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Learning Relationship-Based Access Control Policies from
Black-Box Systems
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Access control policies are crucial in securing data in information systems. Unfortunately, often times, such

policies are poorly documented, and gaps between their specification and implementation prevent the sys-

tem users, and even its developers, from understanding the overall enforced policy of a system. To tackle this

problem, we propose the first of its kind systematic approach for learning the enforced authorizations from

a target system by interacting with and observing it as a black box. The black-box view of the target system

provides the advantage of learning its overall access control policy without dealing with its internal design

complexities. Furthermore, compared to the previous literature on policy mining and policy inference, we

avoid exhaustive exploration of the authorization space by minimizing our observations. We focus on learn-

ing relationship-based access control (ReBAC) policy, and show how we can construct a deterministic finite

automaton (DFA) to formally characterize such an enforced policy. We theoretically analyze our proposed

learning approach by studying its termination, correctness, and complexity. Furthermore, we conduct exten-

sive experimental analysis based on realistic application scenarios to establish its cost, quality of learning,

and scalability in practice.
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1 INTRODUCTION

The access control policy determines who can access what resources in a system. Understanding
such a policy is essential for users to safely and effectively use a system. However, many systems
do not provide adequate and accurate documentation of their policies. There are many factors,
such as scale, heterogeneity of system components, fast-pace development, and lack of resources,
that make it challenging even for developers to understand the overall enforced policy of a sys-
tem. We note that even in the presence of resources, understanding the enforced policy requires
exploring a daunting access space. Given these challenges, we argue that novel techniques should
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be developed for automated learning of access control policy specification. In particular, in this
article, we propose to learn the overall enforced policy of a system by observing its authorization
behavior. By treating a system as a black box, we intend to develop a learning technique that is
independent of the inner design elements and structures of a system, such as the programming
languages and components.

Prior approaches to learning access control policies are largely in the context of policy min-

ing, where the goal is to mine a policy in a high-level model from authorization information in
a low-level representation (e.g., access control lists or logs). This is useful when migrating to an
environment with a new access control model or reconstructing existing policies for improved
maintenance. Policy mining has been previously investigated in the context of role-based access
control [37, 38], attribute-based access control [20, 27, 47], and relationship-based access con-
trol [10, 15, 28]. The common requirement for all policy mining approaches is the availability
of an existing policy or a comprehensive access log, which is impractical in our context when an
accurate policy is not available in the first place. There has also been a few previously-proposed
approaches to learn policies directly from systems [31, 35]. However, these approaches assume that
they can exhaustively explore the full access space or that they can reduce the explorable access
space based on some expensive manual analysis and reverse engineering approaches. Verifying
the correctness of such manual processes themselves will be impractical.

Rather than relying on the availability of authorization information or the ability to fully ex-
plore it, we take a novel approach to learning access control policies by interactively observing
authorization decisions that a system makes. In particular, we extend the notion of model learn-

ing [6, 43], a framework for learning formal specification of black-box systems, to the domain of
access control policies. Model learning is an active learning paradigm to infer a state-transition
model of a system by providing inputs to and observing outputs of the system. In the context of
our work, we propose to learn a deterministic finite automoton (DFA) model that formally
characterizes the access control decision-making process in a system, i.e., its access control policy,
by selectively submitting access requests to the system and observing the associated decisions.
We choose to focus on learning relationship-based access control (ReBAC) policies. ReBAC is
one of the most expressive authorization models for applications with rich data models [21, 24]. A
ReBAC policy specifies a set of permitted relationship patterns between the authorized users and
protected resources. The objective of our proposed framework is to systematically learn a DFA
enforcing a system’s ReBAC policy while minimizing the number of access control observations.
Learning such a ReBAC policy DFA by observing the access request decisions is challenging since
an access request can be associated with multiple (permitted and non-permitted) relationship pat-
terns. This article is a significantly extended version of an earlier conference publication [29].

The highlights of our contributions in this article are as follows. We review and contrast the
closely related work with this article (Section 2). We propose the notion of ReBAC policy DFA as a
formal representation of the policy decision-making process in a system that we intend to learn.
We present a reference ReBAC policy model and its corresponding ReBAC policy DFA (Section
3). We propose our novel framework for active learning of authorizations (Section 4) and exten-
sively discuss our design of its components and their interactions. The learner component in our
framework (Section 5) is responsible for learning the policy based on its authorization observa-
tions and processing counterexamples it receives from other components. We propose the mapper
component (Section 6) to facilitate the interaction of the learner with the system by translating
access control requests/decisions between the abstract domain of relationship patterns (expressed
in ReBAC policies) and the concrete domain of users/resources observable from an application.
We propose how the equivalence oracle component (Section 7) can test the equivalency of a Re-
BAC policy DFA hypothesis constructed by the learner against a system. We formally analyze our
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framework by proving its termination, correctness, and complexity. For clarity of the presentation,
we initially discuss the correctness of our framework when using a simplified, exhaustive mapper
approach (Section 8). Then, we present the formal results for our full framework using the pro-
posed mapper (Section 9). Finally, we provide an extensive experimental analysis of a prototype
implementation of our framework in terms of learning cost and performance, scalability, and the
implementation of the equivalence oracle in practice (Section 10).

2 BACKGROUND AND RELATED WORK

In this section, we first discuss the literature closely related to our work. Then, we briefly discuss
the background on a model learning framework from which we adopt ideas in this work.

Policy Mining. Policy mining algorithms produce a high-level policy from existing lower-level
permission information. This problem has been extensively investigated in the context of role-

based access control (RBAC). Given the user-permission assignments (UPA), the objective
of role mining is to find an optimal set of roles R and corresponding user-role assignments (UA)
and role-permission assignments (PA) that make the policy equivalent to the given UPA [37].
Vaidya et al. defined the basic version of this problem minimizing the number of roles [44]. A
variant of this problem also considers minimizing the number of assignments (|UA|+|PA|) [33, 45].
Other (more comprehensive) optimization metrics consist of a cost-based metric that minimizes
the overall administration costs due to |UA|, |PA|, |R|, and additional cost due to other business
information [18], and the weighted structural complexity optimization that aims at minimizing the
weighted sum of the number of elements in R, UA, PA, role hierarchy (RH), and other compo-
nents of an RBAC system [38].

Subsequently, researchers considered the problem of obtaining attribute-based access control

(ABAC) policies by mining rules based on the attributes associated with users and resources. Xu
and Stoller proposed a heuristic approach for mining from an access control list (ACL) policy and
attribute data [47], and a variant of it for mining from operation logs when an ACL is not available
(e.g., if the current access policy is encoded in a program) [48]. Later works in this area include
an evolutionary, separate and conquer mining approach [36], a constrained mining algorithm that
limits the maximum weight (size) of each mined rule [25], mining both positive and negative autho-
rization rules [27], an unsupervised learning approach based on k-modes clustering [30], and using
natural language processing to extract policies from natural language documents [5, 39]. Cotrini
et al. used a machine learning algorithm for subgroup discovery to mine ABAC policies [20]. They
also developed a generalized policy mining framework, which can be specialized to produce min-
ing algorithms for a variety of policy languages including RBAC and ABAC [19]; the downside
is that the resulting algorithms may achieve lower policy quality than customized algorithms for
specific policy languages. Recently, the problem of incremental policy maintenance was presented,
which only updates rules that are affected by any permission/attribute changes [9].

Unlike RBAC and ABAC, ReBAC policies deal with relational policies rather than unary predi-
cates on attributes and roles. Bui and Stoller presented a greedy solution for mining ReBAC poli-
cies from access control lists and entity relationships [13]. Later, the authors extended their work
to a grammar-based evolutionary algorithm [15] and mining from incomplete and noisy permis-
sion data [14]. The authors have also proposed combining neural networks and a grammar-based
genetic algorithm to support additional policy language features such as set-equality and subset-
equal set comparison operators [12]. More recently, they presented a simpler algorithm based
on decision trees and its variant that can mine policies with negation conditions [10]. They also
extended that work for mining policies when some attribute values are unknown [11]. Iyer and
Masoumzadeh proposed a solution for mining ReBAC authorization rules in an evolving system
based on rule mining and frequent graph-based pattern mining concepts [28]. Chakraborty and
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Sandhu considered the problem of feasibility of ReBAC policy mining in the context of user to
user authorizations, which determines whether there exists a ReBAC policy corresponding to the
given relationship graph and lower-level authorizations [16].

Compared to the above works, we propose a novel, systematic approach for actively learning ac-
cess control policies where target systems are treated as black boxes, in order to observe and learn
the authorization behavior of the system interactively. In particular, the previous policy mining
algorithms assume the provision of complete permission space. But, in our approach, we charac-
terize the enforced ReBAC policy of a system by interacting with its access control engine using a
minimal number of access requests. We propose the first of its kind policy learning approach that
employs model learning for inferring policies from black-box applications.

Policy Inference. There has been some previous work on inferring policies from web applications
in a black-box fashion. To validate the enforcement of access control policies in web applications,
Le et al. presented a semi-automated approach to infer those policies [31]. Their approach employs
the RandomTree classifier on a system’s user permission space to infer access rules. Masoumzadeh
also proposed an approach to infer the privacy control policy of an online social network (OSN)
to help end users better understand the implicit policies imposed by the system [35]. The motiva-
tion was that access to user information is governed by a collection of privacy settings and fixed
policies specified by the OSN. But, an OSN such as Facebook is less than transparent about such
fixed policies, and consequently some policies are unknown to users. These works, however, as-
sume that they can exhaustively explore the access space first to generate an authorization log.
The problem is essentially reduced to access control mining once such an authorization log has
been gathered.

Model Learning. Model learning [43] aims at formally characterizing the behavior of a black-
box system by providing inputs and observing the resulting outputs. It is emerging as a highly
effective bug-finding technique, with applications shown over a wide range of domains such as
network protocols, security, legacy software, and banking cards. In the domain of network pro-
tocols, researchers have employed combination of model learning and model checking to study
different software components in TCP implementation of different operating systems, and their
interactions [23]. Black-box testing has been also used to investigate flaws in the TLS protocol
implementations [22]. In the security domain, researchers have proposed a black-box differential
testing framework called SFADIFF [7] to automatically detect differences between a set of pro-
grams with comparable functionality. Model learning has been also utilized to analyze regular

expression (RE) filters and string sanitizers in a black-box manner [8]. Model learning has also
been applied for refactoring legacy embedded software [34, 41] and for reverse engineering smart-
cards and smartcard readers [3, 17]. Another line of research in the software engineering domain,
which works toward a similar goal to model learning focuses on generating finite state machines
or UML statecharts from scenario-based system requirements represented in the form of UML
sequence diagrams [26, 46]. However, such approaches mine patterns based on a set of already-
collected sequence diagrams instead of an active learning strategy as in model learning (and our
approach). Our proposed framework in this article is the first model learning approach to learn-
ing access control policies. In particular, we propose a model learning technique for efficiently
observing high-level access patterns from the substantially large access space.

2.1 Background on L* Algorithm and MAT Framework

A foundational work in the model learning area is the approach of a minimally adequate

teacher (MAT) proposed by Angluin. Angluin studied the problem of actively learning a finite-
state automaton through observations of its members and nonmembers [6]. Particularly, their work
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Fig. 1. Mechanism of the MAT Framework.

presents an algorithm, referred to as L*, for efficiently learning an initially unknown finite machine
from any minimally adequate teacher. The MAT framework includes a learner component that has
to infer the behavior of an unknown machine M by asking queries to a teacher. The teacher has
knowledge of the machine M . Initially, the learner only knows the input/output alphabet of M .
The learner pursues its task by submitting two types of queries to the teacher:

— Membership Query: A membership query about a string z asks if z is accepted by automa-
ton M or not. The teacher replies with a yes or no depending on whether z is in the language
of M .

— Equivalence Query: With an equivalence query, the learner asks if a hypothesized machine
MH is correct, i.e., whether MH is equivalent to the unknown machine M . The teacher an-
swers yes if this is the case. Otherwise, the teacher answers no and provides a counterexample

that distinguishes MH and M (i.e., a counterexample is a string in the symmetric difference
of the correct machine and the hypothesized machine).

Figure 1 shows interactions between the learner and the teacher in the MAT framework that
are triggered in the L* algorithm. The membership and equivalence queries are shown in upper
and lower parts of the figure, respectively.

3 POLICY DFA: REBAC POLICY MODEL & ITS DFA REPRESENTATION

In this article, we focus on ReBAC policies in which the authorizations are expressed in terms of
sequence of relationships between entities (users and resources) in a system. In this section, we pro-
vide a reference model for ReBAC based on existing literature [21, 24, 40] and discuss our approach
to formally represent such policies to be suitable for our active learning algorithm. Specifically, we
discuss the format and evaluation of ReBAC policies in Section 3.1. In addition, we detail the data
model used to capture authorization information about users and resources, which is also utilized
while making access decisions. In Section 3.2, we propose how we capture a ReBAC policy using
a DFA as a formal representation of a machine that enforces the policy. Table 1 summarizes the
notations used throughout this article.

