
RiBAC: Role interaction Based Access Control Model
for Community Computing

Youna Jung1, Amirreza Masoumzadeh1, James B.D Joshi1, Minkoo Kim2

1School of Information Sciences, University of Pittsburgh
{yjung, amirreza, jjoshi}@sis.pitt.edu

2College of Information Technology, Ajou University, Korea
minkoo@ajou.ac.kr

Abstract. Community computing is an agent-based development paradigm for
ubiquitous computing systems. In a community computing system, ubiquitous
services are provided by cooperation among agents. While agents cooperate,
they interact with each other continuously to access data of other agents and/or
to execute other agent’s actions. However, in cases of security-critical
ubiquitous services such as medical or military services, an access control
mechanism is necessary to prevent unauthorized access to critical data or
action. In this paper, we propose a family of Role interaction Based Access
Control (RiBAC) models for Community Computing, by extending the existing
RBAC model to consider role interactions. As a basic model, we propose the
core RiBAC model. For the convenience of management and to provide more
fine-grained access control, we propose Hierarchical RiBAC (H-RiBAC),
Constrained RiBAC (C-RiBAC), and Constrained Hierarchical RiBAC (CH-
RiBAC) models. Finally, we extend the existing community computing
framework to accommodate the specification and enforcement of RiBAC
policies.

Keywords: Cooperation, Community computing, Role interaction, Role-based
Access Control, Multiagent system

1 Introduction and Motivation

The capacity and intelligence of newly developed computing elements are growing
day by day. For highly complex problems requiring diverse capabilities, an approach
based on cooperation among elements can be an efficient solution [1]. Many
researchers have tried to fulfill application requirements using cooperation among
individual computing elements. For example, ubiquitous computing systems are often
developed using cooperation among computing elements because such systems
require, in general, many different capabilities of various computing elements.
Because such a cooperation based approach involves continuous and rich interactions,
multiagent technology is frequently used to design and develop cooperation based
ubiquitous computing systems. In addition, agents’ characteristics such as intelligence
and autonomy are suitable for developing intelligent ubiquitous computing systems
that can adapt to dynamically changing situations.

2

Jung et al. [2] propose Community Computing (CC) as an agent-based
development paradigm for ubiquitous computing systems. The objective of CC
framework is to provide ubiquitous services through dynamic cooperation among
agents. The CC approach focuses more on cooperation compared to the other
multiagent methodologies. As part of the CC approach, Jung et al. have proposed a
cooperation model and two different CC models. However, security of such a CC
based multiagent system has not been addressed in the literature.

Ubiquitous services are currently being expanded to various applications such as u-
healthcare, u-government, u-city, etc. Security and performance issues are some key
challenges to the deployment of such emerging ubiquitous systems, and hence a CC
system for ubiquitous applications should incorporate efficient security mechanisms.
In order to guarantee a secure CC system, first of all, the system should authenticate
agents. During cooperation, agents interact with other agents to get information or
request execution of other agents’ actions, which may be critical. To ensure security
of such critical actions or data, we need a proper access control mechanism to ensure
that agents are engaged in only authorized activities.

In this paper, we propose a family of role interaction based access control (RiBAC)
models that extend the standard RBAC models by incorporating authorized role-based
interactions among agents. We define two types of interaction permissions to capture
authorized interactions among agents. Moreover, we extend the CC specification
framework to include the RiBAC policy specification and enforcement capabilities.

The remainder of this paper is organized as follows. In Section 2, we present the
background on the CC model. In section 3, we propose the family of RiBAC models.
In Section 4, we present the extended CC framework that includes the core RiBAC
policy specification for communities. In Section 5, we discuss related work and in
Section 6, we present our conclusions and discuss future work.

2 Community Computing

In this section, we briefly introduce the CC approach used for developing ubiquitous
systems, where cooperation among agents is a basic issue. In order to design and
develop a CC system, we have earlier proposed two CC models: the simple
community computing (SCC) model [2] and community situation based static CC
model [3]. In this paper, we focus on an extension of the SCC model to incorporate
access control requirements.

2.1 Related Cooperation Based Approaches

Many cooperation based approaches have been proposed in the literature with the
goal of solving emerging large and complex problems. Several groupwares to support
CSCW (Computer Supported Cooperative Work) have been proposed in the literature
that effectively perform common tasks through information sharing among all users
[4, 5].

Multiagent based approaches have been frequently used to develop complex and
intelligent systems. Agents in multiagent systems have features such as flexibility

 3

and autonomous problem solving behavior, and the richness of interactions that are
useful for solving complex problems. In a typical multiagent system, agents interact
with each other in order to achieve their common goals. Zambonelli et al. [6] propose
Gaia methodology in which a multiagent system is regarded as a collection of
computational organizations consisting of various interacting roles, and the
cooperation among agents playing different roles aimed towards fulfilling the
requirements of the system. PICO (Pervasive Information Community Organization)
is a middleware framework for dynamically creating mission-oriented communities of
autonomous and ubiquitous software objects, called delegents, that offer ubiquitous
services [7].

In [8], Ishida et al. introduce the notion of community computing to support the
process of organizing diverse and amorphous people who are willing to share
knowledge and experiences. The objective of their approach is to make a city-scale
supporting system to assist a human’s everyday life – by creating a community that
represents a real human community. Their work supports the process of sharing
member’s preferences and knowledge so that they can reach consensus.

In [10], Blau emphasizes community computing as an essential emerging
technological environment where users share each other’s computing capabilities and
their identities are spread all over various devices, and points out the need for
significant research in this area.

