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ABSTRACT
Mining algorithms for relationship-based access control policies

produce policies composed of relationship-based patterns that jus-

tify the input authorizations according to a given system graph.

The correct functioning of a policy mining algorithm is typically

tested based on experimental evaluations, in each of which the

miner is presented with a set of authorizations and a system graph,

and is expected to produce the corresponding ground truth policy.

In this paper, we propose formal properties that must exist between

the system graph and the ground truth policy in an evaluation test

so that the miner is challenged to produce the exact ground truth

policy. We show that failure to verify these properties in the exper-

iment leads to inadequate evaluation, i.e., not truly testing whether

the miner can handle the complexity of the ground truth policy. We

also argue that following these properties would provide a compu-

tational advantage in the evaluations. We propose algorithms to

identify and correct violations of these properties in system graphs.

We also present our observations regarding these properties and

their enforcement using a set of experimental studies.
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1 INTRODUCTION
Mining access control policies is an automated process of construct-

ing high-level access control policies from low-level authorization

information. Such a process is useful in refactoring existing poli-

cies or migrating existing policies to a system that uses a different
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policy model than the current one. Various mining approaches

have been proposed in the literature for role-based access control

(RBAC) [22, 23], attribute-based access control (ABAC) [12, 21, 25],

and relationship-based access control (ReBAC) [4, 8, 9, 18]. In the

context of ReBAC, the focus of this paper, a policy miner is given a

set of authorizations (which entity can/cannot access another en-

tity) and a system graph (graph of entities and their relationships in a
system). Researchers need to evaluate and establish the correctness

of their proposed policy mining algorithms. Proving the correctness

of any policy mining algorithm theoretically would be extremely

challenging. Therefore, the alternative approach that is taken is

testing the correctness experimentally using simulated/synthetic

test cases. Ideally, the set of test cases is comprehensive enough

to truly test a miner. For example, test cases with various levels of

policy complexity can be given to a miner.

The goal of a test case evaluation is to see whether the tested

miner canmine an expected ground truth policy based on a given set

of authorizations. The set of authorizations itself is produced based

on the ground truth policy on a given system graph. We note that

it is only fair to expect a miner to produce a semantically equivalent
policy to the ground truth policy, i.e., a policy that produces the

same authorizations that were given to it as an input. For example,

if there are semantically equivalent policies to the ground truth

policy, a policy miner should not be faulted for producing any of

those policies. However, we also note that the semantic equivalency

is also conditioned on the system graph that is given to the miner.

As an extreme case example, a system graph with no edges does not

produce any authorizations regardless of the ground truth policy. A

miner that is presented with a ground truth policy alongside such

a system graph, may mine any policy (including an empty policy

that does not authorize anything) and still be correct semantically

since all produce the same empty set of authorizations! Therefore,

even when a range of policies is tested it is critical to ensure that

those tests are each truly challenging for the miner.

In this paper, we propose that the pairing of ground truth policies

and system graphs should be carefully considered for an effective

experimental evaluation of ReBAC miners. We characterize the

properties for such effective pairings that demand the miner to

produce the exact ground truth policies, and present experimental

evaluations to support our theoretical results. That is, we show

that if these properties are violated in an evaluation scenario, the

miner will not be truly tested to reconstruct the intended policy.

Moreover, meeting these properties can be advantageous in large-

scale experiments since correctness can be tested by matching the

syntax of the policies rather than their semantics. We summarize

our contributions (and their organization) as follows:
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• We provide an abstract definition of ReBAC miners, and for-

malize semantic and syntactic equivalence of ReBAC policies

accordingly. We define the notions of graph-based semantic
equivalence andmining evaluation case (MEC) which are fun-

damental in interpreting the miners’ correctness (Section 3).

• We propose the notion of strong MEC as those MECs that

challenge a miner to produce a syntactically equivalent pol-

icy to ground truth (Section 3). We characterize strong MECs

by defining two formal properties for them: minimality and

maximality (Section 4). Those properties ensure that a policy

cannot, respectively, shrink and grow, without changing the

authorizations relative to a system graph.

• We propose algorithms for identifying violations of minimal-

ity/maximality (Section 5) and updating the system graph

to address them (Section 6). For this purpose, we consider a

system graph schema in our reference model that supports

restrictions to produce realistic synthetic graphs for a given

application domain (Section 2).

• We conduct extensive experiments using two system graph

generation methods and three miners from the literature. We

report our results on the chance of generating strong MECs

based on different sizes of system graphs and policy. We also

report the performance of proposed algorithms in testing

and correcting minimality/maximality violations (Section 7).

2 REFERENCE REBAC MODEL
The fundamental idea of ReBAC is to employ relationship informa-

tion between the entities (users and resources) of a system to make

access decisions. Accordingly, the system data model is based on the

idea of a labelled graph, in which nodes represent entities within

the system and edges represent relationships between entities, and

sequences of edges within the graph are used when processing the

authorization decisions. In this section, based on existing ReBAC

models [11, 13–15, 24], we present a reference model for ReBAC

that captures the necessary features in the context of this paper.

2.1 System Model/Schema
A system consists of a set of entities, which includes the sets of

subjects and objects. The authorization information in a system is

captured as a directed graph called system graph [13].

Definition 1 (System Graph). A system graph is a directed graph

denoted as𝐺 = ⟨𝑉 , 𝐸⟩ where𝑉 = 𝑆∪𝑂 is the set of nodes consisting

of subjects and objects in a system, 𝐿 is the set of edge labels and

𝐸 ⊆ 𝑉 ×𝑉 × 𝐿 is the set of edges (relationships) labelled from 𝐿.

In a typical system, subjects indicate users and objects indicate

protected resources. We employ dot notation to indicate an element

within a concept (e.g., 𝐺 .𝑉 refers to the nodes in system graph).

In order to form meaningful system graphs, we need to follow

some restrictions based on the knowledge in a particular domain. To

this end, we define a graph schema to constrain the types of nodes

and edges that can be specified in a system graph. We adopt ideas

from the OWL Web Ontology Language [2] to describe restrictions

on the relationships between various types of nodes in the schema.

These restrictions are sufficient for describing the schema in the

case study in this paper. Our proposed approaches for effective

evaluation are applicable irrespective of the expressiveness of a

schema, and so it is straightforward to extend our approach to work

with a more expressive schema.

Definition 2 (Graph Schema). We define graph schema as a tuple
G = ⟨V, Γ⟩, whereV indicates the set of node types and Γ indicates
the restrictions on the graph edges.

We employ the notation 𝜏(𝑣) to denote the type of a node 𝑣 . If a

node 𝑣 does not have a type, then we indicate that as 𝜏(𝑣)=null. A
restriction specifies what kinds of and how many edges can exist

from a given node type to other node types defined in the schema.

Definition 3 (Graph Restrictions). A graph restriction, or simply

a restriction, is defined for a node type 𝜏(𝑣) and represented as

a triple ⟨label, restr_type, target_node_type⟩, where label ∈
𝐿, restr_type ∈ {EXACTLY_ONE, ONLY}, target_node_type ∈ V ,

and target_node_type ≠ 𝜏(𝑣). We denote the set of graph restric-

tions as Γ = {⟨𝜏 (𝑣𝑖 ), ⟨label, restr_type, target_node_type⟩⟩}.
Specifically, in this paper, we define two types of restrictions as:

Definition 4 (ONLY Restriction Type). The graph restriction spec-

ified as ⟨label, ONLY, target_node_type⟩, on node type 𝜏(𝑣𝑖 ), re-

quires that for all nodes 𝑣𝑖 , if there exists an edge ⟨𝑣𝑖 , 𝑣 𝑗 , label⟩ in
the graph, then it must hold that 𝜏(𝑣 𝑗 ) = target_node_type.

Definition 5 (EXACTLY_ONE Restriction Type). The graph restric-

tion, ⟨label, EXACTLY_ONE, target_node_type⟩, on node type𝜏 (𝑣𝑖 )
requires that for all nodes 𝑣𝑖 , there must exist exactly one edge

⟨𝑣𝑖 , 𝑣 𝑗 , label⟩ in the graph such that 𝜏(𝑣 𝑗 ) = target_node_type.

