
Context-Aware Provisional Access Control

Amir Reza Masoumzadeh, Morteza Amini, and Rasool Jalili

Computer Engineering Department
Sharif University of Technology

Tehran, Iran
{masoumzadeh@ce.,m amini@ce.,jalili@}sharif.edu

Abstract. High heterogeneity and dynamicity of pervasive computing
environments introduces requirement of more flexible and functional ac-
cess control policies. The notion of provisional actions has been defined
previously to overcome the insufficient grant/denial response to an ac-
cess request and has been incorporated in the provision-based access
control model (PBAC). Based on PBAC, we propose a context-aware
provision-based access control model, capable of dynamic adaptation of
access control policy according to the changing context. In particular,
the model facilitates the definition of context-aware policies and enriches
the access control by enforcing provisional actions in addition to common
permissions.

1 Introduction

Pervasive computing sketches a pleasant vision for the future computing envi-
ronments, as the computing power is provided anywhere, anytime, and using
any device. Mobile and stationary devices spread in the environment trying to
assist humans in their tasks unnoticeably. The main enabling technology of this
vision is context-awareness, i.e. extract, interpret, and use context information
and adapt functionality of the system to the current context of use [1]. Due to
high heterogeneity and dynamicity in such environments, some requirements are
introduced in expressiveness and flexibility of security policies. Therefore, a new
trend of research in computer security formed towards designing context-aware
security infrastructures and access control models.

It is necessary to define what can be considered as context accurately. Con-
text as defined expressively by Dey [2] is: “any information that can be used to
characterize the situation of an entity.” An entity is a person, place, or object
that is considered relevant to the interaction between a user and an application,
including the user and applications themselves. There are many ways to leverage
contextual information in an access control system [3]; two of which are of our
interest in this paper. Contextual information can be used by an access control
policy to utilize environmental factors specifying how and when the policy is
enforced [4]. In addition, the system can express its policy flexibly based on the
context of subjects and objects, moving from identity-based towards attribute-
based and context-based authorization. Existence of various entities and high
dynamicity of future environments urges such flexibility.

On the other hand, ordinary access control models assume a binary decision
upon an access request, either grant or deny, which seems to be non-satisfactory
in new environments. The idea of provisional authorization states that the user
requests will be authorized provided he (and/or the system) takes certain actions
prior to authorization of his request [5]. In this manner, a decision upon an access
request consists of two components; a permission denoting grant or denial, and a
set of provisional actions to be performed before the access decision. Provisional
actions, also called provisions, empower policy rules to enforce required actions
such as logging and encryption prior to access.

We argue that incorporating the above concepts, namely provisional actions
and context-awareness, into a well-structured access control model would be a
good candidate to control access in new distributed environments. In this paper,
we propose the CA-PBAC as a context-aware provision-based access control
model. Access decision in this model is aware of the context, and provisions
enable enforcing more powerful and efficient security policies.

The rest of this paper is organized as follows. In section 2, some access control
models are surveyed which consider either provisions or context-awareness. Sec-
tion 3 gives an informal description of CA-PBAC. An access control framework
is extended in section 4 to meet our model requirements. In section 5, we present
a formal definition of the CA-PBAC model. The formal description prevents any
ambiguity in the model and makes implementation and application of the model
straightforward. Finally, Section 6 provides a simple system based on CA-PBAC
model and explain its function in an access scenario, followed by our conclusion
and future works.

2 Related Work

Kudo proposed provision-based access control model (PBAC) to include provi-
sional actions in addition to the common grant or denial decision [6]. He provided
a foundation model that addresses fundamental principles of access control, e.g.
multiple hierarchies and typical policies for property propagation through hier-
archies. The model contains a foundation data set including multiple hierarchical
and non-hierarchical sets, and also a relation among these sets that corresponds
to access control policy rules. The foundation model decides some properties in
response to a property query based on its data set. On the basis of the founda-
tion model, a conventional authorization model and a provisional authorization
model were presented to determine binary authorization decision and a set of
provisional actions, respectively. PBAC uses a combination of these two autho-
rization models to determine the access decision containing a permission and
some provisional actions. Bettini et al. introduced the notion of obligation in
addition to provisions [7]. Obligations are those conditions or actions that must
be fulfilled by either the users or the system after the access decision is rendered.
They proposed a rule-based framework to select the appropriate set of provisions
and obligations based on numerical weights assigned to provisions and obliga-
tions as well as on semantic relationships among them. Park et al. introduced a

family of UCONABC models for usage control which integrate authorizations,
obligations, and conditions [8]. Usage control covers continuity of access control.
Similar to provisions, obligations are functional predicates that verify manda-
tory requirements a subject has to perform before or during a usage exercise.
The model is abstract in that expresses only its semantics and does not define
the authorization procedure.

