policy model in

efinition 5 , the abovementioned rules in the Negation scheme

ay need to be broken up into multiple rules when their condi-

ions’ sub-expressions are negated. Even though we do not always

how such expansions in the rest of our discussions, this can be
10
lways done because every Boolean expression can be transformed

nto sum of products form. As an example of expanding into multi-

le rules, suppose there are two negative rules in the Deny scheme

mplementing DP-PO meta-policy:

 C 1 ∧ C 2 , DENY 〉 D (#34)

 C 3 ∧ C 4 , DENY 〉 D (#34)

ere, C 1 , C 2 , C 3 and C 4 are conditions on subjects and objects. Cor-

esponding to the deny rules in (#34) , according to (#31) , we add

he following rule in the Negation scheme:

¬ (C 1 ∧ C 2) ∧ ¬ (C 3 ∧ C 4) , PERMIT 〉 N (#35)

After applying the De Morgan’s and the Distributive laws on the

ule in (#35) , considering each disjunction as an individual rule,

e obtain the following authorization rules:

¬ C 1 ∧ ¬ C 3 , PERMIT 〉 N
¬ C 1 ∧ ¬ C 4 , PERMIT 〉 N
¬ C 2 ∧ ¬ C 3 , PERMIT 〉 N
¬ C 2 ∧ ¬ C 4 , PERMIT 〉 N (#36)

Instead of considering the expanded form containing four sep-

rate positive rules given in (#36) , we consider only one positive

ule given in (#35) to simplify the presentation.

In Appendix A , we will prove that our proposed mapping from

he Deny scheme to the Negation scheme is correct, i.e., it pre-

erves the authorizations between both the schemes. We will dis-

uss mapping of state transitions in Section 7.2 when we discuss

he state-matching reduction from the Deny scheme to the Nega-

ion scheme.

.2. Negation is as Expressive as Deny

In this section, we show that the Negation scheme can repre-

ent all authorization policies that can be represented in the Deny

cheme based on state-matching reductions (Definition 8).

heorem 3. There exists a state-matching reduction from the Deny

cheme to the Negation scheme.

roof. We show that the mapping from Deny to Negation pre-

ented in Section 7.1 satisfies the two properties for it to be

 state-matching reduction. We consider each assertion from

efinition 8 in turn. We demonstrate that after a series of state

ransitions, the authorizations in the Deny scheme match the au-

horizations in the corresponding state of the Negation scheme.

roving Property 1

By construction, we show that the first property of the state-

atching reduction (Definition 8) is satisfied by our mapping. Let
D be the given state in the Deny scheme, and:

D ∗� −→ ψ

γ D ′

Since,
∗� −→ ψ

denotes transitive and reflexive closure of � −→ ψ

,

e have:

D = γ D
0 � −→ ψ

γ D
1 . . . � −→ ψ

γ D
m

= γ D ′

Let the corresponding states in the Negation scheme be:

N = γ N
0 , γ

N
1 , . . . , γ

N
m

= γ N ′

uppose the authorizations in state γ D of the Deny scheme are the

ame as the authorizations in the corresponding state γ N of the

P. Iyer, A. Masoumzadeh and P. Narendran Computers & Security 116 (2022) 102586

N

m

t

p

s

γ

γ
a

t

s

a

S

b

o

d

l

s

s

c

s

s

r

N

r

w

s

p

a

P

m

t

t

t

n

s

o

s

γ

N

γ

r

s

l

b

r

t

b

t

s

v

f

t

γ

f

n

w

m

t

i

m

egation scheme. Each state transition in the Deny scheme is a

odification of either a condition or an authorization rule within

he current protection state. In the following, we present the map-

ing of state transitions from the Deny scheme to the Negation

cheme, by considering each kind of state transition in turn, so that
D ′ � q D if and only if γ N ′ � q N , where q N = λ(q D) .

Changes to system conditions . If the state transition from γ D
i

to
D

i +1
is due to updating the evaluation (i.e., truth assignment) of

 condition, then the same changes would be made in the Nega-

ion scheme to transition from γ N
i

to γ N
i +1

. This is because we as-

ume that the evaluations of conditions are the same for the Deny

nd the Negation schemes. Also, as mentioned in the beginning of

ection 7.1 , we consider the same set of authorization queries for

oth the schemes.

Changes to authorization policy . Depending on the meta-policy

f the Deny scheme, if the state transition γ D
i

to γ D
i +1

is due to ad-

ition/deletion of an authorization rule, then we perform the fol-

owing changes to transition from γ N
i

to γ N
i +1

:

• In case of DD-DO meta-policy: Consider addition of the follow-

ing positive authorization rule in the Deny scheme:

〈 φ j , PERMIT 〉 D
When a new permit rule is added in the Deny scheme, a corre-

sponding rule needs to be added in the Negation scheme con-

sidering the already existing deny rules:

〈 φ j ∧

(∧

r∈ P
γ D

i
.R, r. decision = DENY

¬ r.φ
)
, PERMIT 〉 N

Next, consider the addition of a negative authorization rule in

the Deny scheme:

〈 φi , DENY 〉 D
When a new deny rule is added in the Deny scheme, we need

to amend the existing rules in the Negation scheme by adding

¬ φi to their conditions (to ensure condition φi is not permit-

ted). That is, each rule 〈 φ, PERMIT 〉 N in P γ N
i

is “replaced” with:

〈 φ ∧ ¬ φi , PERMIT 〉 N
Note that when we talk about replacing a rule, essentially we

are first deleting the existing rule, and then adding the same

rule but also including the conditions from the newly added

negative rule. For the particular case of adding a negative rule

in the Deny scheme with DD-DO meta-policy, we first delete

the existing rules in the Negation scheme, one by one, and then

add the same rules, again one by one, with the newly added

negated condition.

• In case of DP-PO meta-policy: Consider the addition of a posi-

tive authorization rule in the Deny scheme:

〈 φ j , PERMIT 〉 D
When a new permit rule is added in the Deny scheme, then

we add the same authorization rule in the Negation scheme as

well:

〈 φ j , PERMIT 〉 N
Next, consider the addition of a negative authorization rule in

the Deny scheme:

〈 φi , DENY 〉 D
For this, we need to amend the existing rule in the Negation

scheme that consists of negated conditions by adding ¬ φi to its

condition (to ensure condition φi is not permitted). That is, the

rule 〈 φ, PERMIT 〉 N in P γ N
i

, where φ =

∧

r∈ P
γ D

i

.R, r. decision = DENY
¬ r.φ, is

replaced with:
〈 φ ∧ ¬ φi , PERMIT 〉 N
11
The changes made in the Negation scheme corresponding to the

tate transitions caused due to the deletion of rules in the Deny

cheme would be exactly opposite to what was carried out in the

ase of the addition of authorization rules. For example, if we con-

ider the deletion of a negative authorization rule from the Deny

cheme implementing DD-DO meta-policy, we need to delete that

ule’s condition from the conditions of the existing rules in the

egation scheme. Similarly, if we delete a positive authorization

ule from the Deny scheme implementing DP-PO meta-policy, then

e delete the same rule from the Negation scheme as well. Since it

hould be intuitive, we do not present the entire process for map-

ing state transitions in case of deletion of authorization rules to

void repetition of content.

roving Property 2

By construction, we prove that the second property of the state-

atching reduction (Definition 8) is satisfied by our mapping. Note

hat here we consider a Negation scheme with a particular state-

ransition policy, that is based on the mapping of state transi-

ions from the Deny scheme described earlier. Therefore, we are

ot dealing with a Negation scheme that can perform unrestricted

tate transitions. To further clarify this point, consider the mapping

f state transitions from Deny to Negation described earlier. Corre-

ponding to a state transition in the Deny scheme, i.e., γ D
i

� −→ ψ

D
i +1

, we may need to perform multiple state transitions in the

egation scheme, i.e., γ N
i

= γ N
0

� −→ ψ

′ γ N
1

� −→ ψ

′ . . . � −→ ψ

′ γ N
m −1

� −→ ψ

′
N

m

= γ N
i +1

. Here, the states γ D
i

and γ D
i +1

in the Deny scheme are

espectively mapped to the states γ N
i

and γ N
i +1

in the Negation

cheme. It can be observed that as the Negation scheme simu-

ates the Deny scheme it may enter intermediate states indicated

y γ N
1 , . . . , γ

N
m −1 . Using the second property of the state-matching

eduction, we want to show that each of these states in the Nega-

ion scheme corresponds to some state in the Deny scheme. This is

ecause, during simulation, we do not want to create any state in

he Negation scheme that is unsafe according to the Deny scheme.

Suppose γ D is a given Deny state and γ N is the corresponding

tate in the Negation scheme. Based on our discussion in the pre-

ious paragraph, we want to ensure that for every reachable state

rom γ N , there exists an equivalent state, under the mapping λ, in

he Deny scheme that is reachable from γ D . Let:

N ∗� −→ ψ

′ γ N ′

We construct the Deny state γ D ′ that corresponds to γ N ′ in the

ollowing manner. For each rule in P
γ N ′ .R , corresponding to every

egated condition expression, ¬ φi , in the rule, we add a deny rule

ith the same condition expression, 〈 φi , DENY 〉 D , in P
γ D ′ .R . Further-

ore, corresponding to the unnegated condition expression φ j in

he rule, we add a permit rule with the same φ j , i.e., 〈 φ j , PERMIT 〉 D ,
n P

γ D ′ .R .

We justify our construction of the state γ D ′ depending on the

eta-policy used by the Deny scheme:

• In the case of DP-PO meta-policy: Based on the previously

given mappings, (#31) and (#32) are the only formats of au-

thorization rules in the “mapped” Negation scheme. Consider a

permitted authorization query q N in the Negation scheme, i.e.,

γ N ′ � q N . Therefore, either a rule of the form 〈 ∧

i

¬ φi , PERMIT 〉 N
or a rule of the form 〈 φ j , PERMIT 〉 N should be applicable to the

involved access request. That is, there are two means for an ac-

cess request to be permitted: either none of the φi ’s are sat-

isfied, or at least one of the φ j ’s is satisfied. Since, we added

a deny rule in the Deny scheme with respect to every negated

P. Iyer, A. Masoumzadeh and P. Narendran Computers & Security 116 (2022) 102586

i

c

s

i

v

f

i

p

8

8

M

n

i

t

t

f

e

c

r

a

e

H

i

o

c

t

s

o

t

t

t

t

c

t

t

V

c

e

c

F

n

b

d

v

o

w

n

S

r

u

p

s

C
t

w

R

A

A

c

A

t

a

c

i

L

v

2

c

s

c

m

a

c

t

n

c

C

g

d

s

p

t

m

l

condition expression, ¬ φi , the default PERMIT policy takes care

of the first means. In addition, since we added a permit rule in

the Deny scheme for every φ j , the applicability of authorization

rules and the PERMIT -overrides policy takes care of the sec-

ond means. Thus, the authorizations in the Deny scheme and

the Negation scheme will be identical, and we can assert that

γ D ′ � q D if and only if γ N ′ � q N .

• In the case of DD-DO meta-policy: Based on the previously

given mappings, the authorization rules in the “mapped” Nega-

tion scheme can only be of the form given in (#33) . There-

fore, an authorization rule of the form 〈 φ j ∧ (
∧

i

¬ φi) , PERMIT 〉 N
should be applicable to an access request, q N , so that γ N ′ � q N .

This means that only φ j ’s and none of the φi ’s should be satis-

fied. In the context of the Deny scheme, the DD-DO meta-policy

requires that only the positive authorization rules, and none of

the negative authorization rules, be applicable to an access re-

quest, q D , so that γ D ′ � q D . Since, we added a deny rule for ev-

ery φi and a permit rule for every φ j , the access requests that

satisfy only condition expressions of the form φ j , and none of

the condition expressions of the form φi , are permitted. Thus,

the authorizations in both the schemes will be identical, and

we can assert that γ D ′ � q D if and only if γ N ′ � q N .