3.1 ReBAC Reference Model

In applications that support ReBAC policies, the data stored in the application can be modeled in
the form of a system graph [21], where nodes indicate users and resources created in the system,
and edges represent relationships between them. ReBAC policies utilize relationship information
contained in the system graph to make access control decisions.

Definition 1 (System Graph). Let U and R be the set of users and resources in the system. Let L
be the set of possible relationship types among users and resources. The system graph is a directed
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Table 1. List of Notations

Notation Meaning

G System graph

U ,R,V ,E,L Users, resources, vertices, edges, edge labels

C All possible access requests in G

Πu,r Set of paths between u and r in G

R Patterns over L of max length N

ϕ Relationship pattern / ReBAC rule

Φ Set of relationship patterns / ReBAC policy

ΦI ReBAC policy of SUL

M , L (M ) General notation for DFA, language of M

Notation Meaning

Q ,F ,δ States, final states, transitions in M

MH , MI Learner hypothesis DFA, DFA of SUL

OS , OE Prefix-closed, suffix-closed set of patterns

Oτ Mapping patterns to {0, 1}
Pϕ All relationship patterns in G

PC Mapping from Pϕ to access requests

(I
̂ϕ
), Iϕ (Certain) Queried membership patterns

Iτ Mapping from Iϕ to access decisions

. Concatenation operator

Fig. 2. Running example for an electronic medical records system.

graph G (V ,E) where V = U ∪ R is the set of entities and each edge in E ⊆ V ×V × L indicates a
relationship between two entities.

Example 1 (System Graph). Figure 2(a) illustrates a sample subset of a system graph of entities
and relationships in an electronic medical records system. The entities include users Alice, Bob,
Carol, Daniel, Eve, and Fred, and resources Alice_Record, Bob_Record, and Fred_Record. In
this scenario, Alice is receiving treatment from Bob, who, in turn, is being treated by Eve. Carol is
in charge of providing medical treatment for Fred, along with assisting Bob as his nurse. Daniel
happens to be the nurse working under both Carol and Eve. Alice_Record, Bob_Record and
Fred_Record contain all information regarding the medical treatment(s) being received by Alice,
Bob, and Fred, respectively.

ReBAC authorization policies grant accesses based on relationship patterns, which characterize
different arrangements of labeled edges between the entities in the system graph.

Definition 2 (Relationship Pattern). A relationship pattern ϕ is a sequence of relationship labels
〈l1.l2. . . . .ln〉, where li ∈ L and 0 ≤ n ≤ N . We denote the domain of relationship patterns by R.
σ ∈ R denotes the empty pattern.

In the above definition, N denotes the maximum allowable length of a relationship pattern that
is determined by the target system.

In this article, we assume that all authorization rules are about granting the same right (or
action). This will help simplify our discussions by using relationship patterns and authorization rules

interchangeably. Extending the rules to consider an extra component that determines applicable
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right is straightforward. Finally, we define a ReBAC policy, which is responsible for regulating
access control in the target system, as follows:

Definition 3 (ReBAC Policy). A ReBAC policy, denoted by Φ, is a set of authorization rules {ϕi }
where each authorization rule ϕi is a relationship pattern.

We alternatively use the term permitted pattern to refer to an authorization rule ϕ. Also, we refer
to any pattern ϕ ′ that is not part of authorization policy as a non-permitted pattern, i.e., ϕ ′ ∈ R \Φ.

We represent an access request as tuple 〈u, r 〉, where useru ∈ U requests to access resource r ∈ R.
As discussed earlier in this section, we use an abstract notion of an access right for simplicity;
therefore, the right does not need to be specified in an access request. An access request would be
permitted only if it matches at least one of the rules in the policy. Let Πu,r be the set of paths in G
fromu to r constrained by the maximum allowable length of relationship patterns. Path π matches
an authorization rule ϕ if and only if the sequence of edge labels in π matches the sequence of the
labels in ϕ. Moreover, we employ the deny-by-default strategy. Therefore, if a given access request
does not match any authorization rule in the policy then it will be denied access to the resource.

Continuing on Example 1, let us provide a ReBAC policy in the context of an electronic medical
records system as a running example.

Example 2 (ReBAC Rules). The ReBAC policy enforced by the medical records system consists
of the following authorization rules: 〈owns〉, 〈treats .owns〉, and 〈assists .treats .owns〉.

The above policy allows the access of medical records, which are the protected resources in this
system, to patients that they belong to (pattern 〈owns〉), along with the doctors who are treating
those patients (〈treats .owns〉) and the nurses working under those doctors (〈assists .treats .owns〉).

Example 3 (Access Request Evaluation). Based on the system graph in Example 1 and ReBAC
policy in Example 2, the following shows list of protected resources and their authorized users in
the system:

— Alice_Record: Alice, Bob, and Carol.
— Bob_Record: Bob, Daniel, and Eve.
— Fred_Record: Carol, Daniel, and Fred.

For each of the above authorizations, there exists a path from the user to the resource in the given
system graph that matches at least one of the rules in the specified ReBAC policy. For instance,
the access request 〈Bob,Alice_Record〉 matches the rule 〈treats .owns〉 given in Example 2.

3.2 ReBAC Policy DFA

Our objective is to infer the access control policy enforced by a system in a black-box manner.
We approach this problem by conducting an active learning strategy to infer a formal model of
the component in the system that evaluates access requests. In the access control literature, this
component is referred to as policy decision point [42]. In particular, we employ the concept of DFA

to represent the policy decision point that evaluates an access request against the system’s ReBAC
policy. We refer to such a formal model of enforcing ReBAC policies as ReBAC policy DFA (or
policy DFA for short). In the following, we show how we can produce a ReBAC policy DFA based
on the reference ReBAC model described in Section 3.1, and how we bridge the expressiveness gap
between ReBAC policies and our DFA representation.

Definition 4 (ReBAC Policy DFA). A ReBAC policy DFA M is a DFA, denoted by a 5-tuple
〈Q,L,δ ,q0, F 〉, where Q is a finite set of states, L is the finite set of input symbols called the al-
phabet (relationship labels in our context), δ : Q ×L −→ Q is the state transition function, q0 is the
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initial state, and F ⊆ Q is the set of accepting (final) states. Additionally, M must be constrained
such that its language, L (M ), is finite.

An accepting string in M starts from initial state q0 and ends in an accepting state qn ∈ F . The
language of M , denoted by L (M ), is the set of all its accepting strings. For brevity of the DFA
presentation, we use the notation ¬l to imply {l ′ ∈ L|l ′ � l }, i.e., any relationship label but l . Also,
we use ∗ to indicate a set of transitions in the DFA corresponding to every input symbol in L.

Based on the above definition of a ReBAC policy DFA, we observe that any sequence of tran-
sitions starting from initial state forms a string of relationship labels, which is equivalent to a
relationship pattern (Definition 2). Therefore, each accepting string in a policy DFA can be seen as
the relationship pattern ϕ of an authorization rule. As a result, L (M ) represents an authorization
policy Φ.

It is important to note that the language of a ReBAC policy DFA, L (M ), must be finite. This
is because, the ReBAC model discussed earlier in this section (Definitions 2 and 3) is not as ex-
pressive as a DFA. In particular, our policy does not support relationship patterns with repeating
sub-patterns as in regular expressions. Therefore, our goal is to learn a constrained DFA model that
accepts a finite language for representing a ReBAC authorization policy.

The following example illustrates relation between policy DFA and our reference ReBAC model:

Example 4 (Policy DFA Accepting Strings/ReBAC Authorization Rules). Figure 2(b) shows a ReBAC
policy DFA corresponding to the policy presented in Example 2. In particular, accepting strings
〈owns〉, 〈treats .owns〉, and 〈assists .treats .owns〉 correspond to the rules in the original policy. In

this policy DFA, the access control rule 〈owns〉 is captured by the sequence of transitions q0
owns−−−−→

q1 whereq1 is an accepting state. Similarly, the rules 〈treats .owns〉 and 〈assists .treats .owns〉 are, re-

spectively, captured by the sequences q0
tr eats−−−−−→ q3

owns−−−−→ q1 and q0
assists−−−−−−→ q2

tr eats−−−−−→ q3
owns−−−−→ q1.

Observe that the notation “¬treats” represents two different transitions in this DFA corresponding
to labels “owns” and “assists”. The special transition ∗ shown in the figure matches all the labels,
representing three different transitions corresponding to the input symbols “owns”, “treats”, and
“assists”.

Example 5 (Violation of Constrained DFA Model). Suppose, in Figure 2(b), the transition from
state q2 with the input symbol “treats” goes to state q0 instead of q3. In this case, any pattern be-
ginning with the sub-pattern 〈assists .treats〉will be accepted by this policy DFA. For instance, the
patterns 〈assists .treats .treats .owns〉 and 〈assists .treats .assists .treats .owns〉 will become autho-
rization rules according to this policy DFA, which is incorrect based on the ReBAC policy specified
in Example 2.

4 BLACK-BOX POLICY LEARNING ARCHITECTURE

In this section, we present an overview of our black-box authorization learning architecture and
processes. Given a ReBAC authorization system that can be queried for authorization decisions as
a black box, our objectives are:

— to correctly infer the underlying authorization rules from the system; and
— to minimize the number of access control queries submitted to the system, since such queries

are costly and cannot be exhaustively explored in practice.

In order to accomplish above mentioned objectives, we adopt ideas from the MAT framework [6]
for query-based learning of finite automata, in particular, the Angluin’s L* learning algorithm dis-
cussed in Section 2.1. In the rest of this section, we initially describe our objective of learning
enforced authorization policy more concretely. Then, we describe our policy learning architecture,
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including its components and the challenges in implementing each component. In addition, we
present the workflow of our black-box architecture in terms of interactions between the compo-
nents implementing the membership and equivalence queries and responses.

4.1 Preliminaries

Our objective is to learn the authorization behavior of a system in a black-box manner, particularly
by submitting authorization inputs and observing the corresponding authorization decisions. In
the access control terminology, this behavior is governed by the policy decision point (PDP)
component in a system. Therefore, in our framework, PDP is considered the system under learn-

ing (SUL). As mentioned in Section 3.2, we will learn a formal model of the policy used by PDP
as an automaton called ReBAC policy DFA.

We refer to the ReBAC policy enforced in SUL as the ground-truth policy, denoted by ΦI . We
denote the corresponding policy DFA by MI . As our learning process forms a hypothesis policy
DFA, we denote it by MH (and ΦH for the corresponding policy). In the following, we outline a
set of assumed properties about the system graph, which is an input to our learning algorithm,
relative to the ground-truth policy in SUL. These properties are required to ensure that the learner
algorithm has a fair chance of observing the policy in action (based on the requests corresponding
to the system graph).

Definition 5 (Input Properties). Given system graph G and policy ΦI enforced in SUL, we say
a pattern ϕ applies to an access request 〈u, r 〉 in G whenever for some π ∈ Πs,o , π matches ϕ.
Then, we expect the following properties to hold in order for our learning algorithm to correctly
infer ΦI :

(1) Every rule in ground-truth policy is uniquely applicable to system graph. We say a rule
(permitted pattern) ϕ ∈ ΦI is uniquely applicable to G whenever there exists at least an
access request 〈u, r 〉 in G such that only ϕ applies to 〈u, r 〉. No other rule in ΦI applies to
〈u, r 〉.

(2) For a non-permitted pattern ϕ ′ � ΦI , one of the following conditions holds:
— ϕ ′ is not present in G.
— ϕ ′ exists inG and there exists a denied access request 〈u, r 〉 inG where ϕ ′ applies to 〈u, r 〉.

4.2 Learning Architecture and Workflow

Figure 3 shows the architecture of our black-box approach for learning authorization rules. It com-
prises of four components, namely, learner, mapper, equivalence oracle, and SUL, where the latter
three are contained within a larger abstract component called teacher. The label under each arrow
shows (in bold) the type of query/request submitted and the response received. The label above
each arrow shows an instance of query/response based on our running examples in Section 3.1
(Examples 2 and 3). In the following, we explain each of the components, including its role and
assumptions about its design:

System Under Learning (SUL). SUL is the PDP that makes authorization decisions for given
access requests based on its enforced policy, i.e., U × R −→ {PERMIT, DENY}.

Learner. The goal of the learner component is to actively infer the policy DFA (Definition 4) of
ReBAC policy enforced in SUL by interacting with the teacher.

Mapper. The mapper component maps between SUL-understandable domain comprising of ac-
cess requests and learner-understandable domain of relationship patterns. To be able to pro-
duce access requests corresponding to relationship patterns, we assume that the mapper
has access to the system graph (Definition 1) that consists of relationships among users and
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Fig. 3. Proposed Framework for Learning Access Control Policies from Black-Box Systems.

resources. We note that our focus is inferring the authorization policy imposed partly based
on system graph; automated inference of the system graph in concrete application domains
is of our interest as future work.

Equivalence Oracle. The equivalence oracle component has the important responsibility of eval-
uating the policy DFA inferred by the learner, and providing counterexamples if there are
incorrect authorization rules in the inferred DFA.