2.2 Community Computing Model

As a cooperative approach to provide ubiquitous services, we have earlier developed
an agent based approach called the Community Computing (CC) model [2, 3]. The
model helps to realize ubiquitous services by utilizing cooperation among intelligent
agents in a ubiquitous environment. In CC approach, services are provided by
communities of agents having a common goal. This approach helps to intuitively
design ubiquitous services based on agent cooperation. A community consists of
agents cooperating with other agents in order to achieve the community’s goals, and
the problems of ubiquitous computing systems are solved by such communities. We
introduce the essential concepts of community computing below.
 Community - it is a metaphor to abstract a proactive organization that comprises
members cooperating with each others to achieve a particular set of goals. A
community has goals, necessary roles, cooperation, and role-member binding
information. In the CC model, different types of communities are represented as
different community templates. At the execution time, a community instance is
dynamically created according to the corresponding community template.

 Role - it is a well-defined position in a community, with an associated set of
expected capabilities. A role represents a particular responsibility necessary to
achieve a community’s goal. The capability of a role is represented by actions.

 Cooperation - it is a set of cooperative interactions among members assuming the
roles defined for a community in order to achieve community’s goal(s).

 Member - it is a metaphor that abstracts an individual agent involved in a CC
system. We can consider a human user as a member by using the agent of his/her

4

personal device. An agent can play different roles in different communities
simultaneously.

 Role-member binding - in order to create a community instance, we have to find
most appropriate members for each role. We refer to this process as role-member
binding.

 Society - it is a metaphor to abstract a CC system.

In the SCC model, a community has a set of roles, one goal, and mapping

information between roles and member agents’ types. Each role has attributes,
contexts, actions, and the condition for membership assignment. A context of a role is
implicitly defined by attributes of the role. The role-membertype mapping indicates
which agent types can take which roles defined for a community. The goal description
part indicates the initiator role and participant roles of cooperation, and the
cooperation itself. To describe a cooperation, the SCC framework uses constructs of
OCCAM, a parallel computing language, such as SEQ, PAR, ALT, IF, etc.
As a running example, we explain a part of a community description in a simple CC
model (see Fig. 1). The example community is based on an emergency service
scenario as follows. While an old man is walking in a street, he suddenly falls down.
In order to provide an emergency service to him, an instance of ‘EmergencyService’
community is created. This community type consists of five roles; patient, ambulance,
paramedic, medical doctor, and hospital manager. For each role, agents are selected
by the casting condition and the role-membertype mapping condition described in the
SCC model. After the creation of a community instance, all member agents cooperate
to provide the first-aid service to the patient while the patient is transferred to a close
by hospital. When the patient falls down on a street, the patient agent interacts with
ambulance agent and medical doctor’s agent. The patient agent calls the nearest
ambulance and requests help for a doctor. At this time, the patient agent should grant
the access to patient’s information to doctor and ambulance. After obtaining the
patient’s location, the ambulance moves to where the patient is located. At the same
time, a doctor makes a prescription for the emergency patient using patient’s health
information, and sends it to the paramedic and the hospital. When ambulance arrives,
the paramedic brings the patient into the ambulance and then provides first-aid
treatment according to the doctor’s prescription. Finally, the patient is transferred to
the hospital, and the goal of ‘EmergencyService’ community instance is achieved.

Platform Independent Community Implementation Description {
Community EmergencyService {

Role PATIENT {
Attribute: LOCATION; BLOOD_PRESSURE; PULSE; BODY_TEMPERATURE;
Context: EMERGENCY;
Cast: EMERGENCY; }

Role AMBULANCE {
Attribute: AVAILABILITY; DRIVER; LOCATION; PATIENT_LOCATION;HOSPITAL_LOCATION;
Context: ARRIVE_ON_PATIENT; ARRIVE_ON_HOSPITAL;
Action: transfer_patient_to_hospital; adjust_temperature; adjust_ambulance_speed;
Cast: AVAILABILITY=AVAILABLE; LOCATION= nearest(PATIENT.LOCATION);}

Role MEDICAL_DOCTOR {
Attribute: AVAILABILITY; MAJOR; FIRSTAID_TREATMENT;
Action: remote_examine; make_prescripton;
Cast: AVAILABILITY=AVAILABLE; MAJOR=EMERGENCY; }

 5

Role PARAMEDIC {
Attribute: AVAILABILITY; LOCATION;
Action: save_firstaid_treatment; give_firstaid; bring_patient_to_ambulance; bring_patient_to_hospital;
Cast: AVAILABILITY=AVAILABLE; LOCATION= nearest(AMBULANCE.LOCATION);}

Role HOSPITAL_MANAGER {
Attribute: EMERGENCY_ACCEPTABILITY; LOCATION;
Action: ready_for_emergency_patient;
Cast: EMERGENCY_ACCEPTABILITY=ACCEPTABLE; LOCATION= nearest(PATIENT.LOCATION);}

 Role-MemberType Mapping {
PATIENT:Personal_agent;AMBULANCE:Ambulance_agent; MEDICAL_DOCTOR:Personal_doctor_agent;
PARAMEDIC:Personal_paramedic_agent; HOSPITAL_MANAGER:Hospital_agent; }

Goal Providing_emergency_service(initiator:PATIENT; participant:AMBULANCE,MEDICAL_DOCTOR,
PARAMEDIC,HOSPITAL) {
PATIENT{

PAR{SEND(MsgType="request", ToWhom=AMBULANCE, certificate(Location));
SEND(MsgType="request", ToWhom=MEDICAL_DOCTOR, certificate(Healthinfo);) }

AMBULANCE{
IF(RECEIVE(MsgType="request", ToWhom=AMBULANCE, certificate(Location)))

transfer_patient_to_hospital; }
MEDICAL_DOCTOR{

IF(RECEIVE(MsgType="request", ToWhom=MEDICAL_DOCTOR, certificate(Healthinfo)))
SEQ{

 remote_examine;make_prescripton;
 PAR{

SEND(MsgType="request", ToWhom=PARAMEDIC, certificate(firstaid_treatment));
SEND(MsgType="request", ToWhom=HOSPITAL_MANAGER, certificate(firstaid_treatment));}}}