Note that, in the Negation scheme, addition/deletion of a rule

mplicitly consists of addition/deletion of multiple rules. This is be-

ause, as mentioned in Section 7.1 , transforming a condition into

um of products form may lead to multiple rules. We skip present-

ng those details. But, it is imperative that the state transitions in-

olving adding/deleting rules in the sum of products form be per-

ormed in such a way that the format of each reachable state γ N ′

n the Negation scheme follows the format given in the previously

resented mappings. �

. Related Work

.1. Negated Condition and Negative Authorization in Access Control

odels

Many access control models have considered the notions of

egated conditions and/or negative authorizations. In the follow-

ng, we survey a representative set of such proposals in the litera-

ure. Table 1 summarizes our survey results in terms of access con-

rol model and features, support for negated conditions, support

or negative authorization, and practical applications discussed in

ach work. We show several examples of the notions of negated

onditions and negative authorization from these works that cor-

espond to what we captured in our Negation model (Definition 5)

nd Deny model (Definition 6), respectively.

Access Matrix . One of the earliest and most influential mod-

ls, the access control matrix model (Graham and Denning, 1971;

arrison et al., 1976; Lampson, 1974), represents authorizations

n the form of a matrix based on subjects (represented as rows),

bjects (indicated as columns), and rights/privileges that subjects

an exercise over objects (represented in cells). The access ma-

rix can be modified only if the specified conditions about current

ystem authorizations evaluate to true. But, the conditions check

nly for the presence of rights in the matrix cells. A variant of

he access matrix model, called the augmented typed access ma-

rix (ATAM) (Ammann et al., 1992), allows conditions to check for

he presence as well as the absence of a right in an access ma-

rix cell. This is similar to the optional negation operator asso-

iated with conditions within an authorization rule in our Nega-

ion model. The following is an example of ATAM command, which

ransfers the ownership of a file F from one user U to another user

 in the matrix M:
12
ommand transfer-ownership (U : user, V : user, F : f ile)

if own ∈ M[U, F] and own / ∈ M[V, F]

then

delete own from M[U, F] ;

enter own into M[V, F] ;

nd

Role-Based Access Control (RBAC) . In the RBAC policy model, ac-

ess permissions are assigned based on user roles (Sandhu, Coyne,

einstein, Youman, 1996). The traditional RBAC, however, supports

either negation nor negative authorization. The generalized role-

ased access control (GRBAC) (Moyer, Abamad, 2001) extends tra-

itional RBAC by incorporating subject roles, object roles and en-

ironment roles. A policy rule in GRBAC indicates a subject role,

bject role, and environment role. There is also an indicator for

hether the rule is allowing or prohibiting. Thus, it supports

egative authorizations. In a subsequent work, Al-Kahtani and

andhu (2004) investigated different aspects of negative autho-

ization in rule-based RBAC (RB-RBAC) family of models such as

ser authorization, conflict among rules and conflict resolution

olices. In the RB-RBAC family, negative authorization is repre-

ented by negative roles . For example, in a military unit that has a

ommander and four staff officers G 1 , G 2 , G 3 , G 4 , the requirement

hat “The Commander cannot delegate his role to a staff officer

hose rank is lower than a Lt. Colonel” can be represented in the

B-RBAC system as (Al-Kahtani, Sandhu, 2004):

t t ributes in the System :

a 1 : rank - type = officer
a 2 : Staff course = T ,
a 3 : Leadership course = T
a 4 : Rank ≥ Lt . Colonel ,
a 5 : Assignment Order = T

uthorization Rules :

a 1 ∧ a 2 ⇒ { G 1 , G 2 , G 3 , G 4 }
a 1 ∧ a 2 ∧ a 3 ∧ a 4 ∧ a 5 ⇒ Commander
¬ a 4 ⇒ ¬ Commander

an _ delegate (Commander , G i , duration , start - time)

lso, negated conditions can be specified in RB-RBAC using nega-

ion in attribute expressions.

Trust Management . Trust management is a form of distributed

ccess control that allows a principal to delegate some access de-

isions to other principals over one or more resources. The fam-

ly of role-based trust-management (RT) languages (Li et al., 2002;

i and Mitchell, 2003) combines the strengths of RBAC and pre-

ious trust management systems (Blaze et al., 1999; Clarke et al.,

001; Ellison et al., 1999; Rivest and Lampson, 1996). An access

ontrol permission is represented as a role, where role member-

hip is defined using different types of policy statements , also called

redentials or certificates . For instance, the simple inclusion state-

ent A.r ← B.r 1 means that every member of B ’s r 1 role is also

 member of A ’s r role, thereby causing a delegation of access de-

isions from principal A to principal B . However, similar to RBAC,

he standard RT language does not support specifying negation or

egative authorization. Adding a policy statement to the system

an only increase trust, and in turn, granting additional privileges.

zenko et al. (2006) proposed an extension to the standard RT lan-

uage, called RT �, that includes a restricted form of negation, and

emonstrated its usefulness in virtual communities such as P2P file

haring systems. Their extended language enables more expressive

olicies based on inclusion/exclusion of target communities rather

han individual members. For example, a policy stating “A com-

unity coordinator distrusts any entity whom she does not accept

ocally” can be specified in RT � as follows (Czenko, Tran, Doumen,

P. Iyer, A. Masoumzadeh and P. Narendran Computers & Security 116 (2022) 102586

Table 1

Access control models employing negated condition and negative authorization. Some works use alternative terminologies for negated condition and negative authorization

(deny rules), which are indicated in parentheses.

Work Applications Access Control Model Features Negated Condition Negative Authorization

ATAM (Ammann et al., 1992) Access matrix Checking absence of

rights

� (absence of a right)

GRBAC (Moyer, Abamad, 2001) Company RBAC Subject, object,

environment roles

�

RB-RBAC (Al-Kahtani, Sandhu,

2004)

Military unit RBAC � � (negative roles)

RT � (Czenko, Tran, Doumen,

Etalle, Hartel, den Hartog,

2006)

P2P applications Trust Mgt. �

REFEREE (Chu, Feigenbaum,

LaMacchia, Resnick, Strauss,

1997)

Web applications Trust Mgt. Logic programs �

TPL (Herzberg, Mass, Mihaeli,

Naor, Ravid, 2000)

E-business, healthcare Trust Mgt. Mapping from

certificates to roles

� (negative certificates)

Shinren (Dong, Dulay, 2010) E-market, healthcare Trust Mgt. Logic programs � � (distrust policy)

(Park, Sandhu, 2004) Digital resources (e.g.

e-book) usage

UCON Authorizations,

obligations, and

conditions

� ∼ a

WS-ABAC (Shen, Hong, 2006) Web services ABAC �

ABAC α (Jin, Krishnan, Sandhu,

2012)

ABAC �

HGABAC (Servos and Osborn,

2014)

University library ABAC Attribute inheritance

using groups

�

RAdAC (Kandala, Sandhu,

Bhamidipati, 2011)

Classified documents ABAC Risk as a decision factor �

ABMAC (Lang, Foster,

Siebenlist, Ananthakrishnan,

Freeman, 2009)

Grid computing ABAC Combining

heterogeneous policies

�

XACML (eXt, 2013) ABAC Combining policies and

rules

� (negative rules) �

PTaCL (Crampton, Morisset,

2012)

Company confidential

resources

ABAC Comprehensive policy

target and composition

spec.

� �

(Carminati et al., 2009, 2011) Online social networks ReBAC Semantic web � (filtering policies)

OSNAC (Masoumzadeh, Joshi,

2010)

Online social networks ReBAC Semantic web �

(Hu, Ahn, 2011) Online social networks ReBAC Multiparty authorization �

(Bruns et al., 2012; Fong,

2011; Fong and Siahaan, 2011)

Online social networks,

healthcare

ReBAC Uses modal logic, hybrid

logic

�

(Cheng et al., 2012a,b, 2014) Online social networks ReBAC Regular expressions �

(Crampton, Sellwood, 2014) Corporate project

management

ReBAC Path conditions &

principal matching

�

RPPM (Crampton, Sellwood,

2015)

University ReBAC � (forbidden path) �

RPPM2 (Stoller, 2015) Healthcare ReBAC Administrative model �

ARPPM (Crampton, Sellwood,

2016)

University ReBAC Administrative model � �

(Pasarella, Lobo, 2017) Online social networks ReBAC Datalog programs � �

(Bertino et al., 1997, 1999) Relational data

management systems

Rule-based DAC �

(Gal-Oz, Gudes, Fernández,

1993)

University Group-based Object methods access in

object-oriented databases

�

a UCON can trigger a stopped procedure to revoke usage rights. This can be considered to be similar to negative authorization, although a stopped procedure deals with

ongoing-authorizations rather than pre-authorizations .

E

A

m

fi

c

1

r

t

S

i

e

s

g

q

o

m

t

T

p

l

d

A

h

o

c

t

s

F

e

s

talle, Hartel, den Hartog, 2006):

.disagreeToAdd ← A.allCandidates � A.agreeToAdd

Other trust management proposals that incorporate state-

ents which can decrease privileges, thereby supporting speci-

cation of mutual exclusion policies like separation of duty, in-

lude REFEREE (Chu, Feigenbaum, LaMacchia, Resnick, Strauss,

997), TPL (Herzberg, Mass, Mihaeli, Naor, Ravid, 20 0 0), and Shin-

en (Dong, Dulay, 2010). In the REFEREE trust management sys-

em for web applications (Chu, Feigenbaum, LaMacchia, Resnick,

trauss, 1997), the evaluation of policies as well as credentials

s put under policy control to mitigate the risks associated with

xecuting arbitrary programs as part of the authorization deci-

ion (policies and credentials in REFEREE contain executable pro-

rams). The REFEREE supports negative authorization since a re-

uested action can be permitted/denied based on the presence
13
f sufficient credentials, and resolves conflicting information from

ultiple sources. However, REFEREE has no support for nega-

ive certificates (negated conditions in the context of this paper).

PL (Herzberg, Mass, Mihaeli, Naor, Ravid, 20 0 0) specifies the map-

ing of unknown users to predefined business roles, based on pub-

ic key certificates issued by third parties. Then, RBAC is utilized to

etermine the access control decisions based on the assigned roles.

 disjunctive set of rules for each role determines how a certificate

older can become a member in the role. Each rule defines a set

f necessary certificates for the role membership. The certificates

an be either positive or negative depending on whether the cer-

ificate should or should not exist for a rule to hold, which corre-

pond to positive and negated conditions in our Negation model.

or example, in an electronic marketplace to become a recognized

-vendor, a role membership rule stating “A recognized e-vendor

hould have a recommendation certificate and no warning certifi-

P. Iyer, A. Masoumzadeh and P. Narendran Computers & Security 116 (2022) 102586

c

(

<

<

s

p

m

S

s

g

c

a

o

n

p

f

i

c

t

w

r

t

b

s

a

t

a

p

S

m

g

e

w

fi

b

c

u

a

i

i

v

o

w

l

{
o

O

e

c

v

(

a

w

c

M

p

A

p

w

a

s

r

s

i

l

s

c

c

c

t

s

s

m

s

g

w

X

a

t

a

c

p

w

a

l

c

A

c

o

fi

d

c

g

p

w

i

S

i

i

u

a

¬
r

s

s

t

r

t

t

n

s

ate from any other recognized e-vendor” can be expressed in TPL

denoted in XML) as follows:

 POLICY >

< GROUP NAME="E-Vendors" >

< RULE >

< INCLUSION ID="reco" TYPE="Recommendation"

FROM="E-Vendors" >< /INCLUSION >

< EXCLUSION ID="warn" TYPE="Warning"

FROM="E-Vendors" >< /EXCLUSION >

< FUNCTION >< /FUNCTION >

< /RULE >

< /GROUP >

 /POLICY >

The Shinren (Dong, Dulay, 2010) trust management system con-

iders negative information and supports reasoning with incom-

lete, uncertain, and inconsistent information, such as the infor-

ation collected from an electronic marketplace. The syntax of the

hinren policy language is based on an extension of Datalog and

upports negated conditions. Besides, the Shinren trust policy lan-

uage allows policy makers to define trust as well as distrust poli-

ies, and employs prioritization to resolve conflicts between trust

nd distrust policies. The trust policies, distrust policies and pri-

ritization, respectively, correspond to positive authorization rules,

egative authorization rules, and conflict resolution strategy com-

onent in our context.