Teacher. The teacher component encompasses mapper, equivalence oracle and SUL. The learner
submits queries to the teacher and observes teacher’s responses for inferring the initially
unknown policy DFA.

In our architecture, the learner component has no prior information about the structure of the
policy DFA that it has to infer. However, the learner can submit two types of queries to the teacher,
namely membership and equivalence queries, which are defined as follows:

Membership Query asks whether a certain relationship pattern is permitted by SUL.
Equivalence Query checks whether the hypothesis policy DFA inferred so far by the learner

correctly represents SUL.

In order to demonstrate the interaction between the components outlined above using member-
ship and equivalence queries, we present the workflow of our learning algorithm at a high level in
this section. In Section 5, we describe the working of the learner in detail. The learning procedure
works in an iterative manner as follows. The learner submits membership queries about relation-
ship patterns to the teacher. SUL within the teacher accepts only access requests (a pair of user
and resource) as inputs. Therefore, the membership query cannot be processed directly by SUL. To
tackle this problem, we introduce a mapper component between the learner and SUL that accepts
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relationship patterns from the learner and produces responses by mapping them to authorization
requests and interacting with SUL (upper part of Figure 3). It is important to correctly answer
membership queries issued by the learner. However, potentially erroneous response could be gen-
erated when the mapper relies on an authorization decision from SUL to respond to the learner.
This could happen because an authorization check by SUL tests if a user can access a resource;
however, there could be multiple paths between that user and resource in the system graph, out
of which only certain paths may be authorized according to the enforced policies. Section 4.3 de-
scribes the mapper component in more detail including its strategy for answering membership
queries and its challenges.

After a few rounds of the process described above, based on its observations, the learner gen-
erates a hypothesis policy DFA and submits it to the equivalence oracle as an equivalence query.
The equivalence oracle verifies the hypothesis with SUL by interacting with it (through testing
authorization decisions of access requests). If the equivalence oracle returns equivalent, then the
hypothesis is correct and the learner has correctly inferred the policy DFA from the system. Other-
wise, the equivalence oracle replies with a counterexample pattern to the learner, and the learning
procedure is resumed after processing the counterexample (lower part of Figure 3). It should be
noted that the input to the equivalence oracle is a policy DFA whose language comprises a set
of relationship patterns, whereas SUL accepts only access requests. The methodology used by the
equivalence oracle to verify learner’s hypothesis DFA using SUL is discussed in Section 4.4.

4.3 Overview of Mapper Design and Challenges

The mapper acts as a middleman between the learner and SUL. SUL is a policy decision point that
can take an access request (i.e., 〈user , resource〉) as input and provide the corresponding access
decision according to the application’s enforced policies. However, as we are interested in learning
a ReBAC policy DFA (Definition 4), our learner component is interested in membership queries in
the form of relationship patterns. Therefore, the mapper is responsible for mapping between the
abstract domain of relationship patterns and the concrete domain of access requests based on the
given system graph. The existence of a mapper component in the proposed architecture is crucial
for the efficiency of our learning approach, since a relationship pattern can, and usually does,
correspond to potentially multiple access requests in the system graph. The concept of mapper
has been previously shown to be useful in the context of MAT framework [4].

The mapper component will infer the response to a membership query based on its interactions
with SUL, i.e., observing SUL’s response to individual access requests. As part of this inference
process, the mapper produces access requests corresponding to a membership query’s relationship
pattern and submit them to SUL for evaluation. Moreover, the mapper keeps a record of its current
inferences about the responses of membership queries in an inference table.

We illustrate the functionality of the mapper component, particularly its role as a middleman
between the learner and SUL, in the following example:

Example 6 (Learner, Mapper & SUL Interaction). The upper part of Figure 3 shows a sam-
ple membership query (relationship pattern 〈treats .owns〉), a corresponding access request
(〈Bob, Alice_Record〉) that the mapper issues to SUL based on the system graph given in Exam-
ple 1, and the response it receives from SUL (PERMIT). The mapper determines its response to the
membership query based on SUL’s response and its own inference table, and forwards it to the
learner.

A significance of our design of mapper is to avoid submitting exhaustive access requests to
SUL for evaluation. This design consideration inevitably results in mapper inferring responses
to membership queries based on incomplete information. Some of such responses, thus, could be
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uncertain. This uncertain behavior is limited to some positive responses. The mapper addresses
those uncertain responses based on feedback it receives from equivalence oracle. We further ex-
plain the details of mapper’s inference mechanism and its strategy for updating its inferences
in Section 6.

Example 7 (Mapper’s Uncertain Response). Consider the system graph given in Example 1 and
the enforced authorizations specified in Example 3. Suppose the learner submits a member-
ship query for the pattern 〈assists .assists .owns〉, and the mapper generates the access request
〈Daniel ,Bob_Record〉 corresponding to the query pattern and submits it to SUL for evaluation.
Based on the given authorizations, SUL responds with PERMIT decision for the input request. How-
ever, there are two paths between Daniel and Bob’s record in the system graph out of which only
one is permitted as shown below:

Daniel
assists−−−−−−→ Eve

tr eats−−−−−→ Bob
owns−−−−→ Bob_Record : (Permitted Pattern),

Daniel
assists−−−−−−→ Carol

assists−−−−−−→ Bob
owns−−−−→ Bob_Record : (Non-Permitted Pattern).

Due to incomplete information, the mapper may wrongly infer that the pattern
〈assists .assists .owns〉 is permitted, and forward that incorrect inference to the learner.

4.4 Overview of Equivalence Oracle and Queries

When the learner submits hypothesis policy DFA to the equivalence oracle, the latter finds if there
is any authorization rule misjudged by the learner leading to over-assignment or under-assignment
of permissions. The equivalence oracle is responsible to find a counterexample if any discrepancy
exists between the hypothesis and SUL. If there is no such counterexample then the equivalence
oracle approves the hypothesis generated by the learner. Thus, it provides crucial support to the
learner for comprehending the correct set of access control rules from a black-box system.

In order to carry out its task of finding counterexamples, the equivalence oracle employs system
graph information from the mapper, along with the ground-truth details about pattern authoriza-
tions from the mapper’s inference table. Besides, the equivalence oracle may query SUL for access
decisions to further validate authorized patterns in the hypothesis. A feature of our architecture is
that the counterexamples from the equivalence oracle can also be used by the mapper for rectifying
its wrong inferences on pattern authorizations (more details in Section 6).

It is indeed challenging to provide the equivalence oracle in many real-world learning settings.
The equivalence oracle can be approximated using conformance testing. However, to the best of
our knowledge, there has been no work in the literature on formal conformance testing of ReBAC
policies. To cope with these challenges, in this article, we present two solutions for implementing
the equivalence oracle based on various degrees of access space exploration. Section 7 explains the
operation of the equivalence oracle in detail.

We illustrate operation of the equivalence oracle using an example equivalence query as follows:

Example 8 (Equivalence Query). The lower part of Figure 3 shows a sample equivalence query
(hypothesis DFA) submitted by the learner and the associated response from equivalence oracle
based on given system graph and authorizations (Examples 1 and 3). The equivalence oracle ob-
serves that the pattern 〈assists .owns〉 is not a rule since the access request 〈Carol ,Bob_Record〉
that matches the pattern is denied as per the enforced authorizations (recall that we are employ-
ing the deny-by-default strategy). However, this pattern is captured as a rule in the hypothesis
DFA since the transition “assists” followed by transition “owns” reaches accepting state q1, leading
to permission over-assignment. Therefore, the equivalence oracle responds with counterexample
〈assists .owns〉 to learner’s hypothesis.
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5 LEARNER: INFERRING DFA FROM BLACK-BOX ACCESS CONTROL ENGINE

The goal of the learner is to learn an exact model of unknown ReBAC policy enforced in SUL. The
policy enforcement is represented as a ReBAC policy DFA introduced in Section 3.2. In this section,
we present detailed working of the learner component for actively learning enforced policy DFA.

5.1 Inference Model

Let MI be the policy DFA, corresponding to ReBAC policy ΦI , that is enforced by SUL. The learner
does not know about the structure of MI since it can only interact with the system as a black
box. However, it can submit two types of queries to the teacher in the context of MAT framework,
namely, membership and equivalence queries, which are defined as follows:

Definition 6 (Membership Query). The learner submits relationship pattern ϕ of its choice to the
teacher and obtains whether ϕ ∈ L (MI ).

A negative response to the membership query (i.e., ϕ � L (MI )) is always correct. However,
due to the design of the mapper component, a positive response to the membership query (i.e.,
ϕ ∈ L (MI )) can be uncertain (i.e., the correct response might be negative). As we later show, our
learner algorithm is still able to function correctly despite such uncertain behavior.

Definition 7 (Equivalence Query). The learner submits hypothesis DFA MH and the teacher
replies with a yes if L (MH ) = L (MI ), or otherwise with a counterexample pattern ϕ ∈
L (MI ) Δ L (MH ).

In the above definition, Δ denotes the symmetric difference operation. This means that the coun-
terexample can be either a permitted relationship pattern that is missed by MH (i.e., under assign-
ment), or a non-permitted pattern that is incorrectly authorized by MH (i.e., over assignment).

In order to facilitate the discussion of our learning approach and its analysis, we present the
following simple running example in the context of an electronic medical records system.

Example 9 (Running Example). Figure 4 illustrates the process of actively learning the policy
DFA depicted in Example 4 based on system graph in Example 1 and implemented authorizations
in Example 3. Here, “o”, “t”, and “a” are abbreviations for “owns”, “treats”, and “assists”, respec-
tively. Also, we use the wildcard character ∗ to match any element in the set of relationship labels
{owns, treats,assists}. For instance, instead of having three rows 〈owns .owns〉, 〈owns .treats〉, and
〈owns .assists〉, we abbreviate them as 〈owns .∗〉 in the table for brevity. The upcoming examples
will discuss the steps of the process.

5.2 Observation Table

Observation table is the primary data structure utilized by the learner to accommodate knowledge
about a finite collection of relationship patterns, distinguishing them as accepted or not accepted.

Definition 8 (Observation Table). Observation Table is a triple 〈OS ,OE ,Oτ〉, where:

— OS ⊆ R is a non-empty finite prefix-closed set of relationship patterns.
— (OS . L) is the dynamic part of the table that contains the elements produced from pairwise

concatenation of the elements in sets OS and L.
— OE ⊆ R is a non-empty finite suffix-closed set of pattern.
— Oτ is a finite function ((OS ∪ OS . L) . OE ) → {0, 1} that maps patterns resulting from

concatenation of patterns in OS and (OS . L) with patterns in OE to 0 or 1. If the response
to a membership query ϕ submitted by the learner is PERMIT, then the learner sets Oτ(ϕ) =
1 and expects that ϕ corresponds to a rule in ΦI ; else, Oτ (ϕ) = 0 (if the response is DENY).
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Fig. 4. Illustration of learning algorithm for inferring policy DFA in Figure 2. (“o”, “t”, “a”, and “∗” referring
to “owns”, “treats”, “assists”, and any label in L = {owns, treats,assists}, respectively.)
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In the above definition, a prefix (suffix)-closed set means that every prefix (suffix) of every mem-
ber of the set is also a member of the set. Also, the dot operator (“.”) denotes pairwise concatenation
of the elements of two sets. We also use the same notation to indicate concatenation of two singular
patterns, and pairwise concatenation of a singular pattern with the elements of a set.

An observation table can be visualized as table using (OS ∪ OS . L) as rows and OE as columns.
The entry for row s and column e is Oτ (s .e ). The intuition behind observation table is that the rows
labeled by elements of OS are candidates for states of the automaton being constructed, and rows
labeled by elements of (OS . L) are employed to establish the transition function. Columns labeled
by elements of OE correspond to distinguishing experiments for the states in the automaton. Thus,
an observation table is eventually used to build a deterministic finite-state automaton.

Let row(ϕs ) denote the row for pattern ϕs in the observation table (i.e., ϕs ∈ (OS ∪ OS . L)). For-
mally, row(ϕs ) is defined as the finite function f from OE to {0, 1} defined as f (ϕe ) = Oτ (ϕs . ϕe ),
where ϕe ∈ OE . Accordingly, we define closed and consistent observation tables as follows:

Definition 9 (Closed Observation Table). An observation table is called closed if for every pattern
ϕ ′ in (OS . L) there is a pattern ϕ in OS such that row(ϕ ′) = row(ϕ).

Definition 10 (Consistent Observation Table). An observation table is called consistent if whenever
ϕ1,ϕ2 ∈ OS and row(ϕ1) = row(ϕ2) then ∀l ∈ L, row(ϕ1 . l ) = row(ϕ2 . l ).

Checking if an observation table is closed ensures that the transitions lead to states defined
based on the table. Checking if an observation table is consistent ensures that the transitions are
consistent. Ensuring both these conditions enable us to construct a valid hypothesis policy DFA.