PARAMEDIC{
IF(RECEIVE(MsgType="request", ToWhom=PARAMEDIC, certificate(firstaid_treatment)))

save_firstaid_treatment;
IF(AMBULANCE.ARRIVE_ON_PATIENT){

bring_patient_to_ambulance;
give_firstaid; }

IF(AMBULANCE.ARRIVE_ON_HOSPITAL;)
bring_patient_to_hospital;
IF(PATIENT.LOCATION = HOSPITAL.LOCATION) { SUCCESS; }

HOSPITAL_MANAGER{
IF(RECEIVE(MsgType="request", ToWhom=HOSPITAL, certificate(firstaid_treatment))

ready_for_emergency_patient; } } }

Fig. 1. A part of description for ‘EmergencyService’ community in a simple community
computing model

3 Role Interaction-based Access Control Model

In this section, we propose role interaction based access control (RiBAC) models for
the SCC model. Note that agent interaction is a key issue in a CC model.
Furthermore, interactions authorized for agents are basically defined by what roles
within the community the interacting agents are playing. Such interactions can hence
be cast as accesses authorized for agents playing specific roles. For fine-grained role-
based policy specification, we categorize agent interactions within a community into
two types, as depicted in Fig. 2.

6

Fig. 2. Two types of Interaction Permissions in Role-based Agent Interaction

Role-action interaction, shown in Fig.2.a, involves an initiator role (ri) interacting
with a target role (rt) to indicate that the target role should perform some action it is
capable of – in other words, we model this as the initiator role authorized to invoke
the target role’s action. The pair role and its action invocable by other roles can be
considered as a role-action permission.

In Operation-role interaction, depicted in Fig.2.b, an initiator role can interact with
a target role by performing some operation on the target role itself. In this paper, the
pair operation and a target role is termed as a role-oriented permission; we use the
term object-oriented permission to describe traditional RBAC permission that
represents an operation over an object.

It is important to note that in a typical scenario there could exist interdependencies
among different types of interactions and object-oriented permissions. For instance, a
particular role-action permission may include several object-oriented permissions
needed to complete the defined action. If such permission interdependency details
could be provided by the underlying environment model, it can be used for access
control policy analysis.

In the following subsections, we define the core RiBAC model that extends
traditional RBAC with the notion of interaction permissions. We also provide a
hierarchical version of the model to leverage hierarchical structures for permission
inheritance. It is followed by a constrained RiBAC model.

3.1 Core RiBAC Model

Fig. 3 illustrates the core RiBAC model. Instead of users in standard RBAC model,
agents (AGENTS) are the entities that can request for access in a MAS environment.
Agents are assigned to roles (ROLES) and can exercise the permissions assigned to
the roles by activating them in a session (SESSIONS).

Ri

Role‐
Action

Role‐Action
Permission

Capable‐of

Rt

Role‐
Operation

Role‐Oriented
Permission

Capable‐of

Ri

Rt

Exercises
Permission

(a) Role‐Action Interaction (b) Operation‐Role Interaction

Performed
on

Invokes

Exercises
PermissionPerforms

 7

Fig. 3. RiBAC Model

Depending on the application, various objects could exist in the environment which
needs to be accessed by agents. The valid pairs objects (OBS) and operations on them
(OPS) form the object-oriented permissions (OOPRMS). Roles are authorized for
object-oriented permissions that are assigned to them through the object-oriented
permission assignment relation (OOPA).

Interaction permissions include role-action and role-oriented permissions. The
valid pairs of roles and their actions (ROLE-ACTIONS) invocable by other roles form
the role-action permissions (RAPRMS). Role-action permissions are assigned to
initiator roles according to the policy through role-action permission assignment
relation (RAPA). An agent that has activated a role is authorized to exercise the
assigned role-action permissions (to its role) on any agent that is assuming the target
role in the permission. The valid pairs of an operation (Role-OPS) and a target role
that the operation can be performed on form role-oriented permissions (ROPRMS).
Role-oriented permissions are assigned to authorized initiators using the role-oriented
permission assignment relation (ROPA).

Note an interaction permission related to a role can also be assigned to the same
role; this will allow agents with the same role in the community to interact with each
other. For instance, a guarding agent in a patrol community should be able to ask for
help from other guarding agents.

The formal definition of the core RiBAC model follows. It consists of the
following basic sets:
- AGENTS: the set of all participating agents in a community
- ROLES: the set of all roles available in a community
- SESSIONS: the set of all sessions created for agents in a community
- OBS: the set of all objects in the environment
- OPS: the set of all applicable operations on objects in the environment
- OOPRMS ⊆ OPS × OBS, the set of all object-oriented permissions
- ROLE-ACTIONS: the set of all actions that are defined for community roles and

can be invoked through interactions
- RAPRMS ⊆ ROLES × ROLE-ACTIONS, the set of all role-action permissions

OOPRMS

AGENTS ROLES

ROLE‐
ACTIONS

OPS OBS

SESSIONS

OOPAAA

ROPA ROLE‐
OPS

RAPRMS

ROPRMS

RAPA

RH

Core RiBAC
Hierarchical RiBAC

8

- ROLE-OPS: the set of all operations that are performable on roles through
interactions

- ROPRMS ⊆ ROLE-OPS × ROLES, the set of all role-oriented permissions
The following relations define the access policy in RiBAC:

- AA ⊆ AGENTS × ROLES, the agent to role assignment
- OOPA ⊆ OOPRMS × ROLES, the object-oriented permission to role

assignment
- RAPA ⊆ RAPRMS × ROLES, the role-action permission to role assignment
- ROPA ⊆ ROPRMS × ROLES, the role-oriented permission to role assignment