Usage Control (UCON) . Park and Sandhu (2004) proposed the

amily of UCON ABC models for usage control, which is a general-

zation of access control that integrates authorizations, obligations,

onditions, ongoing controls, and mutable subject and object at-

ributes. UCON supports the concept of ongoing-authorizations in

hich authorization decisions are made continuously while usage

ights are exercised. If certain attributes are changed, causing cer-

ain requirements to become dissatisfied, a stopped procedure can

e performed to revoke the currently allowed usage right. The

topped procedure can be considered to be similar to the negative

uthorization; however, it deals with ongoing-authorizations rather

han pre-authorization decision-making as in other models. UCON

lso supports negated conditions.

Attribute-Based Access Control (ABAC) . In ABAC, authorization

olicies are specified in terms of attributes of users and resources.

hen and Hong (2006) present an attribute-based access control

odel to address web services security, called WS-ABAC, which

rants access to web services based on attributes of the related

ntities. Further, Jin et al. (2012) develop a formal ABAC model,

hich they call ABAC α , that has just sufficient features to be con-

gured to do DAC, MAC and RBAC. Additionally, Servos and Os-

orn (2014) propose the hierarchical group and attribute-based ac-

ess control (HGABAC) that allows attribute inheritance through

ser and object groups, and also includes environment, connection

nd administrative attributes. In all of these ABAC models, spec-

fication of only granted permissions is considered, but the pol-

cy language supports negated conditions. For example, in a uni-

ersity library, a policy stating “Undergraduate students may check

ut any unrestricted book and any course materials for a course in

hich they are enrolled” can be represented in the HGABAC policy

anguage as (Servos and Osborn, 2014):

{ " "undergrad" IN user.user_type AND ((object.
bject_type = "book" AND NOT object.restricted)

R (object.object_type = "course" AND user.

nrolled_in IN object.req_course))" ,

heck_out_book }}

14
Researchers have proposed a formal framework to de-

elop abstract models for risk-based adaptive access control

RAdAC) (Kandala, Sandhu, Bhamidipati, 2011), employing

ttribute-based policy specification. In addition, there has been

ork on developing a flexible access control mechanism for Grid

omputing, namely attribute-based multipolicy access control (AB-

AC) model, that is based on ABAC and supports multiple security

olicies (Lang, Foster, Siebenlist, Ananthakrishnan, Freeman, 2009).

 policy in ABMAC consists of sub-policies and not rules, so a

olicy is the unit of decision-making in their model. Both of these

orks support specification of explicit negative authorizations,

nd utilize a combining algorithm, similar to conflict resolution

trategy in our context, to determine a final access decision.

The eXtensible Access Control Markup Language, or commonly

eferred to as XACML (eXt, 2013), is an OASIS standard that de-

cribes an XML-based access control policy language for specify-

ng attribute-based policies and an access control request/response

anguage for policy enforcement. In XACML, decision-making is

upported at rule-level as well as policy-level, and involves rule-

ombining and policy-combining algorithms for combining de-

isions from multiple rules and policies, respectively. The rule-

ombining algorithm in XACML corresponds to the conflict resolu-

ion strategy component in our Deny policy. Crampton and Moris-

et (2012) propose a language, which they call PTaCL, based on two

ub-languages, namely the policy target language (PTL) for deter-

ining when a policy should be evaluated and the policy compo-

ition language (PCL) for specifying complex policies. In their lan-

uage, atomic policies correspond to access control rules in XACML,

hereas policy trees correspond to policies and policy sets. Both

ACML and PTaCL support negated conditions as well as negative

uthorizations. In XACML, negated conditions are referred as nega-

ive rules .

Relationship-Based Access Control (ReBAC) . In ReBAC, policy rules

re specified based on relationships among users and resources

aptured in the system graph. Carminati et al. (2009, 2011) pro-

osed an access control framework which employs the semantic

eb rule language (SWRL) to define authorization, administration

nd filtering policies. Another semantic web-based approach al-

ows both users and the system to express policies based on access

ontrol ontologies (Masoumzadeh, Joshi, 2010). In addition, Hu and

hn (2011) proposed a formal model to address multi-party access

ontrol in online social networks (OSNs) with a policy conflict res-

lution mechanism based on voting. These works support speci-

cation of negative authorization; however their policy language

oes not support negated conditions.

Fong (2011) proposed a ReBAC policy language for social

omputing applications based on modal logic. The policy lan-

uage was later extended and improved with more expressive

ower (Fong, Siahaan, 2011). In a subsequent work, hybrid logic

as used for expressing ReBAC policies to achieve greater flex-

bility and better efficiency in policy specification (Bruns, Fong,

iahaan, Huth, 2012). These modal and hybrid logic-based pol-

cy languages support negated condition, but the rules can spec-

fy only the granted permissions. An example of a ReBAC rule

sing negated condition, “Grant access unless the accessor is

 family of the owner”, can be specified using modal logic as

 〈 family 〉 a . Cheng et al. (2012a, 2012b, 2014) proposed a se-

ies of ReBAC models for OSNs that use regular expressions to

pecify policies. Initially, the authors considered only relation-

hips among users (Cheng, Park, Sandhu, 2012). They later ex-

ended their model to incorporate relationships among users and

esources (Cheng, Park, Sandhu, 2012) and attribute informa-

ion of users and relationships for the purpose of access con-

rol (Cheng, Park, Sandhu, 2014). Their policy language supports

egated condition (i.e., checking absence of the specified relation-

hip sequence), but does not support negative authorization. For

P. Iyer, A. Masoumzadeh and P. Narendran Computers & Security 116 (2022) 102586

i

t

u

a

〈

e

c

i

d

m

c

e

m

p

fi

P

A

T

R

t

F

g

t

b

f

P

A

i

t

S

R

w

s

g

e

d

w

p

a

i

a

o

r

r

T

i

r

t

B

f

c

a

〈
s

n

o

t

c

e

p

f

c

a

g

n

p

t

t

8

o

1

i

s

c

t

a

t

R

h

R

a

e

s

c

s

i

p

a

t

s

s

q

c

W

t

t

n

w

c

t

9

c

m

t

r

t

o

nstance, the authorization rule “Grant access to the event post if

he subject is not an immediate friend and is connected through

sers whose occupation is student ” can be represented in their

ttribute-aware policy language as:

 read , EventPost , (u a , (¬ (f, 1) : ∀ [+ 1 , −1] , occupation (u) = ’ student ’ , _)) 〉
Crampton and Sellwood (2014, 2015) proposed ReBAC mod-

ls for general-purpose computing systems that introduced the

oncept of authorization principals which are analogous to roles

n RBAC. The policies are specified in terms of path con-

itions which are similar to regular expressions. Their initial

odel (Crampton, Sellwood, 2014) does not support negation, but

an support positive as well as negative authorization rules. For

xample, in a corporate project management scenario, the require-

ent that “Grant write access to all resources (i.e., files, folders,

rinters) that are allocated to the accessor’s team” can be speci-

ed in their model as given below (Crampton, Sellwood, 2014):

 rincipal - Matching Rule : (Member-of ; Resource-for ,
Team-Resource-User)

uthorization Rule : (Team-Resource-User , �, write , 1)

he model succeeding the above work, called

PPM (Crampton, Sellwood, 2015), supports both negated condi-

ions, in terms of forbidden paths , and deny authorization rules.

or example, in a university, the requirement that “Grant the

rading right to all coursework answers if the accessor is a

eaching-assistant but not the enrolled-student of the course” can

e expressed in the RPPM model through the specification of the

ollowing rules (Crampton, Sellwood, 2015):

 rincipal - Matching Rule :

(is-ta-for ; is-coursework-for ,
is-enrolled-on ; is-coursework-for , course-ta)

uthorization Rule : (course-ta , �, grade , 1)

There have been proposals in the literature that define admin-

strative ReBAC models for regulating changes to all aspects of

he ReBAC policy in general computing systems (Crampton and

ellwood, 2016; Stoller, 2015). The authorization policy in the

PPM2 model (Stoller, 2015) supports only negative authorizations,

hereas that in the ARPPM model (Crampton, Sellwood, 2016) also

upports negated conditions in terms of positive and negative tar-

ets.

More recently, Pasarella and Lobo (2017) presented a very gen-

ral framework to specify and implement ReBAC policies by intro-

ucing a class of Datalog programs suitable for modeling ReBAC,

hich they refer to as ReBAC Datalog policies. Their work sup-

orts both negated conditions and negative authorizations. For ex-

mple, the requirement that “Friends of a user who are not fam-

ly are allowed to view party posts” can be specified in their Dat-

log framework using the following rules, considering the DENY -
verrides conflict resolution strategy:

el (O, owns , Res) , rel (O, f riend , Req) ,

prop (Res , partyP ost) → grant (Req , Res)

el (O, owns , Res) , rel (O, family , Req) ,

prop (Res , partyP ost) → deny (Req , Res)

he same authorizations can be specified using negated condition

n their framework as follows:

el (O, owns , Res) , rel (O, frie nd , Req) , ¬ rel (O, fami ly , Req) ,

prop (Res , part yPost) → grant (Req , Res)

Database Management Systems (DBMS) . The support for nega-

ive authorization has also been explored in the domain of DBMS.

ertino et al. (1999b, 1997) presented an authorization model
15
or relational DBMS that, along with positive authorizations, also

onsiders negative authorizations for specifying explicit denial for

 user to access an object (i.e., a table). For example, the rule

 Alice,select,-,Reports,Bob,strong 〉 states that Alice cannot

elect records from the Reports table. It also indicates that this

egative authorization has been specified by Bob and cannot be

verridden. In addition, Gal-Oz et al. (1993) have presented an au-

horization model for object-oriented databases that controls ac-

ess to objects through methods to conform with the concept of

ncapsulation (i.e., access to the data in an object should only be

erformed through a method). Their model also provides support

or negative authorization.

Expressiveness Analysis . As demonstrated above, many access

ontrol proposals in the literature have used negated conditions

nd negative authorizations (deny rules) as part of their policy lan-

uage in order to provide flexible specification. However, they have

ot concretely analyzed them in terms of expressiveness. Our work

rovides a formal comparison of the expressive power of models

hat utilize negated conditions with those that utilize negative au-

horizations.

.2. Access Control Security Analysis & Expressiveness Comparison

Early works on the analysis of access control policies focused

n the safety problem (Harrison et al., 1976; Lipton and Snyder,

977; Sandhu, 1988, 1992), where the objective is to determine

f there exists a reachable state in which a presumably untrusted

ubject has access to a certain object. Li et al. (2005) introduced se-

urity analysis as a generalization of the policy analysis problems

o verify whether other desired security properties, such as avail-

bility, are maintained across state transitions in an access con-

rol system. Security analysis was initially demonstrated for the

T policy languages (Li et al., 2002; Li and Mitchell, 2003). It

as since been extended to the context of other models such as

BAC (Li, Tripunitara, 2006), ABAC (Jha, Sural, Atluri, Vaidya, 2019),

nd ReBAC (Masoumzadeh, 2018).