Example 10 (Observation Table). Figure 4 shows several observation tables during the learning
process in our running examples (except Figures 4(c), (h), (j) and (n), which are hypothesis policy
DFAs). For instance, in the observation table in Figure 4(m), OS consists of patterns σ (the empty
pattern), 〈o〉, 〈a〉, 〈a.o〉, and 〈t〉, while OE consists of patterns σ , 〈o〉 and 〈t .o〉. In addition, we have
(OS . L) by concatenating the patterns in sets OS = {σ , 〈o〉, 〈a〉, 〈a.o〉, 〈t〉} and L = {o, t ,a}. For
instance, for pattern 〈t〉 ∈ OS we have the patterns 〈t .o〉, 〈t .t〉 and 〈t .a〉 in the set (OS . L). The
0/1 value for an entry Oτ (s .e ) indicates the membership response for the pattern (s .e) produced
by concatenating the corresponding row “s” and column “e” indicators. For instance, based on
Example 2, pattern 〈t .o〉 is an authorization rule in the ReBAC policy and hence, Oτ (〈t .o〉) = 1. Note
that, in Figures 4(e) and (f), Oτ (〈a.a.o〉) = 1 even though the pattern 〈a.a.o〉 is not an authorization
rule in Example 2. Thus, the entryOτ (〈a.a.o〉) is erroneous (due to uncertain membership response
for that pattern).

5.3 Learner Methodology

The learner conducts active learning following Algorithm 1, discussed in this section. Later in
Section 5.5, we will discuss Algorithm 2 that details our counterexample processing approach.
At any time during the learning process, the learner component maintains an observation table
〈OS ,OE ,Oτ〉.

At the beginning, learner populates the observation table with OS = OE = {σ }, where σ is the
empty pattern (Lines 1 and 2). Then, to determine Oτ, the learner submits membership queries
to the teacher for σ and each l ∈ L. This initial observation table may or may not be closed and
consistent.

In the main loop, the learner checks whether the current table 〈OS ,OE ,Oτ〉 is closed and con-
sistent (Line 4). If the table is not closed, the learner looks for ϕ ′ ∈ OS and l ∈ L such that
row(ϕ ′ . l ) � row(ϕ) for all ϕ ∈ OS . It then extends OS by adding the pattern (ϕ ′ . l ) and aug-
ments the observation table through membership queries for missing entries (Lines 5–8). If not
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ALGORITHM 1: Learning a ReBAC Policy DFA in Black-Box Manner

Result: Policy DFA MH corresponding to ReBAC policy ΦI enforced by SUL.

1 Initialize OS and OE to {σ };

2 Construct initial observation table 〈OS ,OE ,Oτ〉 through membership queries for σ and each l ∈ L;

3 repeat

4 while 〈OS ,OE ,Oτ〉 is not closed or not consistent do

5 if 〈OS ,OE ,Oτ〉 is not closed then

6 Determine ϕ ′ ∈ OS and l ∈ L such that ∀ϕ ∈ OS , row(ϕ ′ . l ) � row(ϕ);

7 OS ← OS ∪ {(ϕ ′ . l )};
8 Extend Oτ by issuing missing membership queries for patterns corresponding to (ϕ ′ . l ) .

OE and (ϕ ′ . l ) . L . OE ;

9 if 〈OS ,OE ,Oτ〉 is not consistent then

10 Determine ϕ1,ϕ2 ∈ OS , ϕe ∈ OE and l ∈ L such that row(ϕ1) = row(ϕ2) but Oτ(ϕ1 . l . ϕe )

� Oτ(ϕ2 . l . ϕe );

11 OE ← OE ∪ {(l . ϕe )};
12 Extend Oτ by issuing missing membership queries for patterns corresponding to

(OS ∪ OS . L) . (l . ϕe );

13 Construct hypothesis MH corresponding to the closed and consistent table 〈OS ,OE ,Oτ〉;
14 Issue an equivalence query corresponding to hypothesis DFA MH to the teacher;

15 if the teacher replies with a counterexample pattern ϕ then

16 〈OS ,OE ,Oτ〉 ← processCounterexample(ϕ, 〈OS ,OE ,Oτ〉);
17 until the teacher replies equivalent to the query about hypothesis MH ;

18 return MH ;

consistent, the learner finds ϕ1,ϕ2 ∈ OS , ϕe ∈ OE , and l ∈ L such that row(ϕ1) = row(ϕ2) but
Oτ(ϕ1 . l . ϕe ) � Oτ(ϕ2 . l . ϕe ). Then, the learner adds the pattern (l . ϕe ) to OE and populates Oτ
values corresponding to (OS ∪ OS . L) . (l . ϕe ) through membership queries for missing elements
(Lines 9–12).

As soon as the observation table 〈OS ,OE ,Oτ〉 becomes closed and consistent, the learner con-
structs a conjecture policy DFA MH corresponding to the current table (Line 13). This process is
discussed in detail in Section 5.4. The learner then issues an equivalence query to the teacher to
determine whether its hypothesis DFA MH is correct (Line 14). If the equivalence oracle within
teacher confirms correctness of the hypothesis and returns equivalent then the learner successfully
terminates with MH being the final output (Lines 17 and 18). On the contrary, if the equivalence or-
acle replies with a counterexample pattern ϕ, then our algorithm calls the processCounterexample

routine with ϕ and the current observation table as inputs (Lines 15 and 16). The processCounterex-

ample routine (discussed later in detail in Section 5.5 and Algorithm 2) resolves the error caused
due to the pattern ϕ and returns an updated observation table that addresses the counterexample.
The learner then repeats the entire procedure on this new observation table 〈OS ,OE ,Oτ〉. The
working of the equivalence oracle component is discussed in detail in Section 7.

In summary, the learner issues queries about membership of relationship patterns to the teacher
and updates its observation table. Once observation table becomes closed and consistent, the
learner submits hypothesis policy DFA to teacher. If the teacher replies with a counterexample,
then the learner updates its observation table to account for the erroneous pattern, and repeats
the whole process. Else, the learner successfully terminates with right hypothesis.

Example 11 (Closed, Consistent Observation Tables). Figures 4(b), (f), (i), and (m) demonstrates
closed and consistent observation tables. Initially, our learning algorithm submits membership
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queries for the patterns σ , 〈o〉, 〈t〉, and 〈a〉. The initial observation table shown in Figure 4(a) is not
closed since row(〈o〉) is distinct from row(σ ). So, our algorithm moves the pattern 〈o〉 to OS and
then queries the patterns 〈o.o〉, 〈o.t〉, and 〈o.a〉 to construct the table in Figure 4(b). Similarly, the
observation table in Figure 4(l) is not closed since row(〈t〉) is distinct from all rows in OS . So, our
algorithm moves the pattern 〈t〉 to OS and submits membership queries for the missing entries to
obtain the table in Figure 4(m).

The observation table in Figure 4(d) is not consistent since row(σ ) = row(〈a〉) but row(〈o〉) �
row(〈a.o〉) (note that σ .〈o〉 = 〈o〉). Thus, our algorithm adds pattern 〈o〉 to OE , and queries patterns
〈t .o〉, 〈o. ∗ .o〉, 〈a.t .o〉, 〈a.a.o〉, and 〈a.o. ∗ .o〉 to construct the observation table shown in Figure 4(e).
Observe that this causes a membership error corresponding to the pattern 〈a.a.o〉 in the table
(which will be resolved during counterexample processing). Similarly, the observation table in
Figure 4(e) is not consistent since row(〈a〉) = row(〈a.o〉) but row(〈a.a〉) � row(〈a.o.a〉) (by replacing
∗ in 〈a.o.∗〉with a). So, our algorithm adds pattern 〈a.o〉 to OE and constructs the observation table
shown in Figure 4(f) by submitting membership queries for the missing entries. Note, here, that
we could have alternatively added the pattern 〈t .o〉 to OE since row(〈a〉) = row(〈a.o〉) but row(〈a.t〉)
� row(〈a.o.t〉).

5.4 Constructing Hypothesis Policy DFA

Given a closed, consistent observation table, we want to build a hypothesis DFA that conforms
with the ReBAC policy DFA specification stated in Definition 4. In particular, the language of the
constructed hypothesis DFA should be finite.

Let Q be the set of states, q0 be the initial state, F be the accepting (final) states, and δ be the
transition function of a DFA. Then, we construct an initial hypothesis DFA MH corresponding to
a closed, consistent observation table 〈OS ,OE ,Oτ〉 and over the alphabet set L as follows:

Q = {row(ϕ): ϕ ∈ OS };
q0 = row(σ );
F = {row(ϕ): ϕ ∈ OS and Oτ (ϕ) = 1};
δ (row(ϕ), l ) = row(ϕ . l ).

However, the language of the initial hypothesis DFA constructed as above may not be finite. In
particular, considering the hypothesis DFA as a directed graph, we may have reachable cycles on
some paths from the initial state to final states. Such cycles will lead to an infinite language for the
DFA. We remove those cycles by redirecting them to a dead state in the DFA. We follow a two-step
process, namely, identifying the cycles and identifying the nodes’ reachability to accepting states.
The following steps detect and prune any cycle on the path to an accepting state in hypothesis
DFA MH , where the DFA structure is considered as a graph:

(1) Starting from the initial state q0 of MH , traverse the entire DFA in a depth-first manner.
(2) Identify the set of back edges B in the depth-first tree, i.e., those edges (u,v ) that connect a

vertexu to an ancestor vertexv in the tree, including self-loops. The edges inB are responsible
for cycles in MH .

(3) For every back edge (u,v ) ∈ B, determine if any of the accepting states of MH is reachable
from v . If true, then mark the edge (u,v ) for removal.

(4) After marking all edges that are responsible for creating cycles in the accepting strings, direct
each of those marked edges to a dead state in the DFA MH . To identify a dead state in MH :
— Determine the connected components in MH .
— Select the component containing no accepting state and mark its nodes as dead states.
— If no such state exists, then create a dead state.
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Example 12 (Constructing Hypothesis Policy DFA). Figures 4(c), (g), (i), and (n) show different
hypothesis DFAs (named, MH 1, MH 2, MH 3, and MH 4, respectively) that are constructed during the
learning process. These hypothesis DFAs are constructed from the closed, consistent observation
tables in Figures 4(b), (f), (h) and (m), respectively. To further clarify the process of automaton
construction, we focus on how the final hypothesis DFA MH 4 is constructed from the observation
table in Figure 4(m). For each distinct row in OS corresponding to patterns σ , 〈o〉, 〈a〉, 〈t〉, and 〈a.o〉,
we have states q0, q1, q2, q3, and q4, respectively. We have only one final state q1 corresponding
to pattern 〈o〉 since Oτ (ϕ .σ ) = 1 only for row(〈o〉), where ϕ ∈ OS . As an example of a transition
in DFA MH 4, starting from state q0 corresponding to row(σ ) and following label “o” would lead to
state q1 corresponding to row(〈o〉).

5.5 Processing Counterexamples

Counterexamples are provided by the teacher to the learner when the hypothesis policy DFA MH

does not match ground-truth DFA MI . In terms of an authorization policy, this means that the
learner’s hypothesis fails to correctly capture certain authorization rules. This could be caused in
our learner due to two reasons:

— faults due to lack of exploring distinguishing accepted patterns by the learner;
— faults induced because of incorrect inference of relationship pattern authorizations by the

mapper.

In other words, errors in our hypothesis can be due to either incomplete or incorrect observa-
tions about authorization patterns. Our algorithm follows the original L* algorithm to tackle the
errors that are due to incomplete observations. However, the errors due to incorrect observations
need to be treated differently. Based on these two sources of errors, our learning algorithm deals
with two types of counterexamples, which we call L* and uncertain counterexamples, respectively.

Definition 11 (L* Counterexample). An L* counterexample is about a relationship pattern that
does not exist in the current observation table. Given a submitted hypothesis MH and its corre-
sponding table, the received counterexample ϕ is an L* counterexample if ϕ � ((OS ∪ OS . L) .
OE ).

Definition 12 (uncertain Counterexample). An uncertain counterexample is about a pattern
that exists in the current observation table. Given a submitted hypothesisMH and its corresponding
table, the received counterexample ϕ is an uncertain counterexample if ϕ ∈ ((OS ∪ OS . L) . OE ).
Furthermore, it is always the case that Oτ(ϕ) is incorrectly recorded as 1, while it should be 0.

As mentioned in the above definition, the uncertain counterexamples are always about rela-
tionship patterns that have been incorrectly authorized by the submitted hypothesis. This issue
will be further discussed in Section 6.

Algorithm 2 describes our approach to process counterexamples in a hypothesis DFA MH sub-
mitted by the learner. The input to the processCounterexample routine are the current observation
table 〈OS ,OE ,Oτ〉 corresponding to DFA MH and counterexample pattern ϕ received from the
equivalence oracle. The processCounterexample routine returns an updated observation table. In
the following, we describe the different steps in our counterexample processing algorithm:

Determining Counterexample Type. During counterexample processing, our algorithm first
checks if counterexample ϕ exists in current table 〈OS ,OE ,Oτ〉 or not (Lines 1 and 13). If it
exists, then as mentioned earlier, ϕ is an uncertain counterexample. Otherwise, ϕ is an L*
counterexample.
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ALGORITHM 2: processCounterexample(ϕ, 〈OS ,OE ,Oτ〉); Processing uncertain/L* Counterexample

Inputs : Counterexample pattern ϕ and current observation table 〈OS ,OE ,Oτ〉.
Result: Updated observation table 〈OS ,OE ,Oτ〉 after processing counterexample ϕ.