The following relations capture the runtime state of access control through
sessions:
- SessionAgent(s: SESSIONS) → AGENTS, the mapping of session s to its

corresponding agent
- SessionRoles(s: SESSIONS) → 2ROLES, the mapping of session s to the set of

active roles in it
The following functions retrieve the authorization information according to the

policy:
- authorized_roles(a: AGENTS) → 2ROLES, the mapping of agent a to the set of its

authorized roles that it can activate
- authorized_ooprms(r: ROLES) → 2OOPRMS, the mapping of role r to the set of its

authorized object-oriented permissions
- authorized_raprms(r: ROLES) → 2RAPRMS, the mapping of role r to the set of its

authorized role-action permissions
- authorized_roprms(r: ROLES) → 2ROPRMS, the mapping of role r to the set of its

authorized role-oriented permissions
- authorized_prms(r: ROLES) → 2OOPRMS∪RAPRMS∪ROPRMS, the mapping of role r to

the set of its authorized object-oriented and interaction permissions. Formally:
authorized_prms(r) = authorized_ooprms(r) ∪ authorized_raprms(r) ∪
authorized_roprms(r)
In order to demonstrate the usage of core RiBAC model, we revisit the the

‘EmergencyService’ community explained in Section 2 (Fig. 1) in Fig. 4. Fig. 5
illustrates the same example policy using graphical notations.

ROLES = {Patient, Doctor, Paramedic, Hospital, Ambulance}
OBS = {hospital_medical_equipment, termometer, ambulance_medical_equipment,

ambulance_vehicle}
OPS = {operate, read}
OOPRMS = {OOP1=(operate,hospital_medical_equipment), OOP2=(read,termometer),

OOP3=(operate,ambulance_medical_equipment), OOP4=(operate,ambulance_vehicle)}
ROLE-ACTIONS={give_health_status, give_location, remote_examine, give_prescription,

provide_firstaid, prepare_for_patient, transfer_patient}
RAPRMS={RAP1=(Patient,give_health_status), RAP2=(Patient,give_location),

RAP3=(Doctor,remote_examine), RAP4=(Doctor,give_prescription),
RAP5=(Paramedic,provide_firstaid), RAP6=(Hospital,prepare_for_patient),
RAP7=(Ambulance,transfer_patient)}

ROLE-OPS={bring_into_ambulance, provide_firstaid}
ROPRMS={ROP1=(bring_into_ambulance,Patient), ROP2=(provide_firstaid,Patient)}

 9

OOPA={(OOP1,Doctor), (OOP2,Doctor), (OOP3,Paramedic), (OOP4,Ambulance)}
RAPA={(RAP1,Doctor), (RAP1,Paramedic), (RAP1,Ambulance), (RAP2,Ambulance), (RAP3,Patient),

(RAP4,Paramedic), (RAP4,Hospital), (RAP5,Doctor), (RAP6,Doctor), (RAP7,Patient)}
ROPA={(ROP1,Paramedic), (ROP2,Paramedic)}

Fig. 4. An example core RiBAC policy specification for ‘EmergencyService’ community

Fig. 5. Graphical representation of the example core RiBAC policy for ‘EmergencyService’

community

3.2 Hierarchical RiBAC Model (H-RiBAC)

In this section, we propose the hierarchical RiBAC model. One advantage of RBAC
model is its ability to leverage hierarchical structure of roles for better permission
management. Analogous to standard RBAC, permissions in RiBAC (including object-
oriented and interaction permissions) can be inherited through a role hierarchy. We
define the role hierarchy RH and override the authorization functions in core RiBAC
to cope with it as follows:
- RH ⊆ ROLES × ROLES is a partial order relation on ROLES, denoted as ≥,

where r ≥ r' only if all permissions of r' are inherited by r and agents assigned to
r can also activate r'. Formally: r ≥ r' ⇒ authorized_prms(r')⊆
authorized_prms(r) ∧[r'⊆authorized_roles(a); (a,r)∈AA]

- authorized_roles(a: AGENTS) → 2ROLES, the mapping of agent a to the set of its
authorized roles that it can activate in presence of role hierarchy. Formally:
authorized_roles(a: AGENTS) = { r∈ROLES | (a,r')∈AA, r'≥r}

- authorized_ooprms(r: ROLES) → 2OOPRMS, the mapping of role r to the set of its
authorized object-oriented permissions in presence of role hierarchy. Formally:
authorized_ooprms(r) = {p∈OOPRMS | r ≥ r', (r',p)∈OOPA}

- authorized_raprms(r: ROLES) → 2RAPRMS, the mapping of role r to the set of its
authorized role-action permissions in presence of role hierarchy. Formally:
authorized_raprms(r) = {p∈RAPRMS | r ≥ r', (r',p)∈RAPA}

bring _into_ambulance

(read, temperature)

transfer_patient

give_location

remote_examine

prepare_for_patient

provide_firstaid

provide_firstaid

RAPRM access
ARPRM access
OPRM access

Role’s action

Role

(ops, obj) OPRM

(operate, ambulance_
medical_equipment)

(operate, hospital_medical_equipment)

give_prescription

Doctor

Hospital

Paramedic

Ambulance

Patient

give_health_status

(operate, ambulance_vehicle)

transfer_patient

10

- authorized_roprms(r: ROLES) → 2ROPRMS, the mapping of role r to the set of its
authorized role-oriented permissions in presence of role hierarchy. Formally:
authorized_roprms(r) = {p∈ROPRMS | r ≥ r', (r',p)∈ ROPA}
We modify our example to form a role hierarchy among paramedic, doctor, and

ambulance, also introducing two new roles. Fig. 6 illustrates a graphical presentation
of the hierarchy relation among roles and their assigned permissions. In the hierarchy,
the role ‘Basic_Medical_Service’ and the role ‘Medical_Staff’ are intermediate roles
that are not assigned directly to agents. According to the role hierarchy, ‘Paramedic’
and ‘Doctor’ have permissions of ‘Medical_Staff’ and ‘Basic_Medical_Service’.
‘Ambulance’ also inherits the permission of basic medical service to get the patient
health status. Using such patient’s health information, an ambulance adjusts the
temperature and speed of the vehicle in order to minimize risks to the patient’s health.
The formal specification of the example policy is shown in Fig 7.