For instance, consider the following set of restrictions based on

an excerpt of the graph schema from the project management case

study that we use for our experiments:

Γ = { ⟨Manager, ⟨projects, ONLY, Project⟩⟩,
⟨Manager, ⟨department, EXACTLY_ONE, Department⟩⟩,
⟨Budget, ⟨project, EXACTLY_ONE, Project⟩⟩,
⟨Project, ⟨department, EXACTLY_ONE, Department⟩⟩}

Here, Manager, Budget, Project, and Department are some

node types defined in the graph schema of the application. In the

above example, the ONLY restriction specifies that managers can

only be associated to projects through the projects relationship.
Note that this restriction does not require a Manager node to have

a projects relation; if it does have one or more, they must all be

associated to Project nodes. On the other hand, the EXACTLY_ONE
restriction on a Manager node specifies that a manager must be

associated with exactly one department. Similarly, the EXACTLY_ONE
restrictions on the Budget and the Project node types indicate

that a budget must be associated with exactly one project, and a

project must be associated with exactly one department.

Definition 6 (GraphWell-Formedness). Given schemaG = ⟨V, Γ⟩,
we say a system graph𝐺 = ⟨𝑉 , 𝐸⟩ iswell-formed if for each node 𝑣 ∈
𝑉 , it holds that 𝜏 (𝑣) ∈V , and for every edge ⟨𝑣, 𝑣 ′, 𝑙⟩ ∈ 𝐸, it holds that
either ⟨𝜏 (𝑣), ⟨𝑙, ONLY, 𝜏 (𝑣 ′)⟩⟩ ∈ Γ, or ⟨𝜏 (𝑣), ⟨𝑙, EXACTLY_ONE, 𝜏 (𝑣 ′)⟩⟩
∈ Γ and there is no 𝑣 ′′ ∈ 𝑉 such that 𝜏(𝑣 ′′)=𝜏(𝑣 ′) and ⟨𝑣, 𝑣 ′′, 𝑙⟩ ∈ 𝐸.

In the rest of the paper, well-formedness is implied when we

discuss system graphs.



2.2 ReBAC Policy Model
ReBAC policy rules use the relationship information in system

graph for making access decisions. A ReBAC authorization policy

grants accesses based on relationship patterns that specify different

arrangements of labeled edges between entities in a system graph.

Definition 7 (Relationship Pattern). A relationship pattern 𝜙 is

a sequence of relationship labels [𝑙1, 𝑙2, . . . , 𝑙𝑛], where 𝑙𝑖 ∈ 𝐿 and

1 ≤ 𝑛 ≤ 𝑁 . Here, 𝑁 denotes the maximum allowable length of a

relationship pattern that is determined by the target application.

We denote the domain of relationship patterns by R.

We use the notation −𝑙 to represent an edge with label 𝑙 ∈ 𝐿

traversed in the inverse direction. In this paper, we assume that all

authorization rules are about granting the same right (or action).

So, to help simplify our discussions, we use relationship patterns

and authorization rules interchangeably. Accordingly, we define a

ReBAC policy as follows:

Definition 8 (ReBAC Policy). A ReBAC policy 𝜌 = {𝜙𝑖 } consists
of a set of ReBAC authorization rules, i.e., relationship patterns, 𝜙𝑖 .

We alternatively use the term permitted pattern to refer to an

authorization rule 𝜙 . Also, we refer to any pattern 𝜙 ′ that is not part
of authorization policy as a non-permitted pattern, i.e., 𝜙 ′ ∈ R \ 𝜌 .

An access request, denoted by tuple ⟨𝑠, 𝑜⟩ ∈ 𝑆 ×𝑂 , consists of the

requesting subject 𝑠 and the requested object 𝑜 . An access request

will be permitted if it matches one of the authorization rules (i.e.,

relationship patterns) in policy 𝜌 , and will be denied otherwise. An

access request ⟨𝑠, 𝑜⟩ matches a relationship pattern 𝜙 if and only if

there is a path from 𝑠 to 𝑜 in𝐺 such that the sequence of edge labels

in the path matches the sequence of the labels in 𝜙 . Alternatively,

we say that the pattern 𝜙 applies to the request ⟨𝑠, 𝑜⟩ in such a case.

We can characterize a ReBAC policy on a given system graph

by enumerating its permitted access decisions or authorizations.

Definition 9 (Authorizations). We define a function 𝜆 that takes

system graph 𝐺 and ReBAC policy 𝜌 as inputs and produces the

corresponding complete set of authorizations, denoted by A =

𝜆(𝐺, 𝜌). Formally, ∀𝑠, 𝑜 ∈ 𝐺.𝑉 , ⟨𝑠, 𝑜⟩ ∈ A if and only if access

request ⟨𝑠, 𝑜⟩ is permitted by 𝜌 .

3 REBAC MINING AND MINING
EVALUATION CASES (MECS)

A ReBAC mining algorithm mines a ReBAC policy based on a given

set of authorizations and a system graph. We formally define a

ReBAC miner as follows:

Definition 10 (ReBAC Miner). A ReBAC miner is a function 𝜇 that

takes system graph𝐺 and authorizationsA as inputs and produces

a ReBAC policy 𝜌 as the mining output. We denote this by 𝜌 = 𝜇(𝐺 ,

A). A ReBAC miner assumes that authorizationsA are correct and

complete with respect to graph 𝐺 , i.e., ∀𝑠, 𝑜 ∈ 𝐺.𝑉 , ⟨𝑠, 𝑜⟩ ∈ A if

and only if access request ⟨𝑠, 𝑜⟩ is supposed to be permitted.

The above definition expects a ReBAC miner algorithm to be

a function, and hence deterministic. It means that a miner must

produce the same output 𝜌 for the same inputsA and𝐺 . While not

a hard requirement, such deterministic behavior is embedded in

the design of most mining algorithms. This property also facilitates

our formal discussion of miner evaluation in the rest of this section.

We also emphasize that the input authorizations to a miner are

required to be complete and correct. Correctness of a miner cannot

be formalized and established in presence of incorrect or missing

authorization information.

For evaluating the correctness and performance of ReBAC min-

ers, we need to set the expectations of their output, i.e., ReBAC

policies. In particular, we define the syntactic and semantic equiva-

lence of ReBAC policies for the purpose of evaluation as follows.

Definition 11 (Syntactic Equivalence). Policies 𝜌1 and 𝜌2 are syn-
tactically equivalent (or simply, equal), denoted by 𝜌1 = 𝜌2, if and

only if they contain the exact same set of rules.

The authorizations that a policy enforces in a system can be

considered as the semantics of that policy. Two policies that might

not be syntactically equivalent could be semantically equivalent if

they enforce the same set of authorizations.

Definition 12 (Graph-Based Semantic Equivalence). Policies 𝜌1
and 𝜌2 are semantically equivalent based on system graph 𝐺 , de-

noted by 𝜌1 ≡𝐺 𝜌2, if and only if they both produce the same

authorizations when evaluated on 𝐺 :

𝜌1 ≡𝐺 𝜌2 ⇐⇒ 𝜆(𝐺, 𝜌1) = 𝜆(𝐺, 𝜌2)

Definition 13 (Semantic Equivalence). Policies 𝜌1 and 𝜌2 are se-
mantically equivalent, denoted by 𝜌1 ≡ 𝜌2, if and only if they are

semantically equivalent based on any system graph:

𝜌1 ≡ 𝜌2 ⇐⇒ ∀𝐺, 𝜌1 ≡𝐺 𝜌2

Note that two policies that are not semantically equivalent in

general can be semantically equivalent based on specific system

graphs. As an extreme example, every pair of policies are semanti-

cally equivalent based on a system graph that has no edges. Since no

paths exist in such a graph, 𝜆() produces an empty set of authoriza-

tions regardless of the policy. Also, note that semantic equivalence

does not necessarily correspond to syntactic equivalence for poli-

cies. However, that is the case in the context of the policy model

used in this paper (Definition 8).