Han et al. proposed a basic definition of context-sensitive access control [9],
which consists of extendible context model, authorization policy model, request
model, and the relevant algorithms. Some ordinary contexts like time and lo-
cation were formally defined. The model is very basic and lacks fundamental
features of an access control model such as groups, hierarchies, and conflict reso-
lution. Kouadri et al. introduced contextual graphs as a new modeling approach
for specifying context-based policies [10]. It is a variation of decision tree that
allows branching based on contextual information, instead of making a deci-
sion. The branched paths are recombined after specifying some security actions
or more branching. Although it is an expressive way to define context-based
policies, management of such policies seems to be complicated.

Many researches are targeted to applying context-awareness to the RBAC
model. Al-Kahtani et al. proposed the RB-RBAC model, performing role as-
signment dynamically based on users’ attributes or other constraints on roles
[11]. GRBAC [12] incorporates three type of roles; subject roles corresponds to
traditional RBAC roles, object roles which are used to categorize objects, and
environment roles to capture environmental or contextual information. Zhang
et al. proposed DRBAC, a dynamic context-aware access control for pervasive
applications [13]. In DRBAC, there is a role state machine for each user and a
permission state machine for each role. Changes in context trigger transitions in
the state machines. Therefore, user’s role and role’s permissions are determined
according to the context.

3 Narrative Description of CA-PBAC

In order to provide context-awareness, we incorporated a formal specification of
contextual information into CA-PBAC. It follows the general form of (<entity>,
<context type>, <relator>, <value>) as context predicates. A context predicate
describes a context type about an entity by associating a value through a relator.
For example, (John, location, entering, ConferenceRoom) states that John is
entering the conference room, or (Bob, position, is, secretary) expresses Bob’s
position. The basic idea of such context predicates has been adopted from Gaia
project which provides the infrastructure for constructing smart spaces [14].
Therefore, contextual information are expressed by a set of context predicates
in the model. The special characteristic of this specification is decomposability,
i.e. a predicate can be decomposed into an entity and its context (including a
context type, a relator, and a value). Inversely, an entity and a context can be
composed to make a contextual information entry.

Hierarchies have been widely employed in access control models. They sim-
plify authorization management by organizing entities and propagating proper-
ties through the links among them. The ability to define different propagation
strategies [6] or derivations [15] makes hierarchies more efficient. Although CA-
PBAC does not provide the generality of the foundation model in [6], it is capa-
ble of defining multiple subject group hierarchies and object group hierarchies.
There exists a context-assignment function for each hierarchy which assigns a
contextual condition including some contexts to each group. A subject request-
ing an access on an object is mapped to some subject groups according to its
context. It is mapped to a subject group, if it’s context matches all the contexts
in the group contextual condition. Similar context-aware mapping is done for
the object.

In practice, it is more likely to construct each hierarchy based on a particular
set of context types. The semantics on which hierarchies are defined may vary.
This leads to the requirement of different propagation strategies. Selection of an
appropriate propagation strategy for each hierarchy, avoids any concern in the
model about what actually the mentioned semantics are. In addition to prop-
agation strategies defined in [6], i.e. “most specific” and “path traversing”, we
also consider the “most general” strategy. The “most specific” strategy is appro-
priate to specify exceptions against more general policies. The “path traversing”
strategy states that the policies of each ancestor is applicable. We argue that
there are some cases in which the “most specific” strategy is not desirable [16],
neither is the “path traversing”. Actually, the “most general” strategy is useful
when there is a need to override more specific policies. As an example, consider
specifying a temporary policy to grant authorization to every user in a general
group, overriding previously specified denials for more specific groups.

In addition to propagation, hierarchies simplifies conflict resolution based
on contextual information. Consider an authorization decision about an access
requested by a secretary. Let the first rule state that access is denied if he or
she is an employee and the second one state that access is granted if he or she
is is a secretary. Clearly, the two rules are in conflict, i.e. a secretary is also
an employee. It is common to resolve such conflict by selecting the alternative
that states more specific condition, i.e. the second rule. Association of the first
rule and the second rule conditions to a parent and a child node in a hierarchy
respectively, defining the rules on corresponding nodes, and using “most specific”
as propagation strategy avoids such conflicts.