Tripunitara and Li (2007) present a theory for comparing the

xpressive power of access control models based on two notions of

imulations called state-matching reductions and reductions. Their

oncept is based on simulations that preserve security properties

uch as availability, mutual exclusion, and bounded safety. Accord-

ng to their theory, when one scheme can represent all types of

olicies that another can, then the former is deemed to be at least

s expressive as the latter. That is, using state-matching reduc-

ion, they reduce the compositional security analysis problem in one

cheme to that in another scheme. Compositional security analy-

is generalizes security analysis to consider logical combinations of

ueries in security analysis. A reduction is used to reduce the se-

urity analysis problem in one scheme to that in another scheme.

e adopt the notion of access control scheme (Definition 7) from

heir work to specify a set of states and state-transition policies in

he proposed Negation and Deny models. In addition, we adopt the

otion of state-matching reduction (Definition 8) based on which

e compare the expressive power of the Negation model, i.e., poli-

ies that use negated conditions, and the Deny model, i.e., policies

hat use negative authorization.

. Discussions and Conclusion

As demonstrated in our literature review in Section 8 , the con-

ept of “negation” has been widely used in access control policy

odels to provide flexible authorization. In particular, we identify

wo forms of this concept: negated conditions and negative autho-

izations. Our survey shows that many models support either of

hose, and some models even provide both. Therefore, the choice

f supporting either one seems arbitrary. Our key contribution in

P. Iyer, A. Masoumzadeh and P. Narendran Computers & Security 116 (2022) 102586

t

s

(

m

n

t

d

r

s

e

t

c

t

t

n

i

m

d

o

e

I

t

w

t

s

d

m

s

t

v

D

c

i

C

y

a

i

a

A

t

i

A

t

t

D

m

p

N

q

N

q

N

p

t

w

i

s

p

p

A

p

fi

f

e

T

r

e

e

T

s

d

p

δ

p

r

g

r

e

m

m

e

m

r

p

his paper is to analyze this choice formally. In particular, we de-

ign abstract rule-based models that support negated conditions

i.e., the Negation model) or negative authorization (i.e., the Deny

odel). Then, in the context of a formal access control expressive-

ess analysis framework (Tripunitara, Li, 2007), we compare the

wo proposed models and formally prove our results. The abstract

esign of the models ensures the intuitive generalizability of our

esults.

The key result of this work is that Negation is more expres-

ive than Deny . In particular, we prove that Negation is at least as

xpressive as Deny and that Deny is not as expressive as Nega-

ion. This means that models which support negated conditions

an safely express policies that one might express using nega-

ive authorizations (assuming all other required concepts unrelated

o negation are supported). It also means that supporting both

egated conditions and negative authorization in the same model

s redundant in terms of expressive power. We hope that this for-

al result sheds light on the usage of negation concepts in the

esign and implementation of access control models.

While the expressiveness advantage of the negated conditions

ver negative authorization is important, it is also important to

mphasize that expressive power is not the only deciding factor.

t is important that access control administrators can easily main-

ain and manage policies. For example, it might seem intuitive that

hen dealing with a complex policy with many rules, negative au-

horizations (deny rules) would be easier to comprehend and rea-

on about by human administrators than rules with negated con-

itions. Further scientific studies of human factors in policy ad-

inistration and how they may affect the design of policy models

eem necessary. It is also interesting to theoretically characterize

he space of access control policies that are representable using

arious Deny models.

eclaration of Competing Interest

The authors declare that they have no known competing finan-

ial interests or personal relationships that could have appeared to

nfluence the work reported in this paper.

RediT authorship contribution statement

Padmavathi Iyer: Conceptualization, Methodology, Formal anal-

sis, Writing – original draft. Amirreza Masoumzadeh: Conceptu-

lization, Methodology, Formal analysis, Writing – review & edit-

ng. Paliath Narendran: Conceptualization, Methodology, Formal

nalysis, Writing – review & editing.

cknowledgments

The authors would like to thank the anonymous reviewers for

heir valuable comments and helpful suggestions that guided us in

mproving the final manuscript.

ppendix A. Correctness of Mapping from Deny to Negation

We prove that the mapping from the Deny scheme to the Nega-

ion scheme, presented in Section 7.1 , is correct. In other words,

he Negation scheme preserves the authorizations enforced by the

eny scheme during state transitions. We show that our proposed

apping does not lead to over-assignment or under-assignment of

ermissions during the mapping from the Deny scheme to the

egation scheme. In the over-assignment scenario, an access re-

uest denied in the Deny scheme is permitted in the mapped

egation scheme. In the under-assignment scenario, an access re-

uest permitted in the Deny scheme is denied in the mapped

egation scheme.
16
In order to demonstrate the correctness of our proposed map-

ing, we employ the strategy of proof by contradiction . Specifically,

o show that there are no over-assignments or under-assignments,

e prove that the claim that an access request was permitted

n the Deny scheme but was incorrectly denied in the Negation

cheme leads to a contradiction, and vice-versa. Furthermore, we

rovide separate proofs for the cases of DP-PO and DD-DO meta-

olicies.

1. Case of DP-PO Meta-Policy in the Deny Scheme

The mapping of access control rules from the Deny scheme im-

lementing DP-PO meta-policy to the Negation scheme are speci-

ed in (#31) and (#32) .

We first discuss the policy in the Deny scheme. We consider the

ollowing positive authorization rule represented in logic format:

xec _ per mit D (? u, ? r) :- C i (? u, ? r) , . . . , C j (? u, ? r) . (#A.1)

he conditional statements associated with negative authorization

ules are as follows:

xec _ deny D (? u, ? r) :- C n (? u, ? r) , . . . , C p (? u, ? r) .
. . .

xec _ deny D (? u, ? r) :- C q (? u, ? r) , . . . , C r (? u, ? r) .
(#A.2)

he meta-policy and the access decision rules in the DP-PO Deny

cheme would be as follows:

per mit D (? u, ? r) :- ¬ exec _ per mit D (? u, ? r) , ¬ exec _ deny D (? u, ? r) .

(#A.3a)

per mit D (? u, ? r) :- exec _ per mit D (? u, ? r) , exec _ deny D (? u, ? r) .

(#A.3b)

per mit D (? u, ? r) :- exec _ per mit D (? u, ? r) , ¬ exec _ deny D (? u, ? r) .

(#A.3c)

eny D (? u, ? r) :- ¬ exec _ per mit D (? u, ? r) , exec _ deny D (? u, ? r) .

(#A.3d)

In the above conditional statements, according to the DP-PO

olicy, we assigned the predicate permit to both default decision,

, given in (#3a) and conflict resolution strategy, ρ , given in (#3b) .

Given the policy in the Deny scheme, we now discuss the map-

ing of rules from the Deny scheme to the Negation scheme. Cor-

esponding to the positive rule in (#A.1) , based on the mapping

iven in (#32) , we have the same rule in the Negation scheme rep-

esented in logic format as follows:

xec _ per mit N (? u, ? r) :- C i (? u, ? r) , . . . , C j (? u, ? r) . (#A.4)

Corresponding to the negative rules in (#A.2) , based on the

apping given in (#31) , we have the following conditional state-

ent in the Negation scheme:

xec _ per mit N (? u, ? r) :- (C n (? u, ? r) , . . . , C p (? u, ? r)) , . . . ,

¬ (C q (? u, ? r) , . . . , C r (? u, ? r)) . (#A.5)

We note that, in the Negation scheme, the conditional state-

ents for determining the final authorization decisions for access

equests, indicated by the permit and deny predicates, were shown

reviously in (#5a) and (#5b) .

P. Iyer, A. Masoumzadeh and P. Narendran Computers & Security 116 (2022) 102586

A

a

d

d

r

T

¬

t

d

n

c

o

i

p

m

¬

¬

t

d

u

¬

¬

t

(

t

e

e

b

A

t

s

i

t

e

t

D

t

C

D

N

t

i

e

d

t

a

t

i

A

r

i

d

r

m

e

t

s

¬

e

t

d

u

¬

r

W

i

c

C

t

B

a

(

r

¬

e

(

A

p

fi

t

t

i

(

1.1. Under-Assignment: Permitted in Deny but Denied in Negation

Suppose that we have under-assignment. Therefore, there is an

ccess request 〈 u 1 , r 1 〉 that is permitted in the Deny scheme, but

enied in the Negation scheme:

permit D (u 1 , r 1) . (#A.6a)

eny N (u 1 , r 1) . (#A.6b)

In the context of the Negation scheme, the above DENY autho-

ization can be only obtained through default decision (see (#5a)).

herefore, based on (#5a) and (#A.6b) , we infer:

 exec _ permit N (u 1 , r 1) . (#A.7)

In the context of the DP-PO Deny scheme, there are two ways

o obtain the PERMIT authorization in (#A.6a) . One way is through

efault decision (see (#A.3a)). The other way is through a combi-

ation of conflict resolution strategy (see (#A.3b)) and PERMIT ac-

ess decision rule (see (#A.3c)). In the following, we consider each

f these possibilities in turn, and prove that our proposed mapping

s correct using a contradiction strategy.

Obtaining PERMIT Authorization through Default Decision Sup-

ose that (#A.6a) is obtained through the default decision state-

ent given in (#A.3a) . Based on (#A.3a) , we infer:

 exec _ permit D (u 1 , r 1) . (#A.8a)

 exec _ deny D (u 1 , r 1) . (#A.8b)

Based on (#A.8b) , none of the negative authorization rules in

he Deny scheme can be applicable to 〈 u 1 , r 1 〉 . Therefore, all con-

itional statements associated with negative rules (see (#A.2)) are

nsatisfied:

 (C n (u 1 , r 1) , · · · , C p (u 1 , r 1)) .

· · ·
 (C q (u 1 , r 1) , · · · , C r (u 1 , r 1)) . (#A.9)

Since the conditional evaluation is the same in the Deny and

he Negation schemes, (#A.9) applies to both schemes. Based on

#A.5) and (#A.9) , we infer the following predicate about the au-

horization of 〈 u 1 , r 1 〉 in the Negation scheme:

xec _ permit N (u 1 , r 1) . (#A.10)

However, the two predicates in (#A .10) and (#A .7) contradict

ach other. Therefore, we conclude that (#A.6a) could not have

een obtained through default decision.

Obtaining PERMIT Authorization through Conflict Resolution and

ccess Decision Suppose (#A.6a) is obtained through a combina-

ion of conflict resolution strategy (see (#A.3b)) and access deci-

ion rule (see (#A.3c)). From both these conditional statements, we

nfer the following predicate about the authorization of 〈 u 1 , r 1 〉 in
he Deny scheme:

xec _ permit D (u 1 , r 1) . (#A.11)

In order to infer the predicate given in (#A.11) , the positive au-

horization rule in (#A.1) should be applicable to 〈 u 1 , r 1 〉 in the

eny scheme. So, we infer the following clause regarding satisfac-

ion of conditions by 〈 u 1 , r 1 〉 :
 i (u 1 , r 1) , . . . , C j (u 1 , r 1) . (#A.12)

Since the conditions are shared between the Negation and the

eny schemes, the clause given in (#A.12) should be true in the

egation scheme as well. Therefore, based on (#A.12) and the au-

horization rule in (#A.4) , we infer the following predicate regard-

ng the authorization of 〈 u 1 , r 1 〉 in the Negation scheme:

xec _ permit N (u 1 , r 1) . (#A.13)
17
However, the two predicates in (#A.13) and (#A.7) contra-

ict each other. Therefore, (#A.6a) could not have been obtained

hrough conflict resolution and access decision. Considering this

nd our earlier result, that (#A.6a) could not have been obtained

hrough default decision, we conclude that the assumption stated

n (#A.6) cannot be satisfied.