Inspired by the above definition of semantic equivalence we

devise a fair expectation for the correctness of a ReBAC miner:

Definition 14 (Correctness of ReBAC Miner). Consider inputs 𝐺

andA to ReBAC miner 𝜇. We say that mined policy 𝜌𝑚 = 𝜇 (𝐺,A)
is correct if and only if 𝜌𝑚 preserves the authorizations given in A
with respect to input system graph𝐺 , i.e., 𝜆(𝐺, 𝜌𝑚) = A. A ReBAC

miner is correct if it always produces correct mined policies, i.e.:

∀⟨𝐺,A⟩(𝜌𝑚 = 𝜇 (𝐺,A) =⇒ 𝜆(𝐺, 𝜌𝑚) = A)

The above definition of correctness ensures that the mined poli-

cies will have no over-assignment or under-assignment of autho-

rizations compared to the input authorizations. Deviation from this

requirement results in policies that are not capturing the exact au-

thorizations as expected, and hence, incorrect policies. However, we

note that proving the above correctness property for any proposed

miner is very challenging.

In the absence of a proof of correctness for a miner, the next best

option is to evaluate its correctness experimentally. The correctness

of a ReBAC miner can be experimentally evaluated using test cases



where the miner is provided an input pair of a system graph and a

set of authorizations, and is expected to produce the corresponding

ground-truth policy. We call such tests mining evaluation cases.

Definition 15 (Mining Evaluation Case (MEC)). We capture a

mining evaluation case (MEC) as a tuple ⟨𝐺, 𝜌𝑇 ⟩ where 𝐺 and 𝜌𝑇
are a system graph and a ground truth policy, respectively. Set of

authorizations A corresponding to MEC ⟨𝐺, 𝜌𝑇 ⟩ can be generated

using the 𝜆 function, i.e.,A = 𝜆(𝐺 ,𝜌𝑇 ). Miner 𝜇 passes MEC ⟨𝐺, 𝜌𝑇 ⟩
if it produces a correct output for input ⟨𝐺,A⟩, i.e., after mining

policy 𝜌𝑚 = 𝜇 (𝐺,A), we must have 𝜆(𝐺, 𝜌𝑚) = A. Alternatively,

we can express passing MEC ⟨𝐺, 𝜌𝑇 ⟩ as a graph-based semantic

equivalence: 𝜇 (𝐺, 𝜆(𝐺, 𝜌𝑇 )) ≡𝐺 𝜌𝑇 .

Therefore, an MEC can be used to experimentally evaluate a

ReBAC miner by first, generating the corresponding authorizations,

then, running the miner to produce a mined policy, and finally,

comparing its semantics against those of the ground-truth policy.

While experimental evaluations cannot prove the general correct-

ness of a ReBAC miner, they provide experimental assurance by

demonstrating correctness for the particular MECs that are tested.

We should highlight a major characteristic of an experimental

evaluation using anMEC as indicated in Definition 15. One can only

expect a correct miner to produce a semantically-equivalent policy

to the ground truth policy, not a syntactically-equivalent policy.

This distinction is very important when evaluating a miner. During

an evaluation, one might assume that the miner is being tested

based on the complexity of the ground truth policy that is provided

in an MEC. However, in reality, an MEC is only challenging a miner

to produce a semantically equivalent policy to the ground truth

policy relative to the provided system graph.

Let us demonstrate this distinction using a small example. Con-

sider MECs 𝑐1 = ⟨𝐺1, 𝜌𝑇 ⟩ and 𝑐2 = ⟨𝐺2, 𝜌𝑇 ⟩ where ground truth

policy 𝜌𝑇 has only two simple rules (single-edge patterns), and

system graphs 𝐺1 and 𝐺2 have a few edges as follows:

𝜌𝑇 = {[𝑎], [𝑏]}
𝐺1 .𝑉 = 𝐺2 .𝑉 = {𝑢, 𝑣,𝑤}
𝐺1 .𝐸 = {⟨𝑢, 𝑣, 𝑎⟩, ⟨𝑢,𝑤,𝑏⟩}
𝐺2 .𝐸 = {⟨𝑢, 𝑣, 𝑎⟩, ⟨𝑢,𝑤, 𝑎⟩, ⟨𝑢,𝑤,𝑏⟩}

The set of authorizations produced by both MECs is the same:

A1 = 𝜆(𝐺1, 𝜌𝑇 ) = {⟨𝑢, 𝑣⟩, ⟨𝑢,𝑤⟩}
A2 = 𝜆(𝐺2, 𝜌𝑇 ) = {⟨𝑢, 𝑣⟩, ⟨𝑢,𝑤⟩}

Observe that, in the case of 𝑐1, a miner needs to mine policy 𝜌𝑚1
=

𝜌𝑇 in order to produce the same authorizations. But, in the case of

𝑐2, in addition to policy 𝜌𝑚1
, policy 𝜌𝑚2

= {[𝑎]} will also produce

the expected authorization since 𝜆(𝐺2, 𝜌𝑚2
) = A2. In fact, between

the two alternatives, 𝜌𝑚2
is usually the preferred result of a mining

algorithm since it achieves the expected authorization using a less

complex policy. Therefore, in the case of 𝑐2, wemiss to fully evaluate

the capability of a miner to produce the more complex policy 𝜌𝑇 .

We refer to MECs that challenge a miner to produce a syntac-

tically equivalent policy as strong MECs. Conversely, weak MECs
may not challenge a miner enough. In the above example, 𝑐1 and

𝑐2 are strong and weak MECs, respectively.

Definition 16 (Strong MEC). MEC 𝑐 = ⟨𝐺, 𝜌𝑇 ⟩ is strong if and only
if for every ReBAC policy 𝜌𝑚 : 𝜌𝑚 ≡𝐺 𝜌𝑇 =⇒ 𝜌𝑚 = 𝜌𝑇 .

The above definition ensures that a miner that works correctly

produces 𝜌𝑚 that is syntactically equivalent to the given 𝜌𝑇 . In the

case of a weak MEC, however, there could be multiple alternative

𝜌𝑚 ’s semantically equivalent to 𝜌𝑇 based on 𝐺 . In that case, it is

fair to consider a miner that produces any of the alternative 𝜌𝑚 ’s as

correctly functioning. Since the intended (ground-truth) policy can

be any of the semantically-equivalent policies, it becomes unclear

on what basis the miner can be fairly evaluated. Therefore, if we

intend to evaluate a miner on policies with varying degrees of

complexity, we can only assure it is tested on truly different inputs

if the corresponding MECs are strong.

In addition to truly testing the capability of a miner, strong MECs

have a computational advantage in the evaluation process compared

to weak MECs. As mentioned in Definition 14, the correctness of a

miner’s result needs to be established based on the authorizations it

produces. Let us consider MEC 𝑐 = ⟨𝐺, 𝜌𝑇 ⟩, and the corresponding

input that is provided to miner 𝜇: ⟨𝐺, 𝜆(𝐺, 𝜌𝑇 )⟩. Suppose the miner

has mined policy 𝜌𝑚 . If 𝑐 is a weak MEC, in order to evaluate the

correctness, we need to produce 𝜆(𝐺, 𝜌𝑚) and compare it against

𝜆(𝐺, 𝜌𝑇 ). Note that this is true for testing correctness in general.

However, for a strong MEC, we simply need to establish the syntac-

tic equivalence between 𝜌𝑚 and 𝜌𝑇 (i.e., check whether 𝜌𝑚 = 𝜌𝑇 ).

This will be arguably a much more efficient test. Therefore, large-

scale evaluation of miners will be more efficient and realistic if we

ensure that we evaluate them against strong MECs.

4 PROPERTIES OF STRONG MECS
As discussed in Section 3, strong MECs are advantageous for both

true and efficient evaluation of miners. In this section, we propose

two formal properties that characterize strong MECs:

Property 1 (Minimality of MEC). Given an MEC, we say that its

ground-truth policy is minimal with respect to its system graph iff

there is no subset of the policy that is semantically equivalent to it

based on the system graph. We also call such an MEC a minimal
MEC. Formally, MEC 𝑐 = ⟨𝐺, 𝜌𝑇 ⟩ is minimal iff �𝜌 ⊂ 𝜌𝑇 , 𝜌 ≡𝐺 𝜌𝑇 .

Property 2 (Maximality of MEC). Given an MEC, we say that its

ground-truth policy is maximal with respect to its system graph iff

there is no superset of the policy that is semantically equivalent to

it based on the system graph. We also call such an MEC a maximal
MEC. Formally, MEC 𝑐 = ⟨𝐺, 𝜌𝑇 ⟩ is maximal iff �𝜌 ⊃ 𝜌𝑇 , 𝜌 ≡𝐺 𝜌𝑇 .