1 if ϕ ∈ ((OS ∪ OS . L) . OE ) then // Process uncertain counterexample
2 Oτ (ϕ) ← 0; // Correct pattern ϕ entries in current observation table

3 for i = 1 to len(ϕ) + 1 do // Identify shortest prefix of ϕ in OS where suffix in OE

4 ϕpre ← ϕ[1 . . . i − 1]; // Split pattern ϕ into prefix ϕpre

5 ϕsuf ← ϕ[i . . . len(ϕ)]; // and suffix ϕsuf

6 if ϕsuf ∈ OE and ϕpre ∈ OS then

7 break;

8 if ϕpre = σ then

9 Reset 〈OS ,OE ,Oτ〉 to the initial table by following steps 1–2 in Algorithm 1;

10 else

11 Remove any pattern from OS with ϕpre as its prefix;

12 OE ← {σ };
13 else // Process L* counterexample
14 Add ϕ and all of its prefixes to OS ;

15 Extend Oτ to ((OS ∪ OS . L) . OE ) through membership queries for missing entries;

Processing L* Counterexample. To process an L* counterexample, our algorithm adds ϕ along
with all its prefixes to OS (if they do not already exist in OS ). Then, it populates Oτ values cor-
responding to (Φ . OE ) and ((Φ . L) . OE ) by submitting membership queries for missing entries
(Lines 14 and 15). Here, Φ is the set consisting of counterexample ϕ and any of its prefixes not
already present in OS .

Processing uncertain Counterexample. This involves the following three steps:

— Fixing observation table entries. Our algorithm first corrects the entries in current observa-
tion table (Line 2) corresponding to pattern ϕ. In particular, we set Oτ (ϕ) = 0 (which has
been previously “1” due to the mapper’s uncertain membership response). If we visualize
observation table as a table with rows (OS ∪ OS . L), columns OE , and Oτ (s .e ) as entry
for row s and column e , then multiple entries of the table will be affected by this correction
operation.

— Identifying shortest prefix in OS . Then, our algorithm determines the shortest prefix of ϕ that
is in OS such that the suffix is in OE (Lines 3–7). To this end, our algorithm splits ϕ into a
prefix ϕpre and a suffix ϕsuf and checks whether ϕpre ∈ OS and ϕsuf ∈ OE , iteratively over
the length of ϕ. At the beginning of the loop ϕpre is empty and ϕsuf = ϕ, and vice-versa at
the ending. In the algorithm, ϕ[m . . .n] indicates the substring of ϕ from indexm to index n.

— Removing potential erroneous observations. Once, we identify the shortest prefix ϕpre , we add
it to the set (OS . L) and remove all patterns from OS that have ϕpre as the prefix (Lines 10–
12). Note that any pattern with ϕpre as the prefix will be removed from (OS . L) as well. Also,
we remove all columns (except σ ) from OE . The intuition is that we backtrack to a policy
DFA, which did not have the counterexample ϕ, and then remove all states and transitions
that succeed the pattern ϕ in the DFA. If the shortest prefix is the empty pattern σ (i.e., there
is an error in the start state), then we revert to the initial observation table (Lines 8 and 9).

Subsequently, processCounterexample returns to Algorithm 1 with an updated table 〈OS ,OE ,Oτ〉.
Then, the entire learning process is repeated on the new observation table, i.e., we ensure that the
table is closed and consistent, and issue the corresponding equivalence query (hypothesis DFA).
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Example 13 (L* vs. uncertain Counterexamples Processing). Figure 4(d) illustrates the result of
processing an L*-type counterexample, namely 〈a.o〉, in hypothesis DFA MH 1 (Figure 4(c)). MH 1 is
not the correct DFA for the policy in Example 2 because the pattern 〈a.o〉 is not in the policy, but
is accepted by MH 1. Therefore, the equivalence oracle returns counterexample 〈a.o〉. To process
counterexample 〈a.o〉, our algorithm adds patterns 〈a〉 and 〈a.o〉 to OS (the empty pattern σ is
already in OS ), and queries for patterns 〈a.t〉, 〈a.a〉, 〈a.o.o〉, 〈a.o.t〉, and 〈a.o.a〉 to construct the
observation table in Figure 4(d).

Figure 4(h) shows the result of processing an uncertain counterexample, namely, 〈a.a.o〉, in hy-
pothesis DFA MH 2 (Figure 4(g)). Because of uncertain membership response, the pattern 〈a.a.o〉,
which is not a rule according to Example 2, is accepted byMH 2. After fixing the value ofOτ (〈a.a.o〉),
our algorithm determines the shortest prefix of the counterexample that exists in OS , which is 〈a〉
in this example, where the suffix 〈a.o〉 is in OE . We then add 〈a〉 to the set (OS . L) and remove all
rows with pattern 〈a〉 as the prefix, i.e., row(〈a.o〉), row(〈a.t〉), row(〈a.a〉), and row(〈a.o.∗〉). In ad-
dition, all patterns except σ are removed from OE . Finally, we obtain the observation table shown
in Figure 4(h).

Although not illustrated by the above example, we note that our counterexample processing
is also capable of detecting erroneous patterns, i.e., processing L*-type counterexamples that are
actual rules in the policy but not accepted by the hypothesis DFA.

6 MAPPER: ACCESS SPACE ABSTRACTION

This section describes the design and working of the mapper component that mediates between
the learner and SUL, for the learner to infer a policy DFA. The mapper considers concrete domain
of access requests when interacting with SUL, while considering abstract domain of relationship
patterns when receiving membership queries from the learner.

6.1 Design of the Mapper Component

To be able to perform its function, the mapper component contains two data structures, namely,
the mapping table and the inference table. Informally, the former is used for storing the mapping
between relationship patterns and access requests according to the system graph, whereas the
latter is used for storing the mapper’s current inferences about pattern authorizations based on its
interactions with SUL. In the following, we describe each of these data structures in detail:

6.1.1 Mapping Table. The mapping table stores the association between the learner’s abstract
domain of relationship patterns and SUL’s concrete domain of access requests based on a system
graph. Given the system graph G (V ,E), the concrete domain of access requests (used by SUL),
denoted by C ⊆ V × V , comprises the collection of access requests 〈u ∈ U , r ∈ R〉. The abstract
domain of relationship patterns (used by the learner through membership queries) comprises all
possible relationship patterns R (Definition 2). We formally define the mapping table as follows:

Definition 13 (Mapping Table). The mapping table P is a tuple 〈Pϕ , PC 〉. Pϕ ⊆ R is the set of
relationship patterns in the system graph. PC ⊆ Pϕ × C is a binary relation that maps each pat-
tern ϕ ∈ Pϕ with its corresponding access requests 〈u, r 〉 ∈ C such that ∃π ∈ Πu,r , π matches
pattern ϕ.

For obtaining access requests 〈u, r 〉 corresponding to a given relationship pattern ϕ, we employ
the following procedure. Using a graph traversal strategy such as breadth-first search, we system-
atically explore system graph G (V ,E) for various relationship patterns defined on set of labels L.
For every path π ∈ Πu,r between user u ∈ U and resource r ∈ R encountered during graph traver-
sal, we record the mapping between ϕ (relationship pattern associated with π ) and 〈u, r 〉 into the
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mapper’s mapping table P . Since this procedure is repeated for all V nodes in the directed system
graph, the time complexity for obtaining the mapping table containing relationship patterns and
their associated access requests is O(V 3). For tackling large graphs with several high-degree nodes,
our algorithm is provisioned with a user-specified constraint indicating the maximal length of re-
lationship pattern in SUL’s enforced policy. So, the graph traversal procedure is length-limited.

6.1.2 Inference Table. The inference table records the mapper’s current inferences about re-
sponses to the learner’s membership queries. Formally, we define the inference table as follows:

Definition 14 (Inference Table). The inference table I is a tuple 〈Iϕ ,Îϕ ,Iτ〉. Iϕ ⊆ R is a set of

relationship patterns (corresponding to membership queries) for which the mapper has inferred
a response. I

̂ϕ
⊆ Iϕ indicates those patterns whose membership decision inferred by the mapper

is certainly correct (with respect to the ReBAC policy ΦI enforced by SUL). Finally, function Iτ :
Iϕ −→ {PERMIT, DENY} maps each ϕ ∈ Iϕ to its corresponding inferred response by the mapper.

The mapper infers the response to a membership query based on its interactions with SUL and
stores them in its inference table. As part of the inference process, the mapper produces an access
request 〈u, r 〉 ∈ C associated with the membership query’s relationship pattern ϕ ∈ R, such that
(ϕ, 〈u, r 〉) ∈ PC , and submits it to SUL for determining the access decision. Ideally, the mapper
should return correct responses to the learner’s membership queries. However, the design of our
mapper is such that the access space of SUL is not exhaustively explored. So, it is inevitable that
the mapper would make inferences about responses to membership queries based on incomplete
information. Thus, some of the mapper’s responses to membership queries could be uncertain.
This uncertain behavior is restricted to some positive responses. The inference mechanism used
by the mapper and its strategy for tackling uncertain responses will be discussed in Section 6.2.

6.2 Working of the Mapper Component

A major design consideration of our mapper is to avoid exhaustive exploration of SUL access space.
To this end, the mapper infers its responses to membership queries based on minimal interaction
with SUL. This design may result in uncertain inferences since a relationship pattern usually cor-
responds to multiple access requests in a system graph. The mapper also caches its inferences in
the inference table. In the following, we describe various functions of the mapper in our learning
architecture, including interacting with the other components and building its inference table:

Interaction with the Learner. At the beginning of our learning process (given in Algorithm 1),
the inference table I is empty, and it is augmented as queries are generated by the learner. When-
ever the learner submits a membership query about pattern ϕ, the mapper checks its inference
table for decision corresponding to that pattern. Specifically, the mapper returns Iτ(ϕ) if ϕ ∈ Iϕ . If
the mapper does not have the inference, then it will interact with SUL to answer the membership
query.

Interaction with SUL. If the record corresponding to learner’s membership query ϕ does not
exist in its inference table, then the mapper randomly selects an access request 〈u, r 〉 from its
mapping table P where (ϕ, 〈u, r 〉) ∈ PC , and forwards 〈u, r 〉 to SUL. Let Φ be the set of relationship
patterns between u and r . Then, based on SUL’s response, the mapper updates its inference table
as:

— If the mapper receives a DENY decision from SUL, then none of the patterns in Φ can be
candidate for a rule, and so the mapper updates its inference table I with correct responses
for those patterns. That is, ∀ϕ ′ ∈ Φ, I is augmented with Iτ(ϕ ′) = DENY and I

̂ϕ
= I

̂ϕ
∪ {ϕ ′}.
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— If the mapper receives a PERMIT decision and Φ \ {x ∈ I
̂ϕ
| Iτ (x ) = DENY} = {ϕ} (i.e., all the

relationship patterns in Φ except ϕ are certainly denied), then I is updated as Iτ(ϕ)=PERMIT
and I

̂ϕ
= I

̂ϕ
∪ {ϕ}.

— Otherwise (i.e., PERMIT and the second condition above does not hold), then I is updated as
Iτ(ϕ)=PERMIT. This Iτ(ϕ) is not necessarily correct since ϕ can be non-permitted and there
can be other patterns in Φ responsible for PERMIT. Such uncertain membership inferences
are resolved through counterexamples from the equivalence oracle (discussed next).

Interaction with the Equivalence Oracle. When the equivalence oracle returns a counterex-
ample ϕ during evaluation of the learner’s conjecture, the mapper updates its inference table en-
tries, i.e., Iτ(ϕ) and I

̂ϕ
, with correct membership response corresponding to pattern ϕ. Therefore,

if the mapper had provided uncertain membership response about ϕ, where ϕ ∈ Iϕ but ϕ � I
̂ϕ
,

then the inference table is lazily updated as Iτ(ϕ) = DENY when a counterexample from the equiva-
lence oracle arises due to the acceptance of a non-authorized pattern ϕ by the learner’s hypothesis.
Moreover, I is updated as I

̂ϕ
= I

̂ϕ
∪{ϕ}. Henceforth, during our learning algorithm (Algorithm 1),

the mapper’s membership response for query pattern ϕ are guaranteed to be correct.

7 EQUIVALENCE ORACLE: VALIDATING INFERRED POLICY DFA

The correctness of a hypothesis policy DFA constructed by the learner is assessed by submitting
an equivalence query to the equivalence oracle component. The equivalence oracle needs to verify
the validity of the learner’s conjecture about access controls enforced in SUL. This process deter-
mines if the learner’s conjecture contains any over-assignments or under-assignments of access
permissions, and allows the learner to obtain a better comprehension of the access control policy.
Verifying the hypothesis can be performed using a conformance testing strategy. Our equivalence
oracle employs information from the mapper’s mapping table and inference table. In addition, it
queries SUL for access decisions to further validate authorized patterns in the learner’s hypothesis.
Note that the equivalence oracle does not have direct knowledge about the enforced access control
policies since SUL is a black-box component in the context of this work.