Fig. 6. A role hierarchy example for the ‘EmergencyService’ community

ROLES = {Patient, Doctor, Paramedic, Hospital, Ambulance, Medical_Staff, Basic_Medical_Service}
RH={(Medical-Staff,Basic-Medical-Service), (Ambulance,Basic-Medical-Service),

(Doctor,Medical-Staff), (Paramedic,Medical-Staff)}
OBS = {hospital_medical_equipment, ambulance_medical_equipment, medical_history}
OPS = {operate, read}
OOPRMS={OOP1=(operate,hospital_medical_equipment),

OOP2=(operate,ambulance_medical_equipment), OOP3=(read,medical_history)}
ROLE-ACTIONS={give_health_status, provide_firstaid}
RAPRMS= { RAP1=(Patient,give_health_status), RAP2=(Paramedic,provide_firstaid)}
ROLE-OPS={bring_into_ambulance, provide_firstaid, provide_professional_treatement}
ROPRMS={ROP1=(bring_into_ambulance,Patient), ROP2=(provide_firstaid,Patient),

ROP3=(provide_professional_treatement,Patient)}
OOPA={(OOP1,Doctor), (OOP2,Paramedic), (OOP3,Medical-Staff)}
RAPA={(RAP1,Basic-Medical-Service), (RAP2,Paramedic)}
ROPA={(ROP1,Medical-Staff), (ROP2, Medical-Staff), (ROP3, Doctor)}

Fig. 7. An example policy of H-RiBAC for ‘EmergencyService’ community

(provide_firstaid, Patient)

(bring_into_ambulance ,Patient)

ARPRMS
RAPRMS

(operate, ambulance_medical_equipment) (operate, hospital_medical_equipment)

(Doctor, provide_firstaid) (provide_professional_treatment, Patient)

Medical
Staff

Paramedic Doctor

Basic
Medical
Service

(read, medical_history)

Ambulance

(Patient, give_health_status)

OPRMS

Permission Inheritance
Relationship

Junior-role Senior-role

 11

3.3 Constrained RiBAC Model (C-RiBAC)

Constrained RiBAC (C-RiBAC) adds separation of duty and cardinality constraints to
the core RiBAC model. Separation of duty (SoD) constraints have been discussed in
the RBAC literature as a mechanism to minimize the likelihood of fraud and major
errors through simultaneous access of users to key organizational tasks or deliberate
collusion of users. Community computing environments have similar vulnerabilities
as organizations. We propose static and dynamic SoD constraints for RiBAC. In static
SoD, no agent can be assigned to a specific number or more of roles in a role set. The
SSoD relation is defined as follows:

- SSoD ⊆ 2ROLES × N, a collection of pairs (rs,n) that defines static SoDs,
where for each (rs,n) no agent should be assigned to n or more roles from the
set rs. Formally: (rs,n)∈SSoD⇒∄a∈AGENTS, |authorized_roles(a)∩rs|≥n .

In contrast to static SoD, dynamic SoD enforces the SoD constraint on role
activations instead of agent-role assignments. As a consequence an agent cannot
activate certain roles together in one session. The DSoD relation is defined as follows:

- DSoD ⊆ 2ROLES × N, a collection of pairs (rs,n) that defines dynamic SoDs,
where for each (rs,n) no agent can activate n or more roles from the set rs
together in one session. Formally:
(rs,n)∈DSoD⇒∄s∈SESSIONS, |{r∈SessionRoles(s)|r∈rs}|≥n .

In addition to SoD constraints, an access control mechanism can enforce
cardinality constraints. For instance, a community can require a minimum/maximum
number of agents to play some particular role in the community; otherwise the
community may fail to achieve its goal. Cardinality constraints can be static or
dynamic. Static cardinality constraints are applicable on agent-role assignment
relation, while dynamic cardinality constraints are enforced on active roles in agents’
sessions. We define four different cardinality constraints as follows:

- SMinCardinality ROLES × N, a collection of pairs (r,n) that defines static
minimum cardinality for roles, where for each (r,n) at least n agents should be
assigned to the role r. Formally:
(r,n)∈SMinCardinality ⇒ |{a∈AGENTS|r∈authorized_roles(a)}|≥n .

- SMaxCardinality ROLES × N, a collection of pairs (r,n) that defines static
maximum cardinality for roles, where for each (r,n) at most n agents should be
assigned to the role r. Formally:
(r,n)∈SMaxCardinality ⇒ |{a∈AGENTS|r∈authorized_roles(a)}|≤n .

- DMinCardinality ROLES × N, a collection of pairs (r,n) that defines
dynamic minimum cardinality for roles, where for each (r,n) at least n agents
should have activated the role r at a particular time. Formally:
(r,n)∈DMinCardinality ⇒ |{s∈SESSIONS|r∈SessionRoles(s)}|≥n .

- DMaxCardinality ROLES × N, a collection of pairs (r,n) that defines
dynamic maximum cardinality for roles, where for each (r,n) at most n agents
should be allowed to activate the role r at a particular time. Formally:
(r,n)∈DMaxCardinality ⇒ |{s∈SESSIONS|r∈SessionRoles(s)}|≤n .

In the presence of various constraints, it is important to ensure that a RiBAC policy
is consistent. A static minimum cardinality of m and a static maximum cardinality of

12

n (n<m) for the same role are impossible to be enforced at the same time. Respecting
the following rule by the model prevents such a conflict:

- ∀r∈ROLES∀m,n∈N, (r,m)∈SMinCardinality ∧ (r,n)∈SMaxCardinality
⇒ m≤n

If we assume the same situation above however with dynamic constraints instead,
role r cannot be activated at all. Although, in the latter case the role r becomes
useless, but there is no consistency issue for policy enforcement.