It follows from the above definition that if anMEC is not maximal

then the authorizations as result of some non-permitted expres-

sion(s) are included in the MEC’s authorizations. More formally,

for some non-permitted pattern 𝜙 ′ ∉ 𝜌𝑇 , it holds that 𝜆(𝐺 , {𝜙 ′}) ⊆
𝜆(𝐺 , 𝜌𝑇 ). Such patterns create ambiguity for miners as they can be

inferred as valid policy rules based on MEC authorizations, while

they are not included in the ground truth policy.

Next, we show that simultaneous minimality and maximality of

an MEC leads it to be a strong MEC.

Theorem1. Assume that aminer has produced 𝜌𝑚 based onMEC 𝑐

= ⟨𝐺, 𝜌𝑇 ⟩, where 𝜌𝑚 ≡𝐺 𝜌𝑇 . If MEC 𝑐 is both minimal and maximal,

then 𝜌𝑚 and 𝜌𝑇 must be syntactically equivalent. Formally, 𝜌𝑚 ≡𝐺
𝜌𝑇 ∧ (𝑐 is minimal and maximal) =⇒ 𝜌𝑚 = 𝜌𝑇 .



Proof. We prove this by contradiction. Suppose that mined

policy 𝜌𝑚 and ground truth policy 𝜌𝑇 are semantically equivalent

based on 𝐺 but are not syntactically equivalent:

𝜆(𝐺, 𝜌𝑚) = 𝜆(𝐺, 𝜌𝑇 ) (1)

𝜌𝑚 ≠ 𝜌𝑇 (2)

Based on eq. (2) and since 𝑐 is minimal, we have 𝜌𝑚 ⊄ 𝜌𝑇 . Therefore,

𝜌𝑚 has at least one rule that is not in 𝜌𝑇 :

∃𝑟1 ∈ 𝜌𝑚 : 𝑟1 ∉ 𝜌𝑇

Since 𝑟1 ∈ 𝜌𝑚 , by definition we have 𝜆(𝐺, {𝑟1}) ⊆ 𝜆(𝐺, 𝜌𝑚). There-
fore, considering eq. (1), we have:

𝜆(𝐺, {𝑟1}) ⊆ 𝜆(𝐺, 𝜌𝑇 ) (3)

Let us compose policy 𝜌 ′
𝑇
= 𝜌𝑇 ∪ {𝑟1}. Given eq. (3), the authoriza-

tions of 𝜌 ′
𝑇
based on 𝐺 can be calculated as:

𝜆(𝐺, 𝜌 ′𝑇 ) = 𝜆(𝐺, 𝜌𝑇 ) ∪ 𝜆(𝐺, {𝑟1})
= 𝜆(𝐺, 𝜌𝑇 )

Note that we just showed that 𝜌 ′
𝑇
(⊃ 𝜌𝑇 ) is semantically equivalent

to 𝜌𝑇 based on𝐺 , which contradicts with the maximality of 𝑐 . □

5 IDENTIFYINGWEAK MECS
In this section, we describe our algorithms for detecting whether a

given MEC, consisting of a system graph and a ground-truth policy,

satisfies the minimality and the maximality properties discussed in

Section 4. The algorithms output the relationship patterns in the

system graph that violate those two properties.

Identifying Minimality Violations. We define the check-min()
function that determines the set of minimality vaiolating rules in a

policy, i.e., those that do not result in distinct authorizations from

the rest of the rules in the policy. Given an MEC 𝑐 =⟨𝐺, 𝜌𝑇 ⟩, for
each rule 𝜙 ∈ 𝜌𝑇 , we check whether the set of authorizations based
on the policy produced after removing 𝜙 , i.e., 𝜆(𝐺, 𝜌𝑇 \ {𝜙}), is the
same as the complete set of authorizations, i.e., 𝜆(𝐺, 𝜌𝑇 ). If positive,
that rule will be part of the violating set returned by the function.

We need to loop over all the rules in the policy once, and for each

rule we need to calculate the 𝜆 function for all the remaining rules.

Thus, the time complexity of check-min() is the time complexity

of constructing the 𝜆 for an MEC multiplied by a factor of Θ( |𝜌𝑇 |),
where |𝜌𝑇 | indicates the number of rules in the ground-truth policy.

Identifying Maximality Violations. We define the check-max()
function that determines the set of maximality violating patterns,

i.e., those non-permitted patterns that spuriously behave like an

authorization rule (i.e., applies to only permitted access requests)

in the ground-truth policy with respect to the system graph. Given

an MEC 𝑐 =⟨𝐺, 𝜌𝑇 ⟩, we loop over all non-permitted patterns 𝜙 ′

in the set R \ 𝜌𝑇 , where R is the domain of relationship patterns

(Definition 7). Then, for each 𝜙 ′, we check whether the set of au-

thorizations corresponding to 𝐺 and the policy consisting of only

𝜙 ′, i.e., 𝜆(𝐺 , {𝜙 ′}), is a subset of the complete set of authorizations,

i.e., 𝜆(𝐺 , 𝜌𝑇 ). If positive, that pattern will be part of the maximality

violating set returned by the function. The time complexity for

checking the maximality of an input MEC depends on the number

of non-permitted patterns in the system graph. The upper bound for

the number of different relationship patterns of maximum length

𝑁 that can exist in 𝐺 = ⟨𝑉 , 𝐸⟩ is 𝑂 (𝐸𝑁 ). Since we loop over all

the non-permitted patterns 𝜙 ′ once to calculate 𝜆(𝐺 , {𝜙 ′}), the
time taken by our check-max() function is, thus, the time taken for

calculating the 𝜆 for an MEC multiplied by a factor of 𝑂 (𝐸𝑁 ).

Generating Set of Authorizations. In both of the above functions,

check-min() and check-max(), we need to calculate the set of autho-
rizations corresponding to every relationship pattern in the system

graph. That is, we need to calculate 𝜆(𝐺 , {𝜙}) = {⟨𝑠, 𝑜⟩} for every
pattern 𝜙 that is present in graph𝐺 during the check-min() and the
check-max() procedures. To this end, we employ a graph traversal

strategy such as the breadth-first search. Specifically, for obtaining

access requests ⟨𝑠, 𝑜⟩ corresponding to a given relationship pattern

𝜙 , we systematically explore the given system graph 𝐺 = ⟨𝑉 , 𝐸⟩
for various relationship patterns defined on the set of labels 𝐿. For

every path between a subject 𝑠 ∈ 𝑆 and an object 𝑜 ∈ 𝑂 encoun-

tered during graph traversal, we record the mapping between the

relationship pattern 𝜙 that matches the traversed path and the

access request ⟨𝑠, 𝑜⟩. For a given node, there are 𝑂 (𝐿𝑉 ) adjacent
nodes in the system graph. Since the length of the paths during the

traversal is constrained by 𝑁 , the total number of paths that can

be enumerated from a single node will be 𝑂 (𝐿𝑁𝑉𝑁 ). Therefore,
considering all source nodes in the system graph 𝐺 = ⟨𝑉 , 𝐸⟩, the
time complexity for obtaining the mapping between relationship

patterns and their corresponding access requests is O(𝐿𝑁𝑉𝑁+1
).

6 UPDATINGWEAK MECS TO STRONG MECS
In this section, we discuss our methodology for producing a strong

MEC corresponding to a given weakMEC and graph schema. Specif-

ically, we transform the system graph component of a weak MEC to

convert it to a strong MEC while ensuring that the resulting graph

is well-formed with respect to the given schema. We also refer to

this process as the correction of the violating patterns. At a high

level, our correction algorithm creates a new path corresponding

to every violating pattern as a separate component in the system

graph. A major challenge involved during a path insertion is ensur-

ing that the nodes and edges on the inserted path conform with the

restrictions defined in the schema. However, it can be, and usually

is, the case that a node type has a set of restrictions (Definition 3),

whose target node type in turn has another set of restrictions, and

so on. For instance, in the example discussed in Section 2.1, the

Manager and Budget node types have different kinds of restrictions
defined on them whose target node type is Project. The Project
node type, in turn, has a restriction defined on it with Department
as target node type. As a result, it may seem that the enforcement

of restrictions never terminates while inserting a new path. To

tackle such problem, we assume that there is at least one “sink” in

the graph schema that is a node type for which no restrictions are

defined. Thus, the process of restriction enforcement will terminate

when it reaches such a “sink” node type.