In this section, we propose two strategies for implementing the equivalence oracle based on
varying degrees of access space coverage. We provide details of our general algorithm for confor-
mance testing in the context of our first strategy, i.e., complete access space coverage. However,
we note that the first strategy is not efficient for many real-world applications. Our next strategy,
namely, randomized access space coverage, limits the access space exploration. Our experimental
evaluation shows the effectiveness of such strategy in practice.

7.1 Complete Access Space Coverage

For a given hypothesis DFA MH , the equivalence oracle initially checks the validity of MH against
the ground-truth details about relationship pattern authorizations recorded in the mapper’s infer-
ence table I (Definition 14). In other words, for any pattern ϕ ∈ L (MH ) where the mapper has
recorded a correct membership response (i.e., ϕ ∈ I

̂ϕ
), we verify that Iτ(ϕ) equals PERMIT. Other-

wise, ϕ is returned as a counterexample. An analogous evaluation is performed for patterns not
accepted by the hypothesis DFA (i.e., ∀ϕ ′ � L (MH )) against the DENY records in I.

To further validate relationship patterns in the inferred DFA, the equivalence oracle inspects the
authorization space of SUL by querying the remaining access requests not already covered by the
mapper. We employ the mapper’s mapping table P (Definition 13) in order to evaluate relationship
patterns in hypothesis DFA based on the authorizations of access requests returned by SUL:
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— For a denied request 〈u, r 〉: all paths between useru and resource r based on the system graph
should be denied by the hypothesis. Formally, ∀ϕ ′ such that (ϕ ′, 〈u, r 〉) ∈ PC , it should hold
that ϕ ′ � L (MH ). Otherwise, ϕ ′ is generated as a counterexample.

— For a permitted request 〈u, r 〉: at least one of the paths between u and r should be permitted
according to the learner’s hypothesis. Formally, ∃ϕ such that (ϕ, 〈u, r 〉) ∈ PC , ϕ ∈ L (MH )
should be satisfied. Else, the pattern ϕ is generated as a counterexample.

Note that initially the equivalence oracle utilizes denied access requests to identify the non-
permitted patterns, and then permitted access requests to identify the authorization rules. This is
because, with a denied request 〈u, r 〉, all patterns ϕ ′ between u and r in G, i.e., (ϕ ′, 〈u, r 〉) ∈ PC ,
must be non-permitted. But, when 〈u, r 〉 is permitted, only one pattern needs to be permitted (i.e.,
be a rule), making it challenging to reason about permitted patterns. Once, we have identified
non-permitted patterns, we use that information to eliminate candidates for a permitted pattern.

It should be noted that the equivalence oracle needs to provide only one counterexample (if any
exists) to the learner. Therefore, it can use different exploration strategies for finding counterexam-
ples. In our prototype, we prioritize the length and coverage of the explored patterns. Particularly,
during counterexample generation, we consider smaller patterns first. Besides, if two patterns have
the same length then the one with larger number of access requests is selected.

The time complexity of an equivalence oracle that uses the complete access space strategy is as
follows. Enumerating all access requests will need O ( |V |2), given system graph G (V ,E). Assume
that we already have the pattern-to-access-request association PC from the mapper’s mapping ta-
ble (Section 6.1.1). Suppose b = O(LN ) is the upper bound of the number of different patterns that
can exist between any two nodes in G, where L is the set of relationship labels and N is the maxi-
mum allowable length of a relationship pattern. As N is typically a small number, we can consider
b as a constant factor. Since the equivalence oracle checks the hypothesis DFA against every access
request, the number of times that membership of patterns needs to be checked in the language of
the hypothesis is O (b |V |2). The accepted patterns can be enumerated all at once by traversing the
hypothesis DFA. Such a traversal, using a graph traversal algorithm, takes O(|Q |2) where Q is the
set of states in the DFA. Hence, in the worst case, the time complexity for a complete conformance
test is O(|Q |2 + b |V |2). Practically, |Q | << |V | and thus the complexity becomes O(b |V |2).

7.2 Correctness of Equivalence Oracle

In the following, we show that the proposed approach for equivalence oracle is correct, i.e., it
precisely captures misjudged relationship patterns in the learner’s hypothesis DFA. Our formal
analysis relies on the properties of the system graph relative to the ground-truth policy, out-
lined in Definition 5 (Section 4.1). Based on the concepts of permitted and non-permitted patterns
(Section 3.1), we first define the following concepts in relation to the learner’s hypothesis DFA:

Definition 15 (False Positive Pattern). A false positive pattern is a non-permitted pattern ϕ ′ � ΦI

that is incorrectly identified as a rule by the learner, i.e., ϕ ′ ∈ L (MH ).

Definition 16 (False Negative Pattern). A false negative pattern is a permitted pattern ϕ ∈ ΦI that
is not identified as a rule by the learner, i.e., ϕ � L (MH ).

Theorem 1 (Correctness of Eqivalence Oracle). The working of the equivalence oracle com-

ponent in the proposed black-box learning architecture is correct, i.e., it correctly responds with a false

positive or false negative pattern as a counterexample to an equivalence query.

Proof. We consider the cases for identifying false positive and false negative patterns sepa-
rately, and show that the equivalence oracle correctly identifies the counterexample patterns in
each case:
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Identifying False Positive Pattern ϕ ′ ∈ L (MH ). We rely on the property of non-permitted pat-
terns introduced in Definition 5(2). ϕ ′ ∈ L (MH ) implies that Oτ(ϕ ′) = 1 in the learner’s observa-
tion table. Therefore, ϕ ′ should exist in the system graph G, since by default the access decision
associated with all relationship patterns not present inG is DENY. As a result, the first condition of
Definition 5(2) does not hold. According to the second condition of the property, there exists some
denied access request 〈u, r 〉 in G such that (ϕ ′, 〈u, r 〉) ∈ PC . Since 〈u, r 〉 is denied, the equivalence
oracle verifies for all ϕ ′i , (ϕ ′i , 〈u, r 〉) ∈ PC (including ϕ ′), whether ϕ ′i � L (MH ). However, it is given
that ϕ ′ ∈ L (MH ). Hence, ϕ ′ is returned as a counterexample by the equivalence oracle.

Identifying False Negative Pattern ϕ � L (MH ). We employ Definition 5(1) about unique applica-
bility of authorization rules to the system graph for this case. According to this property, for rule
ϕ ∈ ΦI there exists some permitted 〈u, r 〉 inG such that only the ruleϕ applies to 〈u, r 〉, i.e., (ϕ, 〈u, r 〉)
∈ PC and ∀ϕi ∈ ΦI where ϕi � ϕ it holds that (ϕi , 〈u, r 〉) � PC . For the permitted request 〈u, r 〉, the
equivalence oracle determines a ϕi that satisfies (ϕi , 〈u, r 〉) ∈ PC and ϕi ∈ L (MH ). Since, we first
identify non-permitted patterns and then permitted patterns (Section 7.1), ∀ϕ ′i where (ϕ ′i , 〈u, r 〉)
∈ PC and ϕ ′i � ΦI (i.e., all non-permitted patterns between 〈u, r 〉), it must be true that ϕ ′i � L (MH );
otherwise they would already have been identified as false positive patterns as explained above.
Therefore, the equivalence oracle specifically checks whether pattern ϕ ∈ L (MH ). However, it is
given that ϕ � L (MH ), and hence the equivalence oracle returns ϕ as a counterexample. �

7.3 Randomized Access Space Coverage

The approach discussed in Section 7.1 is not efficient for many real-world applications since access
control queries to a system are costly and hence the complete access space of SUL cannot be
explored. As a more practical alternative to the complete access space approach, we propose the
randomized equivalence oracle, which tests the correctness of the policy hypothesis DFA using a
randomized set of access requests. Given the complete space of access requestsC , the randomized
approach selects a random subset Csub ⊆ C and verifies the learner’s conjecture MH against that.

The randomized strategy for testing the conformity of the learner’s conjecture is similar to the
complete coverage approach. It follows the same methodology as discussed in Section 7.1 to evalu-
ate relationship patterns in the learner’s hypothesis DFA by utilizing permitted and denied access
requests. Nevertheless, instead of exploring the complete access space, the number of test cases
is reduced by a factor of |C | / |Csub |. However, compared to the complete coverage approach, test-
ing the learner’s conjecture based on a random subset of access space can induce errors during
learning. This is because the equivalence oracle no longer has knowledge of the complete policy
enforced in SUL and it is inherent that it may not be able to correctly examine the learner’s hypoth-
esis for misjudged authorization rules. Hence, the randomized method is generally more efficient
for large applications with huge number of users and resources that are tolerant to small learning
inaccuracy. We experimentally investigate the effectiveness of the randomized equivalence oracle
in Section 10.5.

8 LEARNING USING AN EXHAUSTIVE MAPPER

In Section 6, we discussed the design and working of our mapper that minimizes the number of
access requests submitted to SUL. We refer to the mapper discussed in Section 6 as the proposed

mapper. In this section, we propose a naive implementation of the mapper (in terms of its strategy
for evaluating the learner’s membership queries) in our learning architecture, namely, the exhaus-

tive mapper. As evident from its name, this kind of mapper exhaustively explores SUL access space
to answer membership queries issued by the learner. This simplified mapper lays the foundation
for our formal analysis of the proposed learning framework (which will be studied in Section 9).
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In particular, we show that the working of our framework using the exhaustive mapper is more
similar to the MAT framework (i.e., the Angluin’s L* algorithm explained in Section 2.1) than that
using the proposed mapper. Therefore, in this section, we formally establish the correctness of
our learning framework using the exhaustive mapper by applying the theoretical results from the
Angluin’s L* algorithm.

8.1 The Exhaustive Mapper

The proposed mapper employs a single-match strategy to answer a membership query, i.e., it in-
fers a membership response based on SUL’s decision for “only one” access request matching the
queried pattern. However, the exhaustive mapper employs an all-match strategy, i.e., it evaluates
“all” access requests associated with a queried pattern. This strategy ensures that the exhaustive
mapper produces consistent and correct membership responses during the entire learning process.

Definition 17 (Exhaustive Mapper). The exhaustive mapper is a special version of the proposed
mapper (Section 6) with mapping table 〈Pϕ , PC 〉 and inference table 〈Iϕ ,Îϕ ,Iτ〉, where Iϕ = I

̂ϕ
. We

calculate Iτ for a pattern ϕ by querying SUL for {〈u, r 〉} such that (ϕ, 〈u, r 〉) ∈ PC . The value of
Iτ (ϕ) will be PERMIT only if |{〈u, r 〉}| > 0 and SUL returns PERMIT for all cases; else it will be DENY.

Note that according to the above definition, there will be no uncertainty in membership
responses.

Claim 1 (Determinism of Exhaustive Mapper Responses). The value of Iτ (ϕ) for a given

membership query ϕ does not change throughout the learning process.

The different strategies used in the exhaustive mapper and the proposed mapper impact the cost
of exploring SUL access space and learning iterations. The exhaustive mapper needs to evaluate all
access requests associated with a membership query pattern. Thus, in total it submits Θ(V 2) access
requests to SUL, whereV is the set of entities in the given system graph. Such an exhaustive explo-
ration of SUL is very costly in practice. On the other hand, the proposed mapper submits only one
access request per membership query. Due to the all-match strategy employed by the exhaustive
mapper, the membership query responses are always correct and no uncertainties is introduced in
the learning process. Thus, at the time of equivalence test, there will be no uncertain counterex-
amples in this case (only L* counterexamples can happen). On the other hand, the single-match
strategy followed by the proposed mapper induces additional cost to our learning process due to
uncertain membership responses. Specifically, the learner may have to perform more iterations in
Algorithm 1 due to backtracking when processing an uncertain counterexample (Section 5.5).

As discussed above, we emphasize that the exhaustive mapper is mainly explored deeply to
facilitate later formal analysis. Implementing it in practice would not be a very feasible option.

8.2 Correctness of Learning Framework using Exhaustive Mapper

Our framework works correctly if the learned policy DFA is an acceptor for the unknown Re-
BAC policy ΦI enforced by SUL. The learner reaches such a DFA after rounds of membership
and equivalence queries about relationship patterns to a MAT teacher who has knowledge of ΦI .
In this section, we prove that when using an exhaustive mapper, our learner is able to infer the
correct and minimal DFA representing policy ΦI , by applying the correctness results from the L*
algorithm.