The two types of static cardinality and the dynamic maximum cardinality are easily
enforceable by keeping a track of assigned or activated roles in a community and
avoiding the violation of them. However, the dynamic minimum cardinality is a little
tricky to enforce depending on the environment. We assume that there is a proper
enforcement mechanism employed in the community to force agents to keep the
minimum active roles according to the dynamic minimum cardinality. For instance
upon creation of the community, the system can force some agents to activate their
roles (even without their discretion), and otherwise can fail the creation.

Fig. 8. Need for the ‘activation’ concept in community

In fact, the SCC model does not include explicit notion of activation since it
assumes that the assigned roles are activated as soon as the agents take the roles. We
believe that such an assumption is not adequate enough and need to be removed to
support scenarios where explicit notion of activation is required. As an example,
consider a biotechnology project community in which there is a role for cloning body
tissues and three technicians are able to take the role as shown in Fig. 8. In this case,
three technicians can be assigned to the ‘cloning’ role. However, this job should be
performed by a totally isolated technician because it is a very delicate job. If one
technician does perform cloning, then we should prevent accesses to cloning task
from another technician. In order to enforce that, we can specify a policy that allows
at most one user to activate the ‘cloning’ role at a time (dynamic maximum
cardinality constraint). Although an alternative way is to change the role assignments
every time a user wants to access the ‘cloning’ role according to the community’s
situation as shown in Fig. 8, such an approach would be very cumbersome due to
frequent changes in the policy.

Cloning

Technician1

Technician2

Technician3

assign

assign

assign

Activation rule: “At most , one user can activate”

a) With ‘activation ‘ concept

Cloning

Cloning

Cloning

A

assign

assign

assign

b) Without ‘activation’ concept

Three users assigned to the role
Change user-role assignment
One user assigned to the role,

Technician1

Technician2

Technician3

 13

3.4 Constrained Hierarchical RiBAC Model (CH-RiBAC)

A comprehensive RiBAC model is formed by combination of hierarchical and
constrained RiBAC models. However, the implications of such combination should
be precisely captured. For instance, consider role r1 has dynamic maximum
cardinality constraint of 3, and there exist role r2 which is senior to r1 (r2 ≥ r1). In
such a configuration, if more than 3 agents activate role r2 it can be interpreted as
violation of the cardinality constraint because agents assigned to r2 can also assume r1
through the role hierarchy. However, agents acting as role r2 may not necessarily act
as role r1 all the time (only sometimes require r1’s permissions), which makes the
mentioned interpretation too rigid.

In order to provide more flexibility and truly capture the behavior of constraints in
the presence of role hierarchy, we adopt the notion of hybrid hierarchy that is
originally defined in the context of Generalized Temporal RBAC (GTRBAC) [11]. A
hybrid hierarchy differentiates between permission usage and role activation
capability in a hierarchy, by taking into account three possible relations: permission
inheritance (I), activation (A), and inheritance-activation (IA). If role r1 is I-senior to
role r2 (r1 ≥I r2), it inherits all the permissions r2 has. If role r1 is A-senior to role r2

(r1 ≥A r2), then a user assigned to r1 can activate r2 but the role r1 does not inherit r2's
permissions. Finally, r1 is IA-senior to r2 if and only if r1 is both I-senior and A-
Senior to r2 (r1 ≥IA r2). Formal definitions for semantics of hybrid hierarchy in
RiBAC involve minor changes to the overridden functions in Section 3.2. The
hierarchy relation (≥) in the definition of function authorized_roles should be
replaced with activation relation (≥A), and the hierarchy relation (≥) in the definition
of other authorization functions should be replaced with permission inheritance
relation (≥I).

By leveraging the activation and permission inheritance relationships, we achieve
more flexibility in policy specification. For instance, to resolve the problem
mentioned in the above example we can specify r2 A-senior to r1. Therefore,
whenever an agent activates the role r2, the cardinality constraint is respected, and an
agent can also activate the role r1 when it needs but according to the cardinality
constraint.

The definitions for dynamic constraints in presence of hybrid hierarchy are
overridden as follows (static constraint definitions remain valid):

- DSoD ⊆ 2ROLES × N, a collection of pairs (rs,n) that defines dynamic SoDs
in presence of hybrid hierarchy, where for each (rs,n) no user can activate or
use permissions of n or more roles from the set rs together in one session.
Formally:
(rs,n) DSoD s SESSIONS, |{r|r'≥I r, r' rs, r' SessionRoles(s)}|≥ n .

- DMinCardinality ROLES × N, a collection of pairs (r,n) that defines
dynamic minimum cardinality for roles in presence of hybrid hierarchy, where
for each (r,n) at least n agents should have activated the role r or its I-senior at
a particular time. Formally:
(r,n)∈DMinCardinality⇒ |{s∈SESSIONS|r'≥I r, r'∈SessionRoles(s)}|≥ n .

14

- DMaxCardinality ROLES × N, a collection of pairs (r,n) that defines
dynamic maximum cardinality for roles in presence of hybrid hierarchy, where
for each (r,n) at most n agents should be allowed to activate the role r at a
particular time. Formally:
(r,n)∈DMaxCardinality⇒ |{s∈SESSIONS| r'≥I r, r'∈SessionRoles(s)}|≤ n.

4 Extended Simple Community Computing Model

In this section, we extend the SCC specification framework to allow specifying core
RiBAC policies as shown in Fig. 8. We refer the readers to [2] for the complete
details of SCC specification language. Based on the formal definition described in
Fig. 9, we represent an example of SCC model involving core RiBAC policies for the
emergency service scenario in Fig. 10.