6.1 Min./Max. Violation Correction Algorithm
Algorithm 1 describes the steps of our correction process. We re-

trieve the set of minimality/maximality violating patterns using

check-min() and check-max() functions, described in Section 5.



Algorithm 1: Correcting Min./Max. Violations

Inputs :Weak MEC 𝑐 = ⟨𝐺, 𝜌𝑇 ⟩, Graph Schema G = ⟨V, Γ⟩
Result:Minimal and Maximal MEC 𝑐 = ⟨𝐺, 𝜌𝑇 ⟩

1 foreach 𝜙 ∈ check-min(⟨𝐺, 𝜌𝑇 ⟩) ∪ check-max(⟨𝐺, 𝜌𝑇 ⟩) do
2 new_nodes← [];

/* Constructing new path for pattern 𝜙 */
3 Create vs ;
4 new_nodes.append(vs);
5 for i = 1 to len(𝜙) do
6 Create vt ;
7 new_nodes.append(vt );
8 𝐺 .𝐸← 𝐺 .𝐸 ∪ {⟨vs, vt , 𝜙 [𝑖]⟩};
9 vs ← vt ;

/* Assigning types to new nodes */
10 vs ← new_nodes[1];
11 vt ← new_nodes[2];
12 foreach ⟨𝜏 (𝑣𝑖 ), 𝛾⟩ ∈ Γ do
13 if 𝛾 .label = 𝜙 [1] then
14 𝜏 (𝑣𝑠 ) ← 𝜏(𝑣𝑖 );

15 𝜏 (𝑣𝑡 ) ← 𝛾 .target_node_type;

16 break;
17 vs ← vt ;
18 for i = 2 to len(𝜙) do
19 vt ← new_nodes[i+1];
20 foreach 𝛾∈ get-restrictions(𝜏(𝑣𝑠 )) do
21 if 𝛾 .label = 𝜙 [𝑖] then
22 𝜏 (𝑣𝑡 ) ← 𝛾 .target_node_type;

23 break;
24 if 𝜏 (𝑣𝑡 ) = null then
25 Go to Line 10;

26 vs ← vt ;
27 if 𝜏 (𝑣𝑡 ) = null then
28 exit;

/* Checking restrictions on new nodes */
29 for i = 1 to len(new_nodes) do
30 𝑣 ← new_nodes[i];
31 foreach 𝛾∈ get-restrictions(𝜏(𝑣)) do
32 if 𝛾 .restr_type = EXACTLY_ONE then
33 𝑉 ← {𝑣𝑖 | ⟨𝑣, 𝑣𝑖 , 𝛾 .label⟩ ∈ 𝐺 .𝐸 &

𝜏(𝑣𝑖 )=𝛾 .target_node_type };

34 if 𝑉 = ∅ then
35 Create node 𝑣 ′ s.t.

𝜏(𝑣 ′)=𝛾 .target_node_type;
36 new_nodes.append(𝑣 ′);
37 𝐺 .𝐸← 𝐺 .𝐸 ∪ {⟨𝑣, 𝑣 ′, 𝛾 .label⟩};
38 if 𝛾 .restr_type = ONLY then
39 V ← {𝜏(𝑣𝑖 ) | ⟨𝑣, 𝑣𝑖 , 𝛾 .label⟩ ∈ 𝐺 .𝐸 };

40 Check ifV ⊆ {𝛾 .target_node_type };

Creating Paths for Violating Patterns. Lines 3-9 of Algorithm 1

create a new path component (i.e., a path graph consisting of both

nodes and edges) that includes the violating pattern 𝜙 as a separate

component in the system graph. For a relationship pattern 𝜙 of

length 𝑁 , we create a path component using 𝑁 + 1 new nodes and

sequence of 𝑁 edges corresponding to the pattern 𝜙 between them.

The time complexity of this step is Θ(𝑁 ), where 𝑁 is the maximum

allowable length of a relationship pattern.

Assigning Types to New Nodes. Lines 10-28 of Algorithm 1 de-

scribe the process for assigning types to the new nodes based on

schema G = ⟨V, Γ⟩. Initially, for all 𝑣 ∈ new_nodes, it holds that
𝜏 (𝑣) = null. So, we loop through all restrictions Γ until we find a

restriction 𝛾 whose label matches the first relationship label in 𝜙 .

Then, based on 𝛾 , we assign the types for the first two new nodes.

In subsequent iterations, the source node type is simply initialized

as the target node type from the immediately previous iteration.

Then, we loop through all restrictions associated with the source

node type and repeat the above process to assign the type for the

next node in new_nodes list. If at any point, we are unable to find

a type for a new node, then we reset the whole process (Line 25).

This means that the sequence of type assignments that we had

estimated so far did not conform with the given schema. However,

if there is no feasible assignment of types to the new nodes, then

our algorithm terminates (Line 28). This can happen when a mini-

mality violating pattern is not compliant with schema restrictions

G.Γ, in which case we will not be able to correct the violation since

we cannot add paths not specified in Γ. Overall, for processing
the type assignments, we need to iterate over every label in the

given violating pattern 𝜙 , and then for each of those labels we need

to identify the restriction 𝛾 containing that label as specified in

the graph schema. Therefore, the total time taken will be 𝑂 (𝑁 |𝐿 |),
where 𝑁 is the maximum length of a violating pattern and |𝐿 | is the

total number of relationship labels in the system.We note that more

sophisticated search algorithms can be used for systematic search

of the node type assignments. We follow the above procedure to

simplify our presentation on inserting a path component in the

system graph while consulting the associated graph schema.

Enforcing Restrictions on New Nodes. Lines 29-40 of Algorithm 1

demonstrate the process for checking and enforcing the restrictions

given in the graph schema G = ⟨V, Γ⟩ associated with the type

assignments determined in the previous step. For every node 𝑣 in the

new_nodes list, we determine if all the restrictions 𝛾 associated with

𝜏 (𝑣) are enforced in system graph 𝐺 . Specifically, if the restriction

type in 𝛾 is EXACTLY_ONE, then we check whether there exists a

node 𝑣𝑖 whose type is 𝛾 .target_node_type and there is an edge

⟨𝑣, 𝑣𝑖 , 𝛾 .label⟩ in 𝐺 .𝐸. If there is no such node, then we create a

new node 𝑣 ′ and add an edge between 𝑣 and 𝑣 ′ according to the

above specifications. Further, we append node 𝑣 ′ to the new_nodes
list since we need to check/enforce restrictions on this new node.

Similarly, if the restriction type in 𝛾 is ONLY, then we ensure that if

there is a node 𝑣𝑖 such that edge ⟨𝑣, 𝑣𝑖 , 𝛾 .label⟩ exists in 𝐺 .𝐸, then

the type of node 𝑣𝑖 must be 𝛾 .target_node_type. The time taken

by the restriction checking process is 𝑂 ((𝑁 + |V|2) × |𝐿 | × |V|).
Looping through the set of restrictions associated with node type

𝜏 (𝑣) takes𝑂 ( |𝐿 |×2×|V|), based onDefinition 3. The number of new

nodes 𝑣 ′ that can be created to satisfy the EXACTLY_ONE restriction

type is 𝑂 ( |V|2). As mentioned in the beginning of this section,

for convergence, we consider that there is a “sink” node type in

given schema G for which no restriction exists. Therefore, the total

number of new nodes is𝑂 (𝑁 + |V|2), which also considers the new



nodes added while creating a new path component corresponding

to the violating pattern 𝜙 .

Suppose the number of violating patterns be denoted as 𝑝 . Ag-

gregating the time taken by each of the individual operations in

our correction algorithm, in the worst case, the total time can be

bounded as 𝑂 (𝑝 × ((𝑁 |𝐿 |) + ((𝑁 + |V|2) × |𝐿 | × |V|))). We note

that the number of violating patterns 𝑝 is theoretically bounded as

𝑂 (𝐸𝑁 ). However, in practice, this value is much smaller, which we

will demonstrate through our experiments (Section 7).

6.2 Algorithm Correctness
In the following, we analyze the correctness of Algorithm 1 by

showing that: (1) our technique of introducing new paths corrects

MEC violations, (2) correcting one MEC violation does not lead to

another MEC violation, and (3) our correction algorithm produces a

system graph that is well-formed with respect to the given schema.