Consider two learning frameworks, F and F ′, corresponding to our approach and Angluin’s
approach [6], respectively. In F , our learner (Algorithm 1) interacts with the teacher involving
the exhaustive mapper and the equivalence oracle. In F ′, the learner uses the L* algorithm and
interacts with a teacher that correctly answers membership and equivalence queries. In order to
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show that both F and F ′ behave the same in terms of correctness, we prove that: (i) the learner
algorithm in F and F ′ behaves the same, (ii) the membership query responses in F are correct, and
(iii) the equivalence query responses in F are correct. We showed (iii) in Section 7.2 (Theorem 1).
In Theorem 2, we show (ii) that the exhaustive mapper’s responses to the learner’s membership
queries are always certainly correct according to the SUL’s enforced policy. Then, in Theorem 3,
we show (i) and prove the correctness of F by employing the results about F ′.

Theorem 2 (Correctness of Exhaustive Mapper Responses). During a complete course of our

learning algorithm, for any ϕ, Iτ (ϕ) = PERMIT if and only if ϕ ∈ ΦI ; otherwise, Iτ (ϕ) = DENY.

Proof. Based on Claim 1, the mapper’s response, i.e., Iτ, is deterministic. Let Iτ (ϕ) = PERMIT.
Then, according to Definition 17, ϕ exists in the system graph and all applicable 〈u, r 〉 requests
(where (ϕ, 〈u, r 〉) ∈ PC ) are permitted. By contradiction, assume ϕ � ΦI . This contradicts with Def-
inition 5(2) since none of the applicable requests 〈u, r 〉 are denied. Therefore, Iτ (ϕ) = PERMIT =⇒
ϕ ∈ ΦI . On the other hand, let ϕ ∈ ΦI . Therefore, all applicable requests must be permitted. There-
fore, it follows Definition 17 that ϕ ∈ ΦI =⇒ Iτ (ϕ) = PERMIT. �

We borrow the following result regarding framework F ′ from the Angluin’s work [6,
Theorem 1]:

Lemma 1 (Correctness and Minimality of Hypothesis DFA [6]). If 〈OS ,OE ,Oτ〉 is a closed,

consistent observation table, then the corresponding hypothesis DFA MH is consistent with the finite

function Oτ. Any other DFA consistent with Oτ but inequivalent to MH must have more states.

Theorem 3 (Correctness and Minimality of Learner using Exhaustive Mapper). The

learner in framework F infers a correct and minimal DFA representation of ground-truth policy ΦI

enforced in SUL by interacting with the teacher involving the exhaustive mapper and the equivalence

oracle.

Proof. In framework F , since there is no uncertainty in the membership query responses, the
learner processes only L* counterexamples. Therefore, the learner algorithm in both frameworks F
and F ′ behaves the same. Additionally, we showed the correctness of equivalence and membership
query responses in framework F in Theorems 1 and 2, respectively. Thus, our learning framework
F behaves like the Angluin’s framework F ′ in terms of correctness. Based on Lemma 1, framework
F ′ is correct and always produces a minimal DFA consistent with the current observations. Hence,
once the equivalence oracle confirms the correctness of the policy DFA, the same correctness and
minimality results applies to our framework F . �

9 FORMAL ANALYSIS OF PROPOSED BLACK-BOX LEARNING FRAMEWORK

In this section, we build on our analysis established for the exhaustive mapper (Section 8) to present
the theoretical analysis of our framework involving the proposed mapper. We first distinguish the
major challenges in studying the proposed mapper in accounting for the uncertain membership
responses and the errors in the learning caused by that. We then formally demonstrate the termi-
nation (Section 9.1), correctness (Section 9.2), and time complexity (Section 9.3) of our learning
approach using the proposed mapper.

As discussed in Section 8.2, our framework using the exhaustive mapper behaves similar to the
Angluin’s L* algorithm [6]. Angluin showed that, as the learner progresses, the number of states
increases monotonically up to the size (number of states) of the initially unknown machine, and
this concept was employed to prove the termination of L*. However, in case of learning using the
proposed mapper, along with increase in the number of states as in the exhaustive mapper, the
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number of states in the inferred DFA may also decrease during uncertain counterexample pro-
cessing. This is because, for the proposed mapper we additionally need to account for uncertain
counterexamples due to potential errors in membership queries (Section 5.5), compared to the
exhaustive mapper whose membership responses are deterministic and may only deal with L*
counterexamples (Section 8.1).

9.1 Termination of Learning Framework using Proposed Mapper

In this section, we show that our learning algorithm involving the proposed mapper terminates in
a finite number of iterations. Our algorithm terminates when no counterexamples can be found in
the inferred policy DFA. Therefore, we show that the number of L* and uncertain counterexam-
ples are bounded during a complete learning process. We initially prove the following lemma that
relates the two types of counterexamples, L* and uncertain, that can happen in our framework:

Lemma 2 (Non-Repeating Nature of uncertainCounterexamples). When a counterexample
̂ϕ of type either uncertain or L* is received from the equivalence oracle, then ̂ϕ will not be generated

as an uncertain counterexample in the subsequent iterations of our learning algorithm.

Proof. Based on the counterexample ̂ϕ received from the equivalence oracle, the mapper up-

dates its inference table I with correct responses about pattern ̂ϕ, i.e., updates the entry Iτ(̂ϕ)

with correct authorization about ̂ϕ and I
̂ϕ
= I

̂ϕ
∪ ̂ϕ. Therefore, hereafter, the membership query

responses inferred by our mapper corresponding to the relationship pattern ̂ϕ are guaranteed to
be correct. �

We adopt the following lemma about the working of the L* algorithm from the Angluin’s
work [6], which will be later used in showing the termination of our architecture using the pro-
posed mapper.

Lemma 3 (Processing L* Counterexample [6]). Processing an L* counterexample increases the

number of states in the learner’s current conjecture by at least one.

Theorem 4 (Termination of Learner Using Proposed Mapper). The learning approach in-

volving the proposed mapper, given in Algorithm 1, successfully terminates.

Proof. At the end of each iteration of the main loop in Algorithm 1 the learner submits an
equivalence query for hypothesis DFA MH . The algorithm terminates when the response to the
equivalence query is positive. Such a response implies that no L* or uncertain counterexam-
ples can be identified for MH . Therefore, in the following, we show that the number of L* and
uncertain counterexamples are bounded during the course of our learning algorithm.

Processing L* counterexamples increases the number of states in the learner’s inferred DFA MH

(Lemma 3). The number of states in the inferred policy DFA is bounded by O (l × r ), where r is the
number of rules in the policy ΦI enforced by SUL and l is the length of the longest rule pattern in
ΦI . As a result, the number of L* counterexamples is bounded during the course of the algorithm.

The number of uncertain counterexamples depends on the number of errors due to uncer-
tain membership responses during the course of the learning algorithm. Let η be the set of non-
permitted patterns that apply to at least one permitted access request, i.e., for every ϕ ′ ∈ η there
exists some permitted 〈u, r 〉 in system graph G such that (ϕ ′, 〈u, r 〉) ∈ PC . Recall that for any

uncertain counterexample ̂ϕ, Oτ(̂ϕ) is “1” instead of “0”. This means that while ̂ϕ is non-permitted,

it has been erroneously observed as permitted based on an applicable request. Thus, ̂ϕ ∈ η. There-
fore, the number of uncertain counterexamples is bounded by the size ofη, which is itself bounded
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by the size of R (patterns over L of maximum allowable length). Moreover, based on Lemma 2, an
uncertain counterexample can occur at most once during an entire learning process. �

9.2 Correctness and Minimality of Learning Framework using Proposed Mapper

In order to show the correctness of our learning framework using the proposed mapper, we utilize
our theoretical results regarding the correctness and minimality using the exhaustive mapper, dis-
cussed in Section 8.2. The major difference when using the proposed mapper instead of exhaustive
mapper is that we need to account for uncertain membership responses and the errors caused by
those during the learning process. In our learning framework, the membership errors are resolved
through processing the counterexamples received from the equivalence oracle. During counterex-
ample processing, the learner updates its observation table corresponding to the erroneous entry
and the entries affected by the membership of the counterexample pattern (i.e., removing relevant
rows and columns in Algorithm 2, Lines 3–12). Fixing the erroneous entries in the observation
table is relatively straightforward. However, it is not trivial to show that our uncertain coun-
terexample processing fixes the additional errors created during the learning process (e.g., extra
rows/columns), and does not affect the expected working of the L* algorithm.

Theorem 5 (Correctness and Minimality of Learner using Proposed Mapper). Our learn-

ing framework involving the proposed mapper produces a correct, minimal policy DFA corresponding

to the ground-truth policy ΦI enforced in SUL.

Proof. Recall that there can only exist a finite number of uncertain counterexamples (Theo-
rem 4). Thus, during the course of Algorithm 1, we will eventually obtain a hypothesis DFA where
all uncertain counterexamples have been resolved. We first show that after processing the final
uncertain counterexample, the framework with the proposed mapper behaves the same as with
the exhaustive mapper. Suppose the equivalence oracle responds with the final uncertain coun-

terexample ̂ϕ during a run of our learning process. According to our uncertain counterexample
processing (Algorithm 2), the learner first corrects the observation table entries corresponding to

Oτ(̂ϕ) (Line 2). Then, it determines patterns ϕpre and ϕsuf (ϕpre .ϕsuf = ̂ϕ) such that ϕpre is the small-

est prefix of ̂ϕ that exists in OS and ϕsuf is its associated suffix that exists in OE (Lines 3–7). If
ϕpre is the empty string σ , then our algorithm reverts back to the initial observation table (Line 9).
Subsequently, the learner with the proposed mapper will behave the same as with the exhaustive

mapper, since ̂ϕ was the last uncertain counterexample for the current learning process and the
proposed mapper will not produce uncertain responses anymore.

On the other hand, if the smallest prefixϕpre is a non-empty pattern, then we remove all patterns
from OS that contain ϕpre as their prefix and also remove all columns, except σ , from OE (Lines 10–
12). We show that the rows corresponding to other patterns in OS that do not contain ϕpre as
their prefix could not have been affected by the membership error in row(ϕpre), i.e., those patterns
were not added to OS because of the error in row(ϕpre). During the process of building a closed,
consistent observation table, the learner adds a pattern to OS when the row corresponding to
that pattern is distinct from all rows in OS , i.e., the observation table is not closed (Algorithm 1,
Lines 5–8). However, in the presence of a membership error, such a distinction could have been
incorrectly observed. Therefore, we show that such an incorrect distinction is not possible for a
row whose corresponding pattern in (OS . L) does not contain ϕpre as its prefix. Let us refer to such
patterns as ϕsl . Without loss of generality, assume that ϕpre corresponds to the row that makes
the observation table not closed. Thus, before adding ϕpre to OS , row(ϕsl ) needed to be equal to
some row(ϕs ∈ OS ). Therefore, for any ϕsl , adding ϕpre to OS would not have made row(ϕsl )
suddenly distinct. Moving ϕpre to OS might also make the observation table not consistent. The
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learner would add a column to the observation table in such a situation (Algorithm 1, Lines 9–12).
This new column could make row(ϕsl ) and row(ϕs ) distinct. However, this distinction cannot be
attributed to the error in row(ϕpre); such a distinction is bound to happen regardless, if row(ϕsl )
and row(ϕs ) are not supposed to refer to the same state in the ground-truth DFA.

Therefore, our counterexample processing only removes rows corresponding to the patterns
withϕpre as prefix, since other rows could have not been possibly affected by the membership error.
Thereafter, the learner with the proposed mapper will behave the same as with the exhaustive
mapper as discussed before. Finally, the correctness and minimality of our framework using the
proposed mapper follows those of the case using the exhaustive mapper (Theorem 3). �

9.3 Time Complexity Analysis

We borrow the following complexity result of the L* algorithm from the Angluin’s work [6, Theo-
rem 6], which we will utilize in the time complexity analysis of our proposed framework.

Lemma 4 (Time Complexity of L* [6]). The running time of the L* algorithm is bounded by a

polynomial in the number of states of the minimum DFA for the initially unknown finite machine

and the maximum length of any counterexample provided by the teacher during the running of L*.

Consider the possible case that during the entire learning process no uncertainty is introduced
by the mapper. Let t0, t1, . . . , tn−1, tn be the sequence of closed, consistent observation tables
during the course of the learning algorithm. Note that in that case there will be no uncertain
counterexamples.

However, unlike the above special case, uncertainty in the membership query responses, and
hence uncertain counterexamples, can happen in a regular course of the learning process. Accord-
ing to our counterexample processing (Algorithm 2), processing an uncertain counterexample
may decrease the number of states in the hypothesis DFA. In the worst case, the counterexam-
ple processing will take the learner back to the initial DFA with only one state (i.e., the start state)
corresponding to the empty string σ . Therefore, in terms of the worst running time, a learning pro-
cess may follow the above mentioned sequence of observation tables all the way until the last step,
where an erroneous membership response is received. In such a learning sequence, observation
tables t ′1, t

′
2, . . . , t

′
n−1 are the same as t1, t2, . . . , tn−1, respectively. However, t ′n � tn since there is an

erroneous membership response in the last step. As mentioned earlier, processing the uncertain
counterexample that will be generated as the result of submitting hypothesis corresponding to
t ′n , will take the learner back to observation table t0 in the worst case. Then, the learner has to
reiterate the sequence to eventually obtain table t ′n , which will be now the same as tn . Since, the
only counterexample in the hypothesis is resolved, the net effect is running the L* algorithm and
obtaining the correct final DFA corresponding to the table tn .