<RiBAC_policy_description>:= RiBAC Policy { <Role_Policy>* }
<Role_Policy>:= <Role_Name> { <Role_OOPRMSs>*, <Role_ROPRMSs>*, <Role_RAPRMSs>* }
<Role_OOPRMSs>:= OOPRMSs = { <OOPRM>+ },
<OOPRM>:=(<OPS>,<OBS>) , <OPS>:=<String>, <OBS>:=<String>
<Role_ROPRMSs>:=ROPRMS = { <ROPRMS>+ }, <ROPRMS>:= (<Action_Name>,<Role_Name>)
<Role_RAPRMSs>:=RAPRMS = { <RAPRMS>+ }, <RAPRMS>:= (<Role_Name>,<Action_Name>)

Fig. 9. BNF definition for describing core RiBAC Policy in the SCC model

Platform Independent Community Implementation Description {
Community EmergencyService {

Role PATIENT { …}
 ……….

 Role-MemberType Mapping { …. }
Goal Providing_emergency_service(….. }
RiBAC Policy {
 DOCTOR {

OOPRMSs={(operate,hospital_medical_equipment), (read, temperature)},
RAPRMSs={(PATIENT,give_health_status),(PARAMEDIC,provide_firstaid),

(HOSPITAL,prepare_for_patient)} }
PATIENT {

RAPRMSs={(DOCTOR,remote_examine),(AMBULANCE,transfer_patient)} }
AMBULANCE {

OOPRMSs={(operate,ambulance_vehicle) },
ROPRMSs={(transfer_patient,PATIENT)}
RAPRMSs={(PATIENT,give_health_status),(PATIENT,give_location)} }

PARAMEDIC {
OOPRMSs={(operate,ambulance_medical_equipment) },
ROPRMSs={(bring_into_ambulance,PATIENT), (provide_firstaid,PATIENT)}
RAPRMSs={(PATIENT,give_health_status),(DOCTOR,give_prescription)} }

HOSPITAL_MANAGER {
RAPRMSs={(DOCTOR,give_prescription)} }

 } }

Fig. 10. An example of the simple community computing model employing core RiBAC

Note that the access control policies for agent interactions are derived from the
cooperation definition of communities. Therefore changes in cooperation results in

 15

change of access control policies. For the current extension, based on the underlying
assumptions in SCC, we consider only predefined cooperation and therefore
predefined access control policy. As one of our future works, we leave room for
developing more advanced extensions in which policies can be dynamically
reconfigured based on changes in cooperation.

In order to enforce RiBAC policies in a CC system, we propose an extension to our
existing computation model [2]. In the extended model, policies regarding object-
oriented permissions are enforced in a centralized way by the society manager. For
policies related to agent interactions, we enforce them in a distributed way. Agents
receive the interaction permission specifications in which they are interaction targets
from community manager. Based on such specifications, target agents can enforce
control over interactions targeted to them. Also note that agents may receive
specification about all the permissions they have from community manager, in order
to be able to plan based on their accesses. Fig. 11 shows the extended computational
model of a community computing system to enforce RiBAC policies.

Fig. 11. Enforcement Architecture for core RiBAC

CommunityType Def

Community Policy

MemaberType Def

Authentication Policy

Listen Effect

Society Manager

Community Initiation
Member Casting

Listen Effect

Community Manager

Member Casting

OOPRMS

Attribute

Listen Effect

Agent

Action

Cooperation

Attribute

Listen Effect

Agent

Action

Cooperation

Role Policy

ROPRMS & RAOPRMS

Agent

Community Policy

Cooperation

RiBAC Policy

RiBAC PEP & PDP

PEP PDP

PDP PEP

Attribute

Listen Effect

Action

Cooperation

Role Policy

ROPRMS & RAOPRMS

PEP PDP

Access Request for
RA/OR interaction

System
Resource Objects

Agent

Attribute

Listen Effect

Action

Cooperation

Role Policy

ROPRMS & RAOPRMS

PEP PDP

Access Request
for OOPRMS

16

5 Related Works

Many researchers have investigated the security requirements and challenges in multi-
agent systems, and pointed out the need for access control in these environments [12,
13]. However, most solutions proposed for access control in MAS are mainly
concerned about distributing authorization information using trust management
frameworks [14, 15, 16], and less about the access control model itself. These
proposals usually adopt SPKI/SDSI (simple public key infrastructure/simple
distributed security infrastructure), which is able to manage authorization in a
distributed manner using authorization certificates. For instance in [16], Wen et al.
propose semi-distributed authorization scheme, where agents acquire authorization
certificates from an authorization server based on the role certificates their
corresponding human users provide.

The closest work to the theme of this paper has been done by Omicini et al. in the
context of an infrastructure for coordination support in agent-based systems, called
TuCSoN [17]. In [18], the authors integrate simple access matrix model (based on
agent identity) in a decentralized fashion to authorize exchange of communication
tuples among agents. As mentioned, only simple access control lists are allowed by
this scheme with an added dimension for controlling tree-structured agents. Later,
Omcini et al. explore the integration of RBAC into the TuCSoN infrastructure [19]. In
order to control the coordination protocol, the authors define a prolog-like role policy
definition language. The policies can specify the authorized actions considering the
current state of the role and conditions, while determining the next state. The states
are managed as part of an alternative for RBAC session. While their approach seems
flexible and powerful, the definition of a state-based policy can be very impractical.
Also their approach does not include explicit semantics for authorized role
interactions, which has been emphasized in this paper, and provides no formal
semantics for SoDs and role hierarchy.

Gaia methodology [6] involves role concept and an interaction model among
agents. In Gaia, some access control concepts are discussed such as role permissions
(on objects), or organizational safety rules that could act as separation of duty
constraints. However, we have a more specific approach to specify authorized
interaction compared to the interaction notion in Gaia. Our interaction modeling
approach is more practical to enable specification and control over interactions in
detail. In addition, we provide hierarchical relations among roles to enable more
manageable access control policies.