Let 𝜙 ′ be a violating pattern in given MEC 𝑐 = ⟨𝐺, 𝜌𝑇 ⟩. Also, let𝐺 ′
be the final system graph after processing violation 𝜙 ′.

Adding new paths corrects minimality/maximality violations. For
correcting the violation, a new path component including 𝜙 ′ is
added as a separate component to 𝐺 resulting in, say,𝐺𝑖 . So, every

new node in the added path exists only in𝐺𝑖 and not in𝐺 . If 𝑣𝑠 , 𝑣𝑡 ∈
𝐺𝑖 .𝑉 are end-points of the new path, then access request ⟨𝑣𝑠 , 𝑣𝑡 ⟩
matches 𝜙 ′ only in𝐺𝑖 and does not match 𝜙 ′ in𝐺 . While enforcing

restrictions on every node 𝑣 corresponding to the new path in𝐺𝑖 , we

always add edges of the form ⟨𝑣, 𝑣𝑖 , 𝑙⟩ to the current system graph,

say,𝐺 𝑗 such that𝐺 𝑗+1.𝑉 \𝐺 𝑗 .𝑉 = {𝑣𝑖 }, where 𝑙 ∈ 𝐿 and𝐺 𝑗+1 is the
system graph resulting from adding edge ⟨𝑣, 𝑣𝑖 , 𝑙⟩. Since 𝑣𝑡 already
exists in𝐺𝑖 , it is impossible to have a sequence of nodes [𝑣𝑠 , . . . , 𝑣𝑡 ]
in 𝐺 ′ due to restrictions enforcement, where 𝐺 ′ is the final system
graph. So, it holds that access request ⟨𝑣𝑠 , 𝑣𝑡 ⟩ matches only pattern

𝜙 ′ and no other pattern𝜙 , where𝜙 ′ ≠ 𝜙 , in graph𝐺 ′. Therefore, the
minimality/maximality violation corresponding to 𝜙 ′ is corrected
since: (1) if 𝜙 ′ ∈ 𝜌𝑇 , then 𝜆(𝐺 ′,𝜌𝑇 ) \ 𝜆(𝐺 ′, 𝜌𝑇 \ {𝜙 ′}) = {⟨𝑣𝑠 , 𝑣𝑡 ⟩}
(checking minimality violation), and (2) if 𝜙 ′ ∈ R \ 𝜌𝑇 , then 𝜆(𝐺 ′,
{𝜙 ′}) \ 𝜆(𝐺 ′,𝜌𝑇 ) = {⟨𝑣𝑠 , 𝑣𝑡 ⟩} (checking maximality violation).

Correction does not create new MEC violations. Correcting vio-

lation 𝜙 ′ in MEC 𝑐 = ⟨𝐺, 𝜌𝑇 ⟩ leads to the addition of a separate

component in resulting graph 𝐺 ′, without affecting either 𝐺 .𝑉 or

𝐺 .𝐸. As a result, the number of access requests that match a pattern

in MEC ⟨𝐺, 𝜌𝑇 ⟩ will be always less than or equal to the number

of access requests that match the same pattern in MEC ⟨𝐺 ′, 𝜌𝑇 ⟩.
Thus, if an access request ⟨𝑠, 𝑜⟩ matches only rule 𝜙 (and no other

rule in 𝜌𝑇 ) with respect to graph 𝐺 , then ⟨𝑠, 𝑜⟩ will still uniquely
match 𝜙 with respect to graph𝐺 ′. That is, if rule 𝜙 does not violate

the minimality property in MEC ⟨𝐺, 𝜌𝑇 ⟩, then it will not violate

minimality in MEC ⟨𝐺 ′, 𝜌𝑇 ⟩ as well. Similar reasoning applies for

not creating new maximality violations based on the observation

that if ⟨𝑠, 𝑜⟩ matches some non-permitted pattern 𝜙 in𝐺 then ⟨𝑠, 𝑜⟩
will match 𝜙 in 𝐺 ′ as well.

Correction produces well-formed system graph. Our correction
algorithm terminates only if there is a possible assignment of types,

based on restrictions Γ in schema G = ⟨V, Γ⟩, to the nodes in the

newly added path for violation 𝜙 ′. To show the well-formedness of

graph 𝐺 ′, we need to ensure that every edge in the newly added

separate component violates neither an ONLY restriction nor an

EXACTLY_ONE restriction. On the contradictory, consider that there

is an edge ⟨𝑣, 𝑣 ′, 𝑙⟩ ∈ 𝐺 ′.𝐸 that does not satisfy an ONLY restriction.

However, this is not possible, since an ONLY-type restriction checks

the type of node 𝑣 ′ only if the edge ⟨𝑣, 𝑣 ′, 𝑙⟩ exists in𝐺 ′. Specifically,
we assigned the types to the new nodes (for every new node, we

insert exactly one edge corresponding to the labels in 𝜙 ′ in Lines 3-

9), including 𝑣 ′, based on the schema restrictions G.Γ. Similarly,

it is not possible to violate an EXACTLY_ONE-type restriction for

any edge ⟨𝑣, 𝑣 ′, 𝑙⟩ ∈ 𝐺 ′.𝐸. This is because, along with the above

argument for ONLY restriction, the set of nodes {𝑣 ′} satisfying the

EXACTLY_ONE restriction on node type 𝜏 (𝑣) will be either empty

or a singleton set, since our approach always creates a new node

when {𝑣 ′} = ∅, and also adds only one edge corresponding to every
new node. So, 𝐺 ′ will be well-formed respecting given schema G.

7 EXPERIMENTS
We conduct three types of experiments in order to empirically: (1)

validate the theoretical contributions of this paper, (2) investigate

the violations in MECs based on varying system graph/ground-

truth policy sizes, and (3) examine the performance of the proposed

identification/correction algorithms for violations. In Sections 7.2

and 7.3, we demonstrate the significance of strong MECs in effec-

tively evaluating the performance of state-of-the-art ReBAC miners

and compare with another baseline from the literature that simpli-

fies the ground-truth policy in an MEC for evaluating miners. In

Sections 7.4 and 7.5, we study the effect of varying the two inputs

of an MEC on its strength, in order to have a better understanding

of the nature of an MEC and its generation. Specifically, we demon-

strate variation in the MEC violations caused by different sizes

of the system graph and the ground-truth policy in an MEC. We

note that in all, but the experiment in Section 7.5, we only modify

the system graph while keeping the ground-truth policy constant

during the generation of an MEC. In Sections 7.6 and 7.7, we ex-

amine the overhead caused by our algorithms given in Sections 5

and 6 for identifying the violating patterns in weak MECs and then

correcting those violations to produce strong MECs. Specifically,

the former demonstrates the performance of running our identifi-

cation algorithm once for a given MEC, and the latter demonstrates

the impact on the size of the MEC caused by our correction algo-

rithm. We start by outlining the setup and configurations of our

experiments in Section 7.1, including the different system graph

generation approaches and ReBAC miners used in our experiments.

7.1 Setup
We implemented check-min() and check-max() (Section 5) and

Algorithm 1 (Section 6) in Python, and our system graph schema

in OWL [2] using Protege [1], an open-source and widely used

ontology editor. All experiments are performed on a 64-bitWindows

10 machine using an Intel Core i7-7700 processor and 16 GB of RAM.

In all experiments, we report the average results over 10 runs. We

limit the maximum length of considered relationship patterns to 5.

Ground-Truth Policy. In order to substantiate our proposal re-

garding the use of strongMECs for an effective evaluation of ReBAC

miners, we consider a sample policy from a project management

application, which we adopted from the work by Bui et al. [8], as the



ground-truth policy for our evaluation. This policy controls access

by organization users to the resources associated with projects. We

slightly adapted the specifications of the policy to conform with the

reference policy model of this paper. An example authorization rule

in our adapted policy is “department,-department,-project”,
which means the managers of a department can access all resources
associated with the projects in their department. A second example is

“projects,-project” which means users can access all resources
associated with the projects that they are working on.