1.2. Over-Assignment: Denied in Deny but Permitted in Negation

Suppose that we have over-assignment. Thus, there is an access

equest 〈 u 2 , r 2 〉 that is denied in the Deny scheme but is permitted

n the Negation scheme:

eny D (u 2 , r 2) . (#A.14a)

permit N (u 2 , r 2) . (#A.14b)

In context of the Negation scheme, the above PERMIT autho-

ization can be only obtained through the access decision state-

ent in (#5b) . Therefore, based on (#5b) and (#A.14b) , we infer:

xec _ permit N (u 2 , r 2) . (#A.15)

In the context of the DP-PO Deny scheme, the DENY authoriza-

ion in (#A.14a) can be only obtained through the access decision

tatement given in (#A.3d) . Therefore, based on (#A.3d) , we infer:

 exec _ permit D (u 2 , r 2) . (#A.16a)

xec _ deny D (u 2 , r 2) . (#A.16b)

Based on (#A.16a) , none of the positive authorization rules in

he Deny scheme can be applicable to 〈 u 2 , r 2 〉 . Therefore, all con-

itional statements associated with positive rules (see (#A.1)) are

nsatisfied:

 (C i (u 2 , r 2) , . . . , C j (u 2 , r 2)) . (#A.17)

In addition, based on (#A.16b) , at least one negative autho-

ization rule in the Deny scheme should be applicable to 〈 u 2 , r 2 〉 .
ithout loss of generality, we consider that the first negative rule

n (#A.2) is applicable to 〈 u 2 , r 2 〉 . Thus, we infer the following

lause regarding the satisfaction of conditions by 〈 u 2 , r 2 〉 :
 n (u 2 , r 2) , . . . , C p (u 2 , r 2) . (#A.18)

Since the conditional evaluation is the same in the Deny and

he Negation schemes, (#A.17) and (#A.18) apply to both schemes.

ased on (#A.17) and (#A.18) , we can observe that none of the

uthorization rules in the Negation scheme, given in (#A.4) and

#A.5) , is applicable to 〈 u 2 , r 2 〉 . So, we infer the following predicate

egarding the authorization of 〈 u 2 , r 2 〉 in the Negation scheme:

 exec _ permit N (u 2 , r 2) . (#A.19)

However, the two predicates in (#A.19) and (#A.15) contradict

ach other. Therefore, we conclude that the assumption stated in

#A.14) cannot be satisfied.

2. Case of DD-DO Meta-Policy in the Deny Scheme

The mapping of access control rules from the Deny scheme im-

lementing DD-DO meta-policy to the Negation scheme is speci-

ed in (#33) .

We first discuss the policy in the Deny scheme. The condi-

ional statements representing the positive and negative authoriza-

ion rules are given in (#A.1) and (#A.2) , respectively. We special-

ze the conditional statements of meta-policy given in (#3a) and

#3b) according to the DD-DO policy, by instantiating δ and ρ to

P. Iyer, A. Masoumzadeh and P. Narendran Computers & Security 116 (2022) 102586

t

r

d

d

d

m

t

e

m

w

A

a

d

d

o

o

¬

(

m

e

¬

a

D

t

(

t

d

u

¬

¬

a

B

t

w

i

e

e

i

A

r

i

d

r

m

i

e

t

d

b

a

s

p

t

B

¬

¬

p

t

r

¬

t

(

t

¬

w

h

fl

o

r

i

t

e

a

he deny predicate. Thus, the meta-policy and the access decision

ules are as follows:

eny D (? u, ? r) :- ¬ exec _ per mit D (? u, ? r) , ¬ exec _ deny D (? u, ? r) .

(#A.20a)

eny D (? u, ? r) :- exec _ per mit D (? u, ? r) , exec _ deny D (? u, ? r) .

(#A.20b)

per mit D (? u, ? r) :- exec _ per mit D (? u, ? r) , ¬ exec _ deny D (? u, ? r) .

(#A.20c)

eny D (? u, ? r) :- ¬ exec _ per mit D (? u, ? r) , exec _ deny D (? u, ? r) .

(#A.20d)

For the given policy in the Deny scheme, the conditional state-

ents representing the “mapped” authorization rules in the Nega-

ion scheme, according to (#33) , are as follows:

xec _ per mit N (? u, ? r) :- (C i (? u, ? r) , . . . , C j (? u, ? r)) ,

¬ (C n (? u, ? r) , . . . , C p (? u, ? r)) , . . . , ¬ (C q (? u, ? r) , . . . , C r (? u, ? r)) .

(#A.21)

We note that the conditional statements corresponding to the

eta-policy and the access decision rules in the Negation scheme

ere shown earlier in (#5a) and (#5b) .

2.1. Under-Assignment: Permitted in Deny but Denied in Negation

Suppose that we have under-assignment. Therefore, there is an

ccess request 〈 u 3 , r 3 〉 that is permitted in the Deny scheme but is

enied in the Negation scheme:

permit D (u 3 , r 3) . (#A.22a)

eny N (u 3 , r 3) . (#A.22b)

In the Negation scheme, the above DENY authorization can be

nly obtained through default decision given in (#5a) . Thus, based

n (#5a) and (#A.22b) , we infer:

 exec _ permit N (u 3 , r 3) . (#A.23)

In the DD-DO Deny scheme, the PERMIT authorization in

#A.22a) can be only obtained through the access decision state-

ent given in (#A.20c) . Based on (#A.20c) , we infer:

xec _ permit D (u 3 , r 3) . (#A.24a)

 exec _ deny D (u 3 , r 3) . (#A.24b)

In order to infer the predicate given in (#A.24a) , the positive

uthorization rule in (#A.1) should be applicable to 〈 u 3 , r 3 〉 in the

eny scheme. So, we infer the following clause regarding satisfac-

ion of conditions by 〈 u 3 , r 3 〉 :
C i (u 3 , r 3) , . . . , C j (u 3 , r 3)) . (#A.25)

In addition, based on (#A.24b) , none of the negative rules in

he Deny scheme can be applicable to 〈 u 3 , r 3 〉 . Therefore, all con-

itional statements associated with negative rules (see (#A.2)) are

nsatisfied:

 (C n (u 3 , r 3) , · · · , C p (u 3 , r 3)) .

· · ·
 (C q (u 3 , r 3) , · · · , C r (u 3 , r 3)) . (#A.26)
18
Since the conditional evaluation is the same in the Negation

nd the Deny schemes, (#A.25) and (#A.26) apply to both schemes.

ased on (#A.25) and (#A.26) , we can observe that the authoriza-

ion rule given in (#A.21) becomes applicable to 〈 u 3 , r 3 〉 . Therefore,

e infer the following predicate about the authorization of 〈 u 3 , r 3 〉
n the Negation scheme:

xec _ permit N (u 3 , r 3) . (#A.27)

However, the two predicates in (#A .23) and (#A .27) contradict

ach other. Therefore, we can conclude that the assumption stated

n (#A.22) cannot be satisfied.

2.2. Over-Assignment: Denied in Deny but Permitted in Negation

Suppose that we have over-assignment. Thus, there is an access

equest 〈 u 4 , r 4 〉 that is denied in the Deny scheme but is permitted

n the Negation scheme:

eny D (u 4 , r 4) . (#A.28a)

permit N (u 4 , r 4) . (#A.28b)

In context of the Negation scheme, the above PERMIT autho-

ization can be only obtained through the access decision state-

ent given in (#5b) . Therefore, based on (#5b) and (#A.28b) , we

nfer:

xec _ permit N (u 4 , r 4) . (#A.29)

In the context of the DD-DO Deny scheme, there are two ways

o obtain the DENY authorization in (#A.28a) . One way is through

efault decision (see (#A.20a)). The other way is through a com-

ination of conflict resolution statement (see (#A.20b)) and DENY
ccess decision statement (see (#A.20d)). In the following, we con-

ider each of these possibilities in turn, and prove that our pro-

osed mapping is correct using a contradiction strategy.

Obtaining DENY Authorization through Default Decision Suppose

hat (#A.28a) is obtained through default decision (see (#A.20a)).

ased on (#A.20a) , we infer:

 exec _ permit D (u 4 , r 4) . (#A.30a)

 exec _ deny D (u 4 , r 4) . (#A.30b)

In order to infer the predicate given in (#A.30a) , none of the

ositive authorization rules in the Deny scheme can be applicable

o 〈 u 4 , r 4 〉 . Thus, the conditional statement associated with positive

ules (see (#A.1)) is unsatisfied:

 (C i (u 4 , r 4) , . . . , C j (u 4 , r 4)) . (#A.31)

Since the conditional evaluation is the same in the Deny and

he Negation schemes, (#A.31) applies to both schemes. Based on

#A .31) and (#A .21) , we infer the following predicate about the au-

horization of 〈 u 4 , r 4 〉 in the Negation scheme:

 exec _ permit N (u 4 , r 4) . (#A.32)

However, the two predicates in (#A.29) and (#A.32) contradict

ith each other. Therefore, we conclude that (#A.28a) could not

ave been obtained through default decision.

Obtaining DENY Authorization through Access Decision and Con-

ict Resolution Suppose (#A.28a) is obtained using a combination

f conflict resolution strategy (see (#A.20b)) and access decision

ule (see (#A.20d)). From both these conditional statements, we

nfer the following predicate about the authorization of 〈 u 4 , r 4 〉 in
he Deny scheme:

xec _ deny D (u 4 , r 4) . (#A.33)

In order to infer the predicate in (#A.33) , without loss of gener-

lity, we consider that the first negative rule in (#A.2) is applicable

P. Iyer, A. Masoumzadeh and P. Narendran Computers & Security 116 (2022) 102586

t

r

C

D

s

r

t

¬

d

t

a

t

i

R

A

A

B

B

B

B

B

C

C

C

C

C

C

C

C

C

C

C

C

C

C

D

E

e

F

F

F

G

G

H

H

H

H

J

J

J

K

L

L

L

L

L

L

L

M

M

M

P

P

R

R

S

S

S

S
o 〈 u 4 , r 4 〉 in the Deny scheme. So, we infer the following clause

egarding satisfaction of conditions by 〈 u 4 , r 4 〉 :
 n (u 4 , r 4) , . . . , C p (u 4 , r 4) . (#A.34)

Since the conditions are shared between the Negation and the

eny schemes, the clause in (#A.34) should be true in the Negation

cheme as well. Therefore, based on (#A.34) and the authorization

ule given in (#A.21) , we infer the following predicate regarding

he authorization of 〈 u 4 , r 4 〉 in the Negation scheme:

 exec _ permit N (u 4 , r 4) . (#A.35)

However, the two predicates in (#A.29) and (#A.35) contra-

ict each other. Therefore, (#A.28a) could not have been obtained

hrough conflict resolution and access decision. Considering this

nd our earlier result, that (#A.28a) could not have been obtained

hrough default decision, we conclude that the assumption stated

n (#A.28) cannot be satisfied.

eferences

l-Kahtani, M.A. , Sandhu, R. , 2004. Rule-based RBAC with negative authorization.