6 Conclusion and Future Work

In order to control accesses to critical data or actions of other agents, , we have
proposed a family of RiBAC (Role interaction Based Access Control) models
including core RiBAC, H-RiBAC that incorporates role hierarchy, C-RiBAC that
incorporates SoD and cardinality constraints, and CH-RiBAC that incorporates
constraints and hybrid hierarchy. These are extensions of the standard RBAC models
and cover the role interaction as one of the important aspects of MAS. RiBAC models

 17

are useful for securing ubiquitous systems characterized by significant agent
interactions. We have extended the earlier proposed simple community computing
modeling framework to incorporate the proposed RiBAC models.

As future work, we plan to extend the proposed work to cope with context-aware
ubiquitous environments by integrating it with time and location based RBAC
(LoTRBAC) model [20]. We are currently implementing a working prototype of the
proposed work. Moreover, we will investigate models that could support
administration and delegation of role interaction permissions in the context of
community computing. We also plan to explore security analysis and policy
verification method, as well as efficient enforcement techniques for RiBAC policies.

Acknowledgments. This research is supported by Foundation of ubiquitous
computing and networking project (UCN) Project, the Ministry of Knowledge
Economy (MKE) 21st Century Frontier R&D Program in Korea and a result of
subproject UCN 08B3-S2-10M, and by the US National Science Foundation award
IIS-0545912.

References

1. Wooldridge, M., Jennings, N.R.: The Cooperative Problem-Solving Process. Journal of
Logic Computation 9 (4), pp. 563--592, Oxford University Press (1999)

2. Jung, Y., Lee, J., Kim, M.: Multi-agent based Community Computing System Development
with the Model Driven Architecture. In Proc. of 5th International Joint conference on
Autonomous Agents and Multiagent Systems (AAMAS’06), pp. 1329--1331 (2006)

3. Jung, Y., Lee, J. Kim, M.: Community Computing Model supporting Community Situation
based Cooperation and Conflict Resolution, LNCS, vol. 4761, pp. 47--56, Springer-Verlag
Berlin Heidelberg (2007)

4. Wilson, P., et. al.: Computer Supported Cooperative Work. Oxford, Intellect Books, UK
(1991)

5. Borghoff, U.M., Schlichter, J.H.: Computer-Supported Cooperative Work: Introduction to
Distributed Applications. Springer-Verlag, Berlin (2000)

6. Zambonelli, F., Jennings, N.R., Wooldridge, M.: Developing Multiagent Systems: The Gaia
Methodology. ACM Transactions on Software Engineering and Methodology 12 (3), pp.
317--370 (2003)

7. Kumar, M., Shirazi, B., Das, S.K., Singhal, M., Sung, B., Levine, D.: Pervasive Information
Communities Organization PICO: A Middleware Framework for Pervasive Computing.
IEEE Pervasive Computing 2 (3), pp.72--79 (2003)

8. Ishida T. Ed.: Community Computing and Support Systems. LNCS, vol. 1519, Springer-
Verlag (1998)

9. Van den Besselaar, P., Tanabe, M., Ishida, T.: Introduction: Digital Cities Research and
Open Issues. LNCS, vol. 2362, pp. 1--9, Springer-Verlag (2002)

10.Blau, J.: Microsoft: Community Computing is On the Way. InfoWorld Magazine,
http://www.infoworld.com/article/05/11/22/HNcommunitycomputing_1.html

11.Joshi, J.B.D., Bertino, E., Latif, U., Ghafoor, A.: A Generalized Temporal Role-Based
Access Control Model. IEEE Transactions on Knowledge and Data Engineering 17(1), pp.
4--23, 2005.

12.Beydoun, G., Low, G., Mouratidis, H., Henderson, B.: Modelling MAS-Specific Security
Features. IEEE 2nd Symposium on Multi-Agent Security and Survivability, pp.75--84 (2005)

18

13.Mouratidis, H., Giorgini, P., Manson, G.: Modeling Secure Multiagent Systems. In Proc. of
AAMAS 2003, pp. 859--866 (2003)

14.Hu, Y., Tang, C.: Agent-Oriented Public Key Infrastructure for Multi-agent E-service. In
Proc. of the 7th Int’l Conference on Knowledge-Based Intelligent Information and
Engineering Systems, pp. 1215--1221 (2003)

15.Poggi, A., Tomaiuolo, M., Vitaglione, G.: A Security Infrastructure for Trust Management
in Multi-agent Systems. In Proc. of the Conference on Trusting Agents for Trusting
Electronic Societies, pp. 162--179 (2004)

16.Wen, W., Mizoguchi, F.: An Authorization-based Trust Model for Multiagent Systems.
Applied Artificial Intelligence 14(9), pp. 909--925 (2000)

17.Omicini, A., Zambonelli, F.: Coordination for Internet Application Development.
Autonomous Agents and Multi-Agent Systems 2(3), pp. 251--269 (1999)

18.Cremonini, M., Omicini, A., Zambonelli, F.: Coordination and Access Control in Open
Distributed Agent Systems: The TuCSoN Approach. In Proc. of the 4th International
Conference on Coordination Languages and Models, pp. 99--114 (2000)

19.Omicini, A., Ricci, A., Viroli., M.: RBAC for Organisation and Security in an Agent
Coordination Infrastructure. In Proc. of the 2nd International Workshop on Security Issues
in Coordination Models, Languages, and Systems, pp. 65--85 (2004)

20.Chandran, S.M., Joshi, J.B.D.: LoT-RBAC: A Location and Time-based RBAC Model. In
Proc. of the 6th International Conference on Web Information Systems Engineering, pp.
361--375 (2005)

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