Graph Schema. Our graph schema for the project management

application consists of various node types corresponding to the

users, resources, and other logical entities in an organization. Exam-

ples of user types in this application include department managers,

project leaders, employees, contractors, auditors, accountants, and

planners. Similarly, the resource types include tasks, schedules, and

budgets. Other logical entity types include projects, departments,

and technical areas.We implemented the ONLY-type restriction (Def-
inition 4) and the EXACTLY_ONE-type restriction (Definition 5) in our
graph schema model using the AllValuesFrom restriction and the

Cardinality restriction (with cardinality equal to 1) in OWL, respec-

tively. Earlier, in Section 2.1, we showed examples of restrictions

on various node types of the project management schema.

System Graph Generation. In order to demonstrate the applica-

bility of our approach irrespective of the graph generation tech-

niques, we implemented two approaches for generating system

graphs. The first one, which we refer to as heuristic approach, is
based on the strategy followed by Bui et al. for generating object

models in their work [8]. The second approach, which we refer to

as random approach, follows a random graph generation strategy

similar to Erdos-Renyi graphs. Both of these approaches gener-

ate system graphs that are restricted based on the graph schema

of the project management application. Additionally, both follow

the same methodology for creating nodes of various types in the

system graph based on an input parameter called graph size pa-
rameter. Specifically, for the node types defined in the underlying

graph schema, the number of nodes that is created for each type

is selected from a uniform distribution with a mean equal to the

inputted graph size parameter and a standard deviation of around

0.82. However, the approaches follow different methodologies for

inserting edges between the created nodes. In the case of the heuris-

tic approach, for a particular source node and a relationship label,

we randomly choose the target nodes of those edges if such an edge

is allowed by the restrictions defined on the source node type. In the

case of the random approach, we rely on a second input parameter

called probability of edge insertion. For any potential edge with any

relationship label that is consistent with the schema, it is inserted in

the graph with the probability given by the mentioned parameter.

ReBAC Miners Studied. We experimented with three ReBAC min-

ers from the literature. The first miner, which we refer to as Greedy,
uses heuristic strategies to mine ReBAC policies [8]. The second

miner, which we refer to as DT, uses decisions trees [4]. The imple-

mentation of Greedy and DTminers takes as inputs a class model, an

object model, and access control rules. Along with a mined policy,

these two miners also produce a “simplified ground-truth policy”

for comparing with and evaluating the mined policy. Given a policy,
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Figure 1: Impact of Strength of MEC on Performance of
ReBAC Miners with respect to Graph Size Parameter for
Heuristic Graph Generation Approach.

their simplification strategy aims to produce another policy that has

a lower overall weight (in terms of the numbers of elements in the

policy) than the original. In other words, they convert their original

MEC into another MEC, which we refer to as the simplified MEC.
These works [4, 8] report their performance metrics for Greedy and
DT miners based on simplified MEC (instead of original MEC). The

third miner, which we refer to as Prism, utilizes a combination of

rule mining and pattern mining approaches to mine ReBAC autho-

rization policies [18]. The Prism miner is based on a similar policy

model as in this paper. There are two inputs to the implementation

of Prism miner, namely a system graph and an access control log.

Evaluating ReBACMiners. For Greedy and DTminers, we adapted

our graph schema and our generated system graph into their class

model and object model representations, respectively, and inputted

those along with the ground-truth policy. For Prism miner, we

inputted our generated system graph and the access log produced

using the system graph and ground-truth policy. The miners that

we experimented with are based on different ReBAC policy models,

and so their mined rules have different expressive power. In order to

fairly assess the policies produced by the three miners, we convert

their rules into our rule format specified in Section 2.2. In particular,

we convert their path expressions into relationship patterns format.

7.2 Strong MECs Challenge Miners to Produce
Syntactically Equivalent Policies

We investigated the performance of the three ReBAC miners with

respect to the strength of MECs. Specifically, using the ground-truth

project management policy and employing the heuristic approach

for generating system graphs over different graph size parame-

ters (both discussed in Section 7.1), we recorded the semantic and

syntactic equivalence of the mined policies with the ground-truth

policy for given MECs. In all cases, the mined policies were seman-

tically equivalent to the ground-truth policy. Figure 1 shows the

syntactic equivalence of policies produced by the three miners and

the ratio of MECs meeting the minimality/maximality properties,

with respect to different sizes of the system graph (10MECs for each

size). In this experiment, we are just concerned with classifying an
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(b) Impact of Strength of MECs and Simplified MECs on Perfor-
mance of Greedy and DTMiners.

Figure 2: Variations in SimplifiedMECs Strength and Impact
with respect to Graph Size Parameter for Heuristic Graph
Generation Approach.

MEC as strong (when meeting both min. and max.) or weak. In the

later experiments, we deal with the actual violating patterns that

need to be corrected in case of weak MECs. Observe that, for all

the three miners, the chances of producing a mined policy that is

syntactically equivalent to the ground-truth policy increases with

increasing strength of the input MEC. Therefore, strong MECs pro-

vide a systematic means for effectively evaluating a ReBAC miner.

Note that the miners perform differently since they are based on

different underlying algorithms (as discussed in Section 7.1). Our

notion of strong MECs focuses on a fair assessment of a miner; a

strong MEC does not measure a miner’s performance itself.

7.3 Simplified MECs Are Not Always Strong
We studied the strength of simplifiedMECs (discussed in Section 7.1)

in terms of violations of the minimality/maximality properties,

where the system graph was generated according to the heuris-

tic approach for different values of the graph size parameter. We

also analyzed the impact of the strength of simplified MECs on

the performance of Greedy and DT miners. Figure 2a demonstrates

the chances of meeting minimality and maximality by an MEC

and simplified MEC as the system graph size increases. Figure 2b
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Figure 3: Variations in Strength of MECs with respect to
Graph Size Parameter and Probability of Edge Insertion for
Random Graph Generation Approach.

demonstrates the syntactic equivalence of the mined policies with

the original ground-truth policy as well as with the policy of sim-

plified MECs, for both Greedy and DT miners. It can be observed

that simplified MECs are not necessarily strong. This is evident as,

along with minimality violations, maximality violations are also

introduced in the case of simplified MECs. Based on our manual

investigation, simplified MECs usually have at least one rule less

than the original ground-truth policy, which causes an actual rule to

be considered as a non-permitted pattern. Furthermore, a simplified

MEC is not actually evaluating the miner against ground-truth pol-

icy, rather against a policy obtained by simplifying the ground-truth.

Besides, the miners do not always produce policies that are syn-

tactically equivalent with the policies of simplified MECs; similar

to the syntactic equivalence graph when comparing with ground-

truth policy (see solid lines in Figure 2b), the syntactic equivalence

graph when comparing with simplified policy (see dotted lines

in Figure 2b) also increases as the strength of the corresponding

simplified MEC increases (see dotted lines in Figure 2a).

7.4 Different Types of Minimality Violations
We investigated the variation in the total number of violating pat-

terns (returned by check-min()/check-max()) for a given MECwith

respect to different sizes of the system graph. Figure 3a demon-

strates the variation in the number of minimality violations with



respect to the graph size parameter and the probability of edge

insertion for the random approach. We did not observe any max-

imality violations corresponding to the inputted MECs. We can

observe that the violations generally increase as the probability of

edge insertions increases. They also generally grow slightly with

the graph size. However, we interestingly observe relatively high

violations for smaller graph sizes and lower edge probability. To be

able to get a better insight into the cause of these violations, we split

the total minimality violations into two: violations caused when

some rules are not applicable to any access request in the system

graph and violations caused when some rule’s authorizations are

overshadowed by another rule’s authorizations in an MEC. Fig-

ures 3b and 3c demonstrate these two kinds of violations. We refer

to the former as the case of non-applicable rules, and we refer to the
latter as the case of redundant rules. We can observe that when the

system graph size is smaller, the chances of getting non-applicable

rules is much higher than that for redundant rules. However, as

the system graph size increases, the redundant rules dominate over

the non-applicable rules during minimality violations. We also per-

formed the above experiment by generating the system graphs

based on the heuristic approach, and observed a similar trend.

7.5 Varying Ground-Truth Policy
In all previous experiments, we generated different MECs where the

ground-truth policy element was fixed and only the system graph

element was changing. Here, we discuss our observations regarding

the impact of varying the ground-truth policy, including its size (i.e.,

the number of its rules), on the corresponding MEC being strong.