In: 20th Annual Computer Security Applications Conference. IEEE, pp. 405–415 .
mmann, P. , Sandhu, R.S. , et al. , 1992. Implementing transaction control expressions

by checking for absence of access rights. In: ACSAC. Citeseer, pp. 131–140 .

ertino, E. , Buccafurri, F. , Ferrari, E. , Rullo, P. , 1999. A logical framework for reason-
ing on data access control policies. In: Proceedings of the 12th IEEE Computer

Security Foundations Workshop. IEEE, pp. 175–189 .
ertino, E. , Jajodia, S. , Samarati, P. , 1999. A flexible authorization mechanism for

relational data management systems. ACM Transactions on Information Systems
(TOIS) 17 (2), 101–140 .

ertino, E. , Samarati, P. , Jajodia, S. , 1997. An extended authorization model for rela-
tional databases. IEEE Transactions on Knowledge and Data Engineering 9 (1),

85–101 .

laze, M. , Feigenbaum, J. , Ioannidis, J. , Keromytis, A.D. , 1999. The keynote trust man-
agement system version 2. Technical Report. Internet RFC 2704, September .

runs, G. , Fong, P.W. , Siahaan, I. , Huth, M. , 2012. Relationship-based access control:
its expression and enforcement through hybrid logic. In: Proceedings of the sec-

ond ACM conference on Data and Application Security and Privacy, pp. 117–124 .
arminati, B. , Ferrari, E. , Heatherly, R. , Kantarcioglu, M. , Thuraisingham, B. , 2009. A

semantic web based framework for social network access control. In: Proceed-

ings of the 14th ACM symposium on Access control models and technologies,
pp. 177–186 .

arminati, B. , Ferrari, E. , Heatherly, R. , Kantarcioglu, M. , Thuraisingham, B. , 2011. Se-
mantic web-based social network access control. computers & security 30 (2-3),

108–115 .
heng, Y. , Bijon, K. , Sandhu, R. , 2016. Extended ReBAC administrative models with

cascading revocation and provenance support. In: Proceedings of the 21st ACM

on Symposium on Access Control Models and Technologies, pp. 161–170 .
heng, Y. , Park, J. , Sandhu, R. , 2012. Relationship-based access control for online

social networks: Beyond user-to-user relationships. In: 2012 International Con-
ference on Privacy, Security, Risk and Trust and 2012 International Confernece

on Social Computing. IEEE, pp. 646–655 .
heng, Y. , Park, J. , Sandhu, R. , 2012. A user-to-user relationship-based access con-

trol model for online social networks. In: IFIP Annual Conference on Data and

Applications Security and Privacy. Springer, pp. 8–24 .
heng, Y. , Park, J. , Sandhu, R. , 2014. Attribute-aware relationship-based access con-

trol for online social networks. In: IFIP Annual Conference on Data and Appli-
cations Security and Privacy. Springer, pp. 292–306 .

homicki, J. , Lobo, J. , Naqvi, S. , 2003. Conflict resolution using logic programming.
IEEE Transactions on Knowledge and Data Engineering 15 (1), 244–249 .

hu, Y.-H. , Feigenbaum, J. , LaMacchia, B. , Resnick, P. , Strauss, M. , 1997. REFEREE:

Trust management for Web applications. Computer Networks and ISDN systems
29 (8-13), 953–964 .

larke, D. , Elien, J.-E. , Ellison, C. , Fredette, M. , Morcos, A. , Rivest, R.L. , 2001. Certifi-
cate chain discovery in SPKI/SDSI. Journal of Computer security 9 (4), 285–322 .

rampton, J. , Morisset, C. , 2012. PTaCL: A language for attribute-based access con-
trol in open systems. In: International Conference on Principles of Security and

Trust. Springer, pp. 390–409 .

rampton, J. , Sellwood, J. , 2014. Path conditions and principal matching: a new ap-
proach to access control. In: Proceedings of the 19th ACM symposium on Access

control models and technologies, pp. 187–198 .
rampton, J. , Sellwood, J. , 2015. Relationships, paths and principal matching: a new

approach to access control. arXiv preprint arXiv:1505.07945 .
rampton, J. , Sellwood, J. , 2016. ARPPM: Administration in the RPPM Model. In: Pro-

ceedings of the Sixth ACM Conference on Data and Application Security and
Privacy, pp. 219–230 .

zenko, M. , Tran, H. , Doumen, J. , Etalle, S. , Hartel, P. , den Hartog, J. , 2006. Non-

monotonic trust management for P2P applications. Electronic Notes in Theoret-
ical Computer Science 157 (3), 113–130 .

ong, C. , Dulay, N. , 2010. Shinren: Non-monotonic trust management for distributed
systems. In: IFIP International Conference on Trust Management. Springer,

pp. 125–140 .
19
llison, C. , Frantz, B. , Lampson, B. , Rivest, R. , Thomas, B. , Ylonen, T. , 1999. SPKI cer-
tificate theory. Technical Report. RFC 2693 .

Xtensible Access Control Markup Language (XACML) Version 3.0. http://docs.
oasis-open.org/xacml/3.0/xacml-3.0-core-spec-os-en.html , 2013.

erraiolo, D. , Kuhn, R. , 1992. Role-based access control. In: Proceedings of the 15th
NIST-NSA National Computer Security Conference, pp. 13–16 .

ong, P.W. , 2011. Relationship-based access control: protection model and policy
language. In: Proceedings of the first ACM conference on Data and application

security and privacy, pp. 191–202 .

ong, P.W. , Siahaan, I. , 2011. Relationship-based access control policies and their pol-
icy languages. In: Proceedings of the 16th ACM symposium on Access control

models and technologies, pp. 51–60 .
al-Oz, N. , Gudes, E. , Fernández, E.B. , 1993. A Model of Methods Access Autho-

rization in Object-Oriented Databases. In: Proceedings of the 19th International
Conference on Very Large Data Bases. Morgan Kaufmann Publishers Inc., San

Francisco, CA, USA, pp. 52–61 .

raham, G.S. , Denning, P.J. , 1971. Protection: principles and practice. In: Proceedings
of the May 16-18, 1972, spring joint computer conference, pp. 417–429 .

arrison, M.A. , Ruzzo, W.L. , Ullman, J.D. , 1976. Protection in operating systems.
Communications of the ACM 19 (8), 461–471 .

erzberg, A. , Mass, Y. , Mihaeli, J. , Naor, D. , Ravid, Y. , 20 0 0. Access control meets
public key infrastructure, or: Assigning roles to strangers. In: Proceeding 20 0 0

IEEE Symposium on Security and Privacy. S&P 20 0 0. IEEE, pp. 2–14 .

u, H. , Ahn, G.-J. , 2011. Multiparty authorization framework for data sharing in on-
line social networks. In: IFIP Annual Conference on Data and Applications Secu-

rity and Privacy. Springer, pp. 29–43 .
u, V.C. , Ferraiolo, D. , Kuhn, R. , Friedman, A.R. , Lang, A.J. , Cogdell, M.M. ,

Schnitzer, A. , Sandlin, K. , Miller, R. , Scarfone, K. , 2013. Guide to attribute based
access control (ABAC) definition and considerations (draft). NIST special publi-

cation 800 (162) .

ajodia, S. , Samarati, P. , Subrahmanian, V. , 1997. A logical language for expressing
authorizations. In: Proceedings. 1997 IEEE Symposium on Security and Privacy

(Cat. No. 97CB36097). IEEE, pp. 31–42 .
ha, S. , Sural, S. , Atluri, V. , Vaidya, J. , 2019. Security analysis of ABAC under an ad-

ministrative model. IET information security 13 (2), 96–103 .
in, X. , Krishnan, R. , Sandhu, R. , 2012. A unified attribute-based access control model

covering DAC, MAC and RBAC. In: IFIP Annual Conference on Data and Applica-

tions Security and Privacy. Springer, pp. 41–55 .
andala, S. , Sandhu, R. , Bhamidipati, V. , 2011. An attribute based framework for

risk-adaptive access control models. In: 2011 Sixth International Conference on
Availability, Reliability and Security. IEEE, pp. 236–241 .

ampson, B.W. , 1974. Protection. ACM SIGOPS Operating Systems Review 8 (1),
18–24 .

ang, B. , Foster, I. , Siebenlist, F. , Ananthakrishnan, R. , Freeman, T. , 2009. A flexible

attribute based access control method for grid computing. Journal of Grid Com-
puting 7 (2), 169 .

i, N. , Mitchell, J.C. , 2003. RT: A role-based trust-management framework. In: Pro-
ceedings DARPA Information Survivability Conference and Exposition, Vol. 1.

IEEE, pp. 201–212 .
i, N. , Mitchell, J.C. , Winsborough, W.H. , 2002. Design of a role-based trust-manage-

ment framework. In: Proceedings 2002 IEEE Symposium on Security and Pri-
vacy. IEEE, pp. 114–130 .

i, N. , Mitchell, J.C. , Winsborough, W.H. , 2005. Beyond proof-of-compliance: security

analysis in trust management. Journal of the ACM (JACM) 52 (3), 474–514 .
i, N. , Tripunitara, M.V. , 2006. Security analysis in role-based access control. ACM

Transactions on Information and System Security (TISSEC) 9 (4), 391–420 .
ipton, R.J. , Snyder, L. , 1977. A linear time algorithm for deciding subject security.

Journal of the ACM (JACM) 24 (3), 455–464 .
asoumzadeh, A. , 2018. Security analysis of relationship-based access control poli-

cies. In: Proceedings of the Eighth ACM Conference on Data and Application

Security and Privacy, pp. 186–195 .
asoumzadeh, A. , Joshi, J. , 2010. OSNAC: An ontology-based access control model

for social networking systems. In: 2010 IEEE Second International Conference
on Social Computing. IEEE, pp. 751–759 .

oyer, M.J. , Abamad, M. , 2001. Generalized role-based access control. In: Proceed-
ings 21st International Conference on Distributed Computing Systems. IEEE,

pp. 391–398 .

ark, J. , Sandhu, R. , 2004. The UCONABC usage control model. ACM Transactions on
Information and System Security (TISSEC) 7 (1), 128–174 .

asarella, E. , Lobo, J. , 2017. A datalog framework for modeling relationship-based ac-
cess control policies. In: Proceedings of the 22nd ACM on Symposium on Access

Control Models and Technologies, pp. 91–102 .
ivest, R.L. , Lampson, B. , 1996. SDSI-a simple distributed security infrastructure.