The CA-PBAC model is rule-based. So, the access control policy consists of
multiple access control policy rules. Each rule is composed of a group in each
subject/object group hierarchy, the requested action on the object, a contextual
constraint to limit the context in which the rule is applicable, the permission
specified for such action, and the provisions to be executed. Specifying the per-
mission as “NIL” enables the rule to apply some provisions to an access request
without defining a permission for such access. That is appropriate to execute
common provisions such as logging for accesses regardless of permission result.

Receiving a request from a subject to access an object, a decision including a
permission and some provisions is made. Firstly, the subject and the object are
mapped to corresponding groups according to their context. Then, according to
the policy rules and propagation policies on each hierarchy applicable rules are
selected and their permissions are retrieved. The final permission is determined
by resolving possible conflict among the retrieved permissions.

In order to determine provisions, a similar procedure is used. However, we
consider a difference between propagation of permissions and provisions. Since
provisions are obligatory actions, it seems that propagation strategies such as
“most specific” are not suitable. For example, “most specific” strategy prevents
enforcement of provisions in more general rules even they have no conflicts with
the provisions in a selected rule. Actually, we consider full propagation for pro-
visions but restricted to those specified in rules whose permission have no con-
flict with the decided permission. However, there may be some conflicts among
provisions retrieved which are resolved by a domain specific conflict resolution
function.

4 Context-Aware Provision-Based Access Control
Framework

Illustrated in Figure 1, we suggest a framework to address both data elements
and sequences of operations required to provide context-aware provision-based
access control. It is based on the PBAC architecture, which itself is a modi-
fied version of “Access Control Framework”, an international standard [17]. We
attempted to use the standard notations according to [17] but adapt their inter-
pretations to meet our model requirements. Extending the standard framework,
we introduce two new components. The Contextual Information (CI), which
represents all contextual information available to the system. It is assumed that
a context infrastructure or simply a context engine provides such information.
It includes information that have been stored, sensed from environment, or in-
terpreted from other information. The Access Control Meta Policies (ACMP),
which are high-level policies that often used to mediate other policies and are
changed less frequently than conventional policies. Conflict resolution and de-
fault policies are examples of ACMP.

In this framework, the basic entities and functions involved in an access con-
trol scenario are the initiator, the Access Control Enforcement function (AEF),
the Access Control Decision Function (ADF), and the target. Initiator, also re-
ferred to as subject in the access control literature, submits an access request to
the system. An access request specifies an operation to be performed on a tar-
get, which is referred to as object in the access control literature. AEF submits
the access request to ADF. ADF decides about the access request using Ac-
cess Control Decision Information (ADI), Access Control Policy Rules (ACPR),
Contextual Information (CI), and Access Control Meta Policies (ACMP). ADI
consists of information which is local to access control system, such as group
hierarchies. ACPR consists of rules specifying the system current policy. CI is

AEFInitiator Target

ADF

D
R

A
D

ADI

A
C

P
R

A
C

M
P

CI

Submit
Access
Request

Execute
Access

Fig. 1. Context-Aware Provision-Based Access Control Framework

used to interpret both ADI and ACPR. ACMP is used to mediate ACPR and
resolve conflicts, in case there is. Based on such inputs, ADF makes the decision
consisting of a usual binary decision as well as a set of provisions. Finally AEF
enforces the access decision on the target.

5 Context-Aware Provision-Based Access Control
(CA-PBAC) Model

In order to have a formal definition of CA-PBAC, we define some basic concepts
and then the CA-PBAC data set and access decision function are formally de-
fined. Considering these definitions and also the context-aware provision-based
access control framework, a formal definition of our model is presented.

5.1 Basic Definitions

Definition 1 (hierarchy). Let H be a set forming a partial order, i.e. 〈H,≤〉.
Formally, H is a hierarchy if and only if ∀a ∈ H[∀x ∈ H,x ≤ a,∀y ∈ H, y ≤
a[x ≤ y ∨ y ≤ x]]. Hierarchy H is denoted by 〈H,≤Tr〉.

Definition 2 (Maximal function). Let H be a hierarchy, i.e. 〈H,≤Tr〉 and
A be a set such that A ⊆ H. The function Maximal(H, A) returns the maximal
elements of the hierarchy H restricted to the elements in the set A. Formally,
Maximal(H,A) = {x | x ∈ A ∧ (6 ∃y ∈ A[y 6= x ∧ x ≤