For every graph generated using the heuristic approach and a given

graph size parameter, we generate random policies of various sizes,

and record minimality/maximality violations in the resulting MECs.

We repeat this procedure for different graph size parameters to

investigate such behavior over various system graphs. We initially

generate a set of all possible policies based on the graph schema and

maximum rule length, and then randomly utilize sampled policies

of various sizes as needed during the experiment. To construct a

rule pattern, we add the edge labels, or their inverses, in such a

sequence that does not violate any of the restrictions corresponding

to the source/target node types of any label in the pattern.

Figure 4 shows the number of patterns violating minimality/

maximality properties with respect to different graph size param-

eters and ground-truth policy sizes. Observe that the number of

minimality violations (see Figure 4a) increases with increasing pol-

icy size. This is because, as the number of rules in the ground-truth

policy increases, the chances of a rule being redundant (i.e., its

authorizations overshadowed by another rule’s authorizations) also

increases, in turn increasing the chances of getting minimality vi-

olations. Also, observe that the number of maximality violations

(see Figure 4b, looking at the surface from below) decreases with in-

creasing policy size. This is because, the maximality property deals

with non-permitted patterns whose authorizations are included

in a given MEC’s authorizations. By increasing policy size, we in-

crease the chances of including such non-permitted patterns into

the ground-truth policy, in turn reducing the chances of getting

maximality violations. Based on our manual investigation of the

generated policies, we speculate that policies should be somehow
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Figure 4: Variations in Strength of MECs with respect to
Graph Size Parameter and Policy Size (i.e., Number of Rules)
for Heuristic Graph Generation Approach.

“informed” by graph schema, and it would be interesting to explore

such an association for reducing violations in the generated MECs.

7.6 Increase in Min./Max. Checking Time
Proportional to Number of Edges

We examined the time taken by check-min() and check-max() for
identifying minimality/maximality violating patterns in a given

MEC. We also studied how the number of edges varies in the sys-

tem graphs corresponding to the input MECs. Figures 5a and 5b

demonstrate, respectively, the number of system graph edges across

different MECs and the time taken for checking the minimality/

maximality of those MECs for the random graph generation ap-

proach with respect to the graph size parameter and the probability

of edge insertion. We can observe that both graphs follow a similar

pattern, which can be attributed to the fact that the graph traversal

cost increases with the number of edges in the system graph. In

our prototype implementation, graph traversal is usually the most

costly phase while identifying minimality/maximality violations.
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Therefore, the time taken for identifying the minimality/maximality

violations in an MEC is proportional to the number of edges in the

system graph of the corresponding MEC. Again, we observed a

similar trend between the minimality/maximality checking time

and the number of edges in case of the heuristic graph generation

approach (not presented in the paper to avoid repetition of content).

7.7 MEC Correction Grows System Graph
Proportional to Number of Violations

We studied the effect of our correction algorithm, which generates

a strong MEC for a given weak MEC, on the system graph size. In

particular, for every graph size parameter and the probability of

edge insertion in case of the random graph generation approach,

we recorded the increase in the number of nodes and edges in the

system graph. Such an increase is caused due to the creation of

new paths corresponding to the patterns violating the minimal-

ity/maximality properties. Figure 6 demonstrates our results. We
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Figure 6: Increase in Number of Nodes due to Correction of
Weak MECs with respect to Graph Size Parameter and Prob-
ability of Edge Insertion for Random Approach.

can observe that the increase in the number of nodes (and similarly

for the number of edges) follows almost the same trend as the graph

shown in Figure 3a. This is because, based on our Algorithm 1, we

create new nodes and edges only for those patterns that violate

the minimality/maximality properties. Therefore, we can infer that

the increase in the system graph size is proportional to the number

of violating patterns for a given MEC. Additionally, for all given

MECs, executing check-min() and check-max() on the corrected

MECs did not return any violations, which manifests our correction

algorithm’s effectiveness in producing a strong MEC for a given

weak MEC. We observed that the results for the heuristic graph

generation approach follow a similar pattern as in Figure 6.

8 RELATEDWORK
ReBAC Miners. A ReBAC miner aims to extract concise, high-

level rules in terms of relationships between users and resources

from given lower-level authorizations and entity relationships. Bui

et al. presented two algorithms, namely a greedy algorithm guided

by heuristics [7] and a grammar-based evolutionary algorithm [8].

The authors have also proposed combining neural networks and a

grammar-based genetic algorithm to support additional policy lan-

guage features such as set-equality and subset-equal set comparison

operators [6]. More recently, they presented a simpler algorithm

based on decision trees and its variant that can mine policies with

negation conditions [4] and unknown attribute values [5]. Iyer and

Masoumzadeh proposed a solution for mining ReBAC authoriza-

tion rules in an evolving system based on rule mining and frequent

graph-based pattern mining concepts [18]. Recently, researchers

considered the problem of detecting the feasibility of ReBAC policy

mining [9, 10]. Given the set of lower-level authorizations and the

relationship graph for system entities, their approach loops through

every permitted access request, identifies all possible paths between

the request nodes, and deems it infeasible if the set of identified

paths between the permitted request is completely satisfied by any

unauthorized access request. If rule generation is feasible for every

permitted request, then the mined policy is returned. The authors



have also studied this problem in the context of different ReBAC

policy languages, with varying expressiveness, which differ in the

relationships, inverse relationships, and non-relationships used to

build the policy. Recently, researchers have proposed to learn the

authorization behavior of a black-box system by actively submit-

ting access requests to and observing the corresponding decisions

from the system [19]. They aim to minimize the amount of access

control observations required to learn the authorization behavior.

Evaluating ReBAC Miners. For all the above works, their evalua-
tions do not necessarily test the mining of the intended, ground-

truth policies. They test their mining on different MECs, but those

MECs do not follow well-defined properties for effective evaluation,

which we establish in this paper. In the works by Bui et al. [4–8],

the relationship data is generated by policy-specific pseudo-random

algorithms that creates objects (users and resources) and selects

their attribute values using appropriate probability distributions.

In their works, relationships are expressed using fields that refer

to other objects, and path expressions are used to follow chains

of relationships between objects. The desired number of instances

for the various object types is selected from a normal distribution

whose mean is linear to a size parameter, which is an input of

the object model generators. The values of different fields within

an object are randomly chosen object(s) of the appropriate type.

Due to the above procedure, there is no systematic means of deter-

mining if their generated MECs are strong. As a result, the miner

may not have a fair chance of observing the policy from the given

object model and lower-level authorizations; for example, if one

rule overshadows another rule in the generated object model, the

miner might simply ignore the latter rule. This, in turn, can cause

misleading evaluation results when the mined policy is not syn-

tactically equivalent to the ground-truth policy. To support our

theory, this issue of their MEC being weak and their evaluation

not testing the mining of the intended policy, is evident when the

authors convert their MEC into simplified MEC whose policy is

produced by simplifying the ground-truth policy. In the works by

Iyer and Masoumzadeh [18, 19], the relationship data is generated

pseudo-randomly by considering the information about entities

and edge types, and the domain-specific constraints in place. In the

works on mining feasibility detection [9, 10], determining if there

exists a “mine-able” ReBAC ruleset corresponding to a weak MEC

can lead to producing a policy that is different from the intended

policy. Moreover, compared to their proposal, our work presents de-

fined properties for strong MECs, which provide a more systematic

understanding of the mining inputs and ensure effective evaluation.

9 CONCLUSION AND FUTUREWORK
In this paper, we consider the first-of-its-kind problem of effectively

evaluating a ReBAC policy miner. In particular, we introduced the

notion of a strong MEC that challenges a miner to produce a pol-

icy that is syntactically equivalent to the ground-truth policy. We

propose two properties to formally characterize a strong MEC,

and through theoretical and experimental results we demonstrate

the significance of strong MECs for a fair assessment of a ReBAC

miner’s performance. Another sphere of policy mining that has

been receiving great research interest deals with the problem of

mining ABAC policies from lower-level authorizations and entity

attributes [12, 16, 17, 20, 21, 25]. Moreover, researchers have formu-

lated ReBAC as an “extension” of ABAC, in which the relationships

are represented through the attributes of an entity that refer to other

entities [3, 8]. It would be an interesting future work to explore

the problem of effective evaluation in the domain of ABAC policy

mining using our theory of MECs proposed for ReBAC miners.
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