Crypto .

izvi, S.Z.R. , Fong, P.W. , Crampton, J. , Sellwood, J. , 2015. Relationship-based access
control for an open-source medical records system. In: Proceedings of the 20th

ACM Symposium on Access Control Models and Technologies, pp. 113–124 .
altzer, J.H. , Schroeder, M.D. , 1975. The protection of information in computer sys-

tems. Proceedings of the IEEE 63 (9), 1278–1308 .
andhu, R.S. , 1988. The schematic protection model: its definition and analysis for

acyclic attenuating schemes. Journal of the ACM (JACM) 35 (2), 404–432 .

andhu, R.S. , 1992. The typed access matrix model. In: IEEE Symposium on Security
and Privacy, pp. 122–136 .

andhu, R.S. , Coyne, E.J. , Feinstein, H.L. , Youman, C.E. , 1996. Role-based access con-
trol models. Computer 29 (2), 38–47 .

http://refhub.elsevier.com/S0167-4048(21)00409-0/sbref0002
http://refhub.elsevier.com/S0167-4048(21)00409-0/sbref0002
http://refhub.elsevier.com/S0167-4048(21)00409-0/sbref0002
http://refhub.elsevier.com/S0167-4048(21)00409-0/sbref0003
http://refhub.elsevier.com/S0167-4048(21)00409-0/sbref0003
http://refhub.elsevier.com/S0167-4048(21)00409-0/sbref0003
http://refhub.elsevier.com/S0167-4048(21)00409-0/sbref0003
http://refhub.elsevier.com/S0167-4048(21)00409-0/sbref0004
http://refhub.elsevier.com/S0167-4048(21)00409-0/sbref0004
http://refhub.elsevier.com/S0167-4048(21)00409-0/sbref0004
http://refhub.elsevier.com/S0167-4048(21)00409-0/sbref0004
http://refhub.elsevier.com/S0167-4048(21)00409-0/sbref0004
http://refhub.elsevier.com/S0167-4048(21)00409-0/sbref0005
http://refhub.elsevier.com/S0167-4048(21)00409-0/sbref0005
http://refhub.elsevier.com/S0167-4048(21)00409-0/sbref0005
http://refhub.elsevier.com/S0167-4048(21)00409-0/sbref0005
http://refhub.elsevier.com/S0167-4048(21)00409-0/sbref0006
http://refhub.elsevier.com/S0167-4048(21)00409-0/sbref0006
http://refhub.elsevier.com/S0167-4048(21)00409-0/sbref0006
http://refhub.elsevier.com/S0167-4048(21)00409-0/sbref0006
http://refhub.elsevier.com/S0167-4048(21)00409-0/sbref0007
http://refhub.elsevier.com/S0167-4048(21)00409-0/sbref0007
http://refhub.elsevier.com/S0167-4048(21)00409-0/sbref0007
http://refhub.elsevier.com/S0167-4048(21)00409-0/sbref0007
http://refhub.elsevier.com/S0167-4048(21)00409-0/sbref0007
http://refhub.elsevier.com/S0167-4048(21)00409-0/sbref0008
http://refhub.elsevier.com/S0167-4048(21)00409-0/sbref0008
http://refhub.elsevier.com/S0167-4048(21)00409-0/sbref0008
http://refhub.elsevier.com/S0167-4048(21)00409-0/sbref0008
http://refhub.elsevier.com/S0167-4048(21)00409-0/sbref0008
http://refhub.elsevier.com/S0167-4048(21)00409-0/sbref0009
http://refhub.elsevier.com/S0167-4048(21)00409-0/sbref0009
http://refhub.elsevier.com/S0167-4048(21)00409-0/sbref0009
http://refhub.elsevier.com/S0167-4048(21)00409-0/sbref0009
http://refhub.elsevier.com/S0167-4048(21)00409-0/sbref0009
http://refhub.elsevier.com/S0167-4048(21)00409-0/sbref0009
http://refhub.elsevier.com/S0167-4048(21)00409-0/sbref0010
http://refhub.elsevier.com/S0167-4048(21)00409-0/sbref0010
http://refhub.elsevier.com/S0167-4048(21)00409-0/sbref0010
http://refhub.elsevier.com/S0167-4048(21)00409-0/sbref0010
http://refhub.elsevier.com/S0167-4048(21)00409-0/sbref0010
http://refhub.elsevier.com/S0167-4048(21)00409-0/sbref0010
http://refhub.elsevier.com/S0167-4048(21)00409-0/sbref0011
http://refhub.elsevier.com/S0167-4048(21)00409-0/sbref0011
http://refhub.elsevier.com/S0167-4048(21)00409-0/sbref0011
http://refhub.elsevier.com/S0167-4048(21)00409-0/sbref0011
http://refhub.elsevier.com/S0167-4048(21)00409-0/sbref0012
http://refhub.elsevier.com/S0167-4048(21)00409-0/sbref0012
http://refhub.elsevier.com/S0167-4048(21)00409-0/sbref0012
http://refhub.elsevier.com/S0167-4048(21)00409-0/sbref0012
http://refhub.elsevier.com/S0167-4048(21)00409-0/sbref0013
http://refhub.elsevier.com/S0167-4048(21)00409-0/sbref0013
http://refhub.elsevier.com/S0167-4048(21)00409-0/sbref0013
http://refhub.elsevier.com/S0167-4048(21)00409-0/sbref0013
http://refhub.elsevier.com/S0167-4048(21)00409-0/sbref0014
http://refhub.elsevier.com/S0167-4048(21)00409-0/sbref0014
http://refhub.elsevier.com/S0167-4048(21)00409-0/sbref0014
http://refhub.elsevier.com/S0167-4048(21)00409-0/sbref0014
http://refhub.elsevier.com/S0167-4048(21)00409-0/sbref0015
http://refhub.elsevier.com/S0167-4048(21)00409-0/sbref0015
http://refhub.elsevier.com/S0167-4048(21)00409-0/sbref0015
http://refhub.elsevier.com/S0167-4048(21)00409-0/sbref0015
http://refhub.elsevier.com/S0167-4048(21)00409-0/sbref0016
http://refhub.elsevier.com/S0167-4048(21)00409-0/sbref0016
http://refhub.elsevier.com/S0167-4048(21)00409-0/sbref0016
http://refhub.elsevier.com/S0167-4048(21)00409-0/sbref0016
http://refhub.elsevier.com/S0167-4048(21)00409-0/sbref0016
http://refhub.elsevier.com/S0167-4048(21)00409-0/sbref0016
http://refhub.elsevier.com/S0167-4048(21)00409-0/sbref0017
http://refhub.elsevier.com/S0167-4048(21)00409-0/sbref0017
http://refhub.elsevier.com/S0167-4048(21)00409-0/sbref0017
http://refhub.elsevier.com/S0167-4048(21)00409-0/sbref0017
http://refhub.elsevier.com/S0167-4048(21)00409-0/sbref0017
http://refhub.elsevier.com/S0167-4048(21)00409-0/sbref0017
http://refhub.elsevier.com/S0167-4048(21)00409-0/sbref0017
http://refhub.elsevier.com/S0167-4048(21)00409-0/sbref0018
http://refhub.elsevier.com/S0167-4048(21)00409-0/sbref0018
http://refhub.elsevier.com/S0167-4048(21)00409-0/sbref0018
http://refhub.elsevier.com/S0167-4048(21)00409-0/sbref0019
http://refhub.elsevier.com/S0167-4048(21)00409-0/sbref0019
http://refhub.elsevier.com/S0167-4048(21)00409-0/sbref0019
http://refhub.elsevier.com/S0167-4048(21)00409-0/sbref0020
http://refhub.elsevier.com/S0167-4048(21)00409-0/sbref0020
http://refhub.elsevier.com/S0167-4048(21)00409-0/sbref0020
http://refhub.elsevier.com/S0167-4048(21)00409-0/sbref0021
http://refhub.elsevier.com/S0167-4048(21)00409-0/sbref0021
http://refhub.elsevier.com/S0167-4048(21)00409-0/sbref0021
http://refhub.elsevier.com/S0167-4048(21)00409-0/sbref0022
http://refhub.elsevier.com/S0167-4048(21)00409-0/sbref0022
http://refhub.elsevier.com/S0167-4048(21)00409-0/sbref0022
http://refhub.elsevier.com/S0167-4048(21)00409-0/sbref0022
http://refhub.elsevier.com/S0167-4048(21)00409-0/sbref0022
http://refhub.elsevier.com/S0167-4048(21)00409-0/sbref0022
http://refhub.elsevier.com/S0167-4048(21)00409-0/sbref0022
http://refhub.elsevier.com/S0167-4048(21)00409-0/sbref0023
http://refhub.elsevier.com/S0167-4048(21)00409-0/sbref0023
http://refhub.elsevier.com/S0167-4048(21)00409-0/sbref0023
http://refhub.elsevier.com/S0167-4048(21)00409-0/sbref0024
http://refhub.elsevier.com/S0167-4048(21)00409-0/sbref0024
http://refhub.elsevier.com/S0167-4048(21)00409-0/sbref0024
http://refhub.elsevier.com/S0167-4048(21)00409-0/sbref0024
http://refhub.elsevier.com/S0167-4048(21)00409-0/sbref0024
http://refhub.elsevier.com/S0167-4048(21)00409-0/sbref0024
http://refhub.elsevier.com/S0167-4048(21)00409-0/sbref0024
http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-os-en.html
http://refhub.elsevier.com/S0167-4048(21)00409-0/sbref0025
http://refhub.elsevier.com/S0167-4048(21)00409-0/sbref0025
http://refhub.elsevier.com/S0167-4048(21)00409-0/sbref0025
http://refhub.elsevier.com/S0167-4048(21)00409-0/sbref0026
http://refhub.elsevier.com/S0167-4048(21)00409-0/sbref0026
http://refhub.elsevier.com/S0167-4048(21)00409-0/sbref0027
http://refhub.elsevier.com/S0167-4048(21)00409-0/sbref0027
http://refhub.elsevier.com/S0167-4048(21)00409-0/sbref0027
http://refhub.elsevier.com/S0167-4048(21)00409-0/sbref0028
http://refhub.elsevier.com/S0167-4048(21)00409-0/sbref0028
http://refhub.elsevier.com/S0167-4048(21)00409-0/sbref0028
http://refhub.elsevier.com/S0167-4048(21)00409-0/sbref0028
http://refhub.elsevier.com/S0167-4048(21)00409-0/sbref0029
http://refhub.elsevier.com/S0167-4048(21)00409-0/sbref0029
http://refhub.elsevier.com/S0167-4048(21)00409-0/sbref0029
http://refhub.elsevier.com/S0167-4048(21)00409-0/sbref0030
http://refhub.elsevier.com/S0167-4048(21)00409-0/sbref0030
http://refhub.elsevier.com/S0167-4048(21)00409-0/sbref0030
http://refhub.elsevier.com/S0167-4048(21)00409-0/sbref0030
http://refhub.elsevier.com/S0167-4048(21)00409-0/sbref0031
http://refhub.elsevier.com/S0167-4048(21)00409-0/sbref0031
http://refhub.elsevier.com/S0167-4048(21)00409-0/sbref0031
http://refhub.elsevier.com/S0167-4048(21)00409-0/sbref0031
http://refhub.elsevier.com/S0167-4048(21)00409-0/sbref0031
http://refhub.elsevier.com/S0167-4048(21)00409-0/sbref0031
http://refhub.elsevier.com/S0167-4048(21)00409-0/sbref0032
http://refhub.elsevier.com/S0167-4048(21)00409-0/sbref0032
http://refhub.elsevier.com/S0167-4048(21)00409-0/sbref0032
http://refhub.elsevier.com/S0167-4048(21)00409-0/sbref0033
http://refhub.elsevier.com/S0167-4048(21)00409-0/sbref0033
http://refhub.elsevier.com/S0167-4048(21)00409-0/sbref0033
http://refhub.elsevier.com/S0167-4048(21)00409-0/sbref0033
http://refhub.elsevier.com/S0167-4048(21)00409-0/sbref0033
http://refhub.elsevier.com/S0167-4048(21)00409-0/sbref0033
http://refhub.elsevier.com/S0167-4048(21)00409-0/sbref0033
http://refhub.elsevier.com/S0167-4048(21)00409-0/sbref0033
http://refhub.elsevier.com/S0167-4048(21)00409-0/sbref0033
http://refhub.elsevier.com/S0167-4048(21)00409-0/sbref0033
http://refhub.elsevier.com/S0167-4048(21)00409-0/sbref0033
http://refhub.elsevier.com/S0167-4048(21)00409-0/sbref0034
http://refhub.elsevier.com/S0167-4048(21)00409-0/sbref0034
http://refhub.elsevier.com/S0167-4048(21)00409-0/sbref0034
http://refhub.elsevier.com/S0167-4048(21)00409-0/sbref0034
http://refhub.elsevier.com/S0167-4048(21)00409-0/sbref0035
http://refhub.elsevier.com/S0167-4048(21)00409-0/sbref0035
http://refhub.elsevier.com/S0167-4048(21)00409-0/sbref0035
http://refhub.elsevier.com/S0167-4048(21)00409-0/sbref0035
http://refhub.elsevier.com/S0167-4048(21)00409-0/sbref0035
http://refhub.elsevier.com/S0167-4048(21)00409-0/sbref0036
http://refhub.elsevier.com/S0167-4048(21)00409-0/sbref0036
http://refhub.elsevier.com/S0167-4048(21)00409-0/sbref0036
http://refhub.elsevier.com/S0167-4048(21)00409-0/sbref0036
http://refhub.elsevier.com/S0167-4048(21)00409-0/sbref0037
http://refhub.elsevier.com/S0167-4048(21)00409-0/sbref0037
http://refhub.elsevier.com/S0167-4048(21)00409-0/sbref0037
http://refhub.elsevier.com/S0167-4048(21)00409-0/sbref0037
http://refhub.elsevier.com/S0167-4048(21)00409-0/sbref0038
http://refhub.elsevier.com/S0167-4048(21)00409-0/sbref0038
http://refhub.elsevier.com/S0167-4048(21)00409-0/sbref0039
http://refhub.elsevier.com/S0167-4048(21)00409-0/sbref0039
http://refhub.elsevier.com/S0167-4048(21)00409-0/sbref0039
http://refhub.elsevier.com/S0167-4048(21)00409-0/sbref0039
http://refhub.elsevier.com/S0167-4048(21)00409-0/sbref0039
http://refhub.elsevier.com/S0167-4048(21)00409-0/sbref0039
http://refhub.elsevier.com/S0167-4048(21)00409-0/sbref0040
http://refhub.elsevier.com/S0167-4048(21)00409-0/sbref0040
http://refhub.elsevier.com/S0167-4048(21)00409-0/sbref0040
http://refhub.elsevier.com/S0167-4048(21)00409-0/sbref0041
http://refhub.elsevier.com/S0167-4048(21)00409-0/sbref0041
http://refhub.elsevier.com/S0167-4048(21)00409-0/sbref0041
http://refhub.elsevier.com/S0167-4048(21)00409-0/sbref0041
http://refhub.elsevier.com/S0167-4048(21)00409-0/sbref0042
http://refhub.elsevier.com/S0167-4048(21)00409-0/sbref0042
http://refhub.elsevier.com/S0167-4048(21)00409-0/sbref0042
http://refhub.elsevier.com/S0167-4048(21)00409-0/sbref0042
http://refhub.elsevier.com/S0167-4048(21)00409-0/sbref0043
http://refhub.elsevier.com/S0167-4048(21)00409-0/sbref0043
http://refhub.elsevier.com/S0167-4048(21)00409-0/sbref0043
http://refhub.elsevier.com/S0167-4048(21)00409-0/sbref0044
http://refhub.elsevier.com/S0167-4048(21)00409-0/sbref0044
http://refhub.elsevier.com/S0167-4048(21)00409-0/sbref0044
http://refhub.elsevier.com/S0167-4048(21)00409-0/sbref0045
http://refhub.elsevier.com/S0167-4048(21)00409-0/sbref0045
http://refhub.elsevier.com/S0167-4048(21)00409-0/sbref0046
http://refhub.elsevier.com/S0167-4048(21)00409-0/sbref0046
http://refhub.elsevier.com/S0167-4048(21)00409-0/sbref0046
http://refhub.elsevier.com/S0167-4048(21)00409-0/sbref0047
http://refhub.elsevier.com/S0167-4048(21)00409-0/sbref0047
http://refhub.elsevier.com/S0167-4048(21)00409-0/sbref0047
http://refhub.elsevier.com/S0167-4048(21)00409-0/sbref0048
http://refhub.elsevier.com/S0167-4048(21)00409-0/sbref0048
http://refhub.elsevier.com/S0167-4048(21)00409-0/sbref0048
http://refhub.elsevier.com/S0167-4048(21)00409-0/sbref0049
http://refhub.elsevier.com/S0167-4048(21)00409-0/sbref0049
http://refhub.elsevier.com/S0167-4048(21)00409-0/sbref0049
http://refhub.elsevier.com/S0167-4048(21)00409-0/sbref0050
http://refhub.elsevier.com/S0167-4048(21)00409-0/sbref0050
http://refhub.elsevier.com/S0167-4048(21)00409-0/sbref0050
http://refhub.elsevier.com/S0167-4048(21)00409-0/sbref0051
http://refhub.elsevier.com/S0167-4048(21)00409-0/sbref0051
http://refhub.elsevier.com/S0167-4048(21)00409-0/sbref0051
http://refhub.elsevier.com/S0167-4048(21)00409-0/sbref0051
http://refhub.elsevier.com/S0167-4048(21)00409-0/sbref0051
http://refhub.elsevier.com/S0167-4048(21)00409-0/sbref0052
http://refhub.elsevier.com/S0167-4048(21)00409-0/sbref0052
http://refhub.elsevier.com/S0167-4048(21)00409-0/sbref0052
http://refhub.elsevier.com/S0167-4048(21)00409-0/sbref0053
http://refhub.elsevier.com/S0167-4048(21)00409-0/sbref0053
http://refhub.elsevier.com/S0167-4048(21)00409-0/sbref0054
http://refhub.elsevier.com/S0167-4048(21)00409-0/sbref0054
http://refhub.elsevier.com/S0167-4048(21)00409-0/sbref0055
http://refhub.elsevier.com/S0167-4048(21)00409-0/sbref0055
http://refhub.elsevier.com/S0167-4048(21)00409-0/sbref0055
http://refhub.elsevier.com/S0167-4048(21)00409-0/sbref0055
http://refhub.elsevier.com/S0167-4048(21)00409-0/sbref0055