Now, suppose that instead of one uncertain counterexample, we encounter multiple uncertain
counterexamples. Based on the above argument, in the worst case, the L* algorithm will be repeated
for all uncertain counterexamples. Since, the number of uncertain counterexamples is bounded
by η (discussed in the proof of Theorem 4), the worst case complexity of our learning algorithm is
the complexity of L* (see Lemma 4) multiplied by a factor of O(η).

10 EXPERIMENTAL ANALYSIS OF PROPOSED LEARNING FRAMEWORK

In this section, we discuss the prototype implementation of our learning framework and compare
its performance with other learning approaches. We perform two kinds of assessments, one for
the learning phase and the other for equivalence oracle. The learning phase focuses on interaction
between learner, mapper and SUL, and we perform experiments under different learning setups
to evaluate: (1) the learning cost, i.e., the number of queries and access requests produced to infer
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Table 2. Learning Cost Comparison between Our Framework Using the Proposed Mapper,
Its Exhaustive Alternative, and an Offline Learning Method

App. |U | |R | |E | |L|
Offline Exhaustive Mapper Proposed Mapper

#Acc.Req. |Q | #Acc.Req. #Membshp. #Equiv. |Q | #Acc.Req. #Membshp. #Equiv.

EHR 500 480 23,800 8 240,000 8 780,576 590,544 6 8 40,862 820,420 10

Elgg 420 560 24,186 4 235,200 5 717,587 456,712 5 5 15,670 652,704 8

access rules (Section 10.2), (2) the performance in accurately learning the SUL policy (Section 10.3),
and (3) the scalability of our approach when the application information is dynamic (Section 10.4).
During learning phase assessment, the equivalence oracle is implemented based on complete ac-
cess space coverage (Section 7.1), so that our assessment is independent of the equivalence oracle’s
performance. Finally, we assess the feasibility and performance of implementing the randomized
equivalence oracle (Section 10.5).

10.1 Setup, Applications, and Baselines

We have implemented a prototype of our learning framework in Java, and performed all our exper-
iments on a 64-bit Windows 10 machine using Intel Core i7-7700 processor and 16 GB of RAM. We
execute every experiment 10 times and report the average result over the 10 runs. For evaluating
the correctness of the learned authorization rule set, we utilized the access control policy provided
by each target system as the ground-truth for comparison. We emphasize that such a ground-truth
policy is only used for performance evaluation, and not during the learning process. Also, we con-
strain the length of the learner queries to 5 based on the maximum length of relationship patterns
in the ground-truth policies.

We experimented with two SULs: a simulated SUL in the health-care domain protecting elec-
tronic health records, called EHR, and an open-source social network application, called Elgg [1].
The left part of Table 2 shows the system graph configurations for both applications, where |U |, |R|,
|E|, |L| indicate the number of users, resources, edges, and edge labels, respectively. EHR regulates
accesses by doctors, nurses, and agents to patients’ medical records. We adapted the policy speci-
fication for EHR from [24]. The system graph was randomly generated by taking into account the
domain-specific constraints in place (e.g., the assists edge can be between only two users). Elgg

allows users to add friends, create posts, and comment on their friends’ posts. The friend relation
in Elgg is directional. To create users and their friend network, we utilized random subset of the
relationships data from a social network dataset called soc-Pokec [32]. To generate resources like
posts and comments, we simulated random user interactions with the application by employing
UI.Vision RPA [2]. Our goal is to learn the default visibility policy as applied to users’ posts and
comments.

We evaluate our proposed learning framework (using the proposed mapper, presented in
Section 6) against two baselines. The first baseline is the same learning framework but using the
exhaustive mapper (Section 8). As the second baseline we consider an offline learning (i.e., policy
mining) approach, in which the learner explores the complete authorization space of SUL to mine
the precise policy.

10.2 Learning Cost Assessment

The right part of Table 2 shows the results for the offline learning and our learner using each kind of
mapper. In each case, we report number of states in the final policy DFA (|Q |), membership queries
(#Membshp.), equivalence queries (#Equiv.), and access requests submitted to SUL (#Acc.Req.). More-
over, Figure 5 visually compares the results for the two mappers. The proposed mapper issues
more queries than the exhaustive mapper (about 40% extra membership queries and 60% more
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Fig. 5. Visual Learning Cost Comparison, Corresponding to Table 2, When Using Proposed (MP) vs. Exhaus-
tive (ME) Mappers for EHR (5(a), 5(b), 5(c)) and Elgg (5(d), 5(e), 5(f)) Applications. Diagonal Fill-Pattern Indi-
cating Duplicates.

equivalence queries). However, our ultimate goal is to reduce the number of access requests sub-
mitted to SUL since those are costly to process. The advantage of our framework is demonstrated
by the substantial reduction in the number of access requests, i.e., 94% for EHR and 97% for Elgg, in
the proposed mapper case compared to that of the exhaustive mapper. Also, the offline learning re-
quires about 83% and 93% more access requests, for EHR and Elgg respectively, than that using the
proposed mapper. Note that more access requests are reported for the exhaustive mapper than the
offline learning since some access requests may be repeated in the former case (our implementation
does not cache the query results); the repeated access requests are shown by diagonal fill-pattern
in Figures 5(c) and (f). Furthermore, for the proposed mapper scenario, the number of access re-
quests submitted to SUL is much less than the number of membership queries issued by the learner.
This is due to the design of our proposed mapper, which responds to membership queries based
on its inferences and interacts with SUL only when necessary. Moreover, note that there are some
repeated membership queries (shown by diagonal fill-pattern in Figures 5(a) and (d)), caused due
to backtracking during counterexample processing, that do not lead to additional access requests.

10.3 Learning Performance Assessment

We evaluate the quality of the learned policies against the ground-truth both syntactically (based
on policy rules) and semantically (based on permission assignments resulting from policies).
Figure 6(a) shows the number of rules in the ground-truth (|ΦI |) and learned (|ΦH |) policies as
well as our precision and recall in each application scenario. Moreover, we show syntactic simi-
larity of the learned policy and the ground-truth. We calculate syntactic similarity as the average,
over rules ϕ in ground-truth, of the syntactic similarity between ϕ and the most similar rule in our
learned policy. We measure the syntactic similarity of two rules based on the similarity of their
relationship patterns. We were able to learn the accurate policy in the case of EHR. However, the
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Fig. 6. Learning Performance of Our Framework (Using the Proposed Mapper).

learned policy for Elgg misses one rule (resulting in 0.8 recall). The inferred policy DFA for Elgg
is depicted in Figure 6(c). In this case, rules such as users can access comments on their posts were
learned correctly. But, as expected, our approach was not able to learn a rule in the ground-truth
that had a conjunctive condition. This rule states that users can access comments on others’ posts

only if they are friends with both owners of the posts and comments. This is because our current
policy model (Section 3.2) and learner algorithm do not support rules that contain conjunctive
patterns. Supporting such rules will be in our future work. Figure 6(b) shows the quality of our
learned policies measured by permission over-assignment (false positive rate or FPR), permission
under-assignment (false negative rate or FNR), and accuracy. Our results show no permission over-
assignment in either application. The relatively high false negative rate in the case of Elgg is due
to the missing rule in the learned policy as discussed earlier, which results in under-assignments
and a reduced overall accuracy.

10.4 Scalability Assessment

To investigate the suitability of our proposed framework for real-world applications, we examine
its scalability and how its cost contrasts against baselines as the target SUL grows. In particular,
we consider the growth in terms of the size of the system graph and the set of relationship labels.

System Graph Scalability in Elgg. For examining the performance of our algorithm with respect
to different sizes of the system graph, we obtain random samples of various sizes from the soc-
Pokec relationships dataset, and simulate them on the Elgg application. Then, with regards to
each of the network sizes, we generate a system graph as explained in Section 10.1 and execute
our learning approach. Figure 7(a) demonstrates the number of access requests (represented in the
log scale) submitted to SUL in Elgg based on different sizes of system graphs. The x-axis depicts
the graph growth in terms of number of nodes as well as number of edges (in brackets), while
maintaining certain domain integrity constraints. As shown in the figure, the number of access
requests for the offline and the exhaustive mapper cases are an order of magnitude larger than
that for the proposed mapper. Also, note that the exhaustive becomes more than the offline after
a certain point. This is because as the system graph size increases, the number of duplicate access
requests generated by the exhaustive mapper also increases leading to larger total number of access
requests compared to the offline.

Relationship Labels Scalability in EHR. We study the effect of the size of the relationship labels
set (i.e., set of alphabets for policy DFA) on the learning cost of the proposed framework for the
EHR application. For each experiment, we add a number of relationship labels to the learner’s
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Fig. 7. Scalability Evaluation on Learning Cost.

alphabet set L without changing the system graph (so, patterns formed from the added labels do
not exist in the system graph) and execute our learning approach. Our observations are shown in
Figure 7(b). The x-axis indicates the size of relationship labels set, which is initially “8” since the
EHR policy contains 8 labels. The y-axis indicates the percentage change (increase/decrease) in the
number of membership queries, equivalence queries, and access requests during a complete run of
the learner compared to that of the initial size of “8” labels. According to our results, the number of
membership queries increases almost linearly, but the number of equivalence queries and access
requests remain almost constant. For the access requests, this is because of the mapper’s inference
mechanism that returns DENY decision to the learner, if a membership pattern does not exist in
the system graph, without consulting SUL. For the equivalence queries, this is because there is
no additional uncertainty in mapper’s membership responses due to the added relationship labels,
and so the extra labels do not cause backtracking during counterexample processing.

10.5 Equivalence Oracle Assessment

We evaluate the performance of our learning framework in presence of the randomized equiva-
lence oracle (discussed in Section 7.3) depending on the amount of available test cases. Test cases
are randomly selected access requests of users and resources and associated decisions. Figure 8
demonstrates our observations about the accuracy of the learned policy for different sizes of equiv-
alence oracle test set for EHR. Here, the x-axis represents percentage of user access space consid-
ered for equivalence oracle with total access requests submitted to SUL in parentheses; the total
also includes access requests due to membership queries. As shown in the figure, with only 40% of
access requests provided to equivalence oracle, we achieve an accuracy of about 0.99. Interestingly,
with just 1% of access requests, equivalence oracle attains 0.5 accuracy, which manifests the power
of our model learning approach for inferring the authorization behavior.

Figure 8 also demonstrates the significant performance of our learning framework compared
to that of a state-of-the-art offline algorithm from the literature that mines ReBAC policy using
an access log [28]. As the input access log to the offline algorithm, we provided the same access
requests and responses that were seen by our framework. Those were seen as part of the member-
ship and equivalence queries in our framework, and their total number is indicated in parentheses
on the x-axis of the figure. Our results show that only when more than 80% of the access space is
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Fig. 8. Learning performance of proposed framework versus an offline learning approach [28] for EHR.

provided, the offline algorithm performs similar to our approach in terms of the accuracy of the
mined policy. Moreover, the rate at which the offline algorithm looses accuracy as it is provided
with less data is much faster than that of our proposed algorithm. For example, for 20% of access
space (involving 10% of equivalence oracle test cases) our proposed approach attains about 0.9
accuracy, while the offline algorithm could reach only around 0.65 accuracy.

11 CONCLUSION

We proposed a first-of-its-kind approach to learn the overall authorization behavior of a system
by considering the target system’s access control engine as a black box. Particularly, we proposed
to learn a DFA model, called ReBAC policy DFA, characterizing the ReBAC policy enforced by a
system by interacting with its access control engine using a minimal number of access requests. To
facilitate such active investigation, we abstracted the large access space of a target system into re-
lationship patterns that are expressed in ReBAC policies, using single-match observations. While
this minimalist strategy introduces uncertainty in our learning process, our theoretical analysis
proves that the proposed framework learns a correct and minimal DFA model corresponding to
the ReBAC policy of a system. Furthermore, our prototype implementation results show that our
framework can correctly learn policies as long as the ground-truth policy is expressible in our
current ReBAC policy DFA model. Our experiments also demonstrate that our proposed random-
ized strategy for implementing equivalence oracle is feasible and allows our framework to attain
significantly better learning accuracy compared to an offline learning approach that is provided
the same data for training. We formally analyzed the cost of our framework through algorithmic
complexity of the learner. Our experimental results show the significant cost advantage of our
proposed framework compared to two baseline learning setups. In particular, we demonstrate that
the proposed framework issues significantly lower number of access control requests to a system,
reducing the overhead of learning on the target system in practice. Moreover, we showed that our
learning process is scalable across different sizes of users/resources as well as sets of relationship
labels in a target system.

Among interesting directions for future work is investigating strategies for more efficient imple-
mentations of the equivalence oracle. One such strategy would be to leverage any existing back-
ground knowledge about the ground-truth policy to reduce the tested space by the equivalence
oracle. We also plan to support modeling and learning more expressive ReBAC policies in our
framework that could exist in real-world applications, as evidenced by our experimental results.
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