P. Iyer, A. Masoumzadeh and P. Narendran Computers & Security 116 (2022) 102586

S

S

S

T

d

W

P

b

r
G

t
r

A
d

-

b
F

r
c

v

P

U

S
i

t
i

ervos, D. , Osborn, S.L. , 2014. HGABAC: Towards a formal model of hierarchical at-
tribute-based access control. In: International Symposium on Foundations and

Practice of Security. Springer, pp. 187–204 .
hen, H.-b. , Hong, F. , 2006. An attribute-based access control model for web ser-

vices. In: 2006 Seventh International Conference on Parallel and Distributed
Computing, Applications and Technologies (PDCAT’06). IEEE, pp. 74–79 .

toller, S.D. , 2015. An administrative model for relationship-based access control. In:
IFIP Annual Conference on Data and Applications Security and Privacy. Springer,

pp. 53–68 .

ripunitara, M.V. , Li, N. , 2007. A theory for comparing the expressive power of ac-
cess control models 1. Journal of Computer Security 15 (2), 231–272 .

i Vimercati, S.D.C. , Samarati, P. , Jajodia, S. , 2005. Policies, models, and languages
for access control. In: International Workshop on Databases in Networked In-

formation Systems. Springer, pp. 225–237 .
ang, L. , Wijesekera, D. , Jajodia, S. , 2004. A logic-based framework for attribute

based access control. In: Proceedings of the 2004 ACM workshop on Formal

methods in security engineering, pp. 45–55 .

admavathi Iyer is a PhD candidate of Computer Science at the University at Al-

any - SUNY, and a member of the Albany Lab for Privacy and Security (ALPS). She
20
eceived her bachelor’s and master’s degrees in Computer Science/Engineering from

GSIPU, Delhi, India and University at Albany - SUNY, respectively. Her research in-

erests include analysis and mining of access control policies. Her prior work has
eceived the best paper award from ACM SACMAT 2020.

mirreza Masoumzadeh is an Assistant Professor of Computer Science and co-
irector of the Albany Lab for Privacy & Security (ALPS) at the University at Albany

 SUNY. He received his PhD in Information Science from the University of Pitts-

urgh, and earlier, his BS and MS degrees in Computer Science/Engineering from

erdowsi University, Iran and Sharif University of Technology, Iran, respectively. His

esearch interests revolve around information security, privacy, and trust in modern
omputing systems, including theoretical models and mechanisms for specification,

erification, and analysis of access control policies.

aliath Narendran is a Professor in the Department of Computer Science at the

niversity at Albany, State University of New York. He received his PhD in Computer

cience from the Rensselaer Polytechnic Institute in 1984. Before joining UAlbany
n 1988, Dr. Narendran worked in the Computer Science Branch of General Elec-

ric Corporate Research and Development in Schenectady, New York. His research
nterests include automated reasoning, formal verification and pattern matching.

http://refhub.elsevier.com/S0167-4048(21)00409-0/sbref0056
http://refhub.elsevier.com/S0167-4048(21)00409-0/sbref0056
http://refhub.elsevier.com/S0167-4048(21)00409-0/sbref0056
http://refhub.elsevier.com/S0167-4048(21)00409-0/sbref0057
http://refhub.elsevier.com/S0167-4048(21)00409-0/sbref0057
http://refhub.elsevier.com/S0167-4048(21)00409-0/sbref0057
http://refhub.elsevier.com/S0167-4048(21)00409-0/sbref0058
http://refhub.elsevier.com/S0167-4048(21)00409-0/sbref0058
http://refhub.elsevier.com/S0167-4048(21)00409-0/sbref0059
http://refhub.elsevier.com/S0167-4048(21)00409-0/sbref0059
http://refhub.elsevier.com/S0167-4048(21)00409-0/sbref0059
http://refhub.elsevier.com/S0167-4048(21)00409-0/sbref0060
http://refhub.elsevier.com/S0167-4048(21)00409-0/sbref0060
http://refhub.elsevier.com/S0167-4048(21)00409-0/sbref0060
http://refhub.elsevier.com/S0167-4048(21)00409-0/sbref0060
http://refhub.elsevier.com/S0167-4048(21)00409-0/sbref0061
http://refhub.elsevier.com/S0167-4048(21)00409-0/sbref0061
http://refhub.elsevier.com/S0167-4048(21)00409-0/sbref0061
http://refhub.elsevier.com/S0167-4048(21)00409-0/sbref0061

	On the Expressive Power of Negated Conditions and Negative Authorizations in Access Control Models
	1 Introduction
	2 Formal Policy Language Specification
	2.1 Rule-Based Access Control
	2.2 Negation Model and Deny Model
	2.3 Different Combinations in Meta-Policy
	2.3.1 Default DENY and DENY-Overrides (DD-DO)
	2.3.2 Default DENY and PERMIT-Overrides (DD-PO)
	2.3.3 Default PERMIT and DENY-Overrides (DP-DO)
	2.3.4 Default PERMIT and PERMIT-Overrides (DP-PO)

	3 State-Transition Model & Expressiveness Comparison Framework
	3.1 Expressiveness Comparison Framework
	3.2 Modeling Security System as a State-Transition Model

	4 Logic-Based Representation of Rule-Based Policies
	4.1 Logic Program for the Deny Model
	4.2 Logic Program for the Negation Model

	5 Expressive Power: Negation Scheme vs. Deny Scheme
	6 Expressive Power of Deny Scheme
	6.1 A Protection State in Negation Scheme
	6.2 Deny is Not As Expressive As Negation

	7 Expressive Power of Negation Scheme
	7.1 Mapping from Deny Scheme to Negation Scheme
	7.2 Negation is as Expressive as Deny

	Proving Property 1
	Proving Property 2
	8 Related Work
	8.1 Negated Condition and Negative Authorization in Access Control Models
	8.2 Access Control Security Analysis & Expressiveness Comparison

	9 Discussions and Conclusion
	Declaration of Competing Interest
	CRediT authorship contribution statement
	Acknowledgments
	Appendix A Correctness of Mapping from Deny to Negation
	A1 Case of DP-PO Meta-Policy in the Deny Scheme
	A1.1 Under-Assignment: Permitted in Deny but Denied in Negation
	A1.2 Over-Assignment: Denied in Deny but Permitted in Negation

	A2 Case of DD-DO Meta-Policy in the Deny Scheme
	A2.1 Under-Assignment: Permitted in Deny but Denied in Negation
	A2.2 Over-Assignment: Denied in Deny but Permitted in Negation

	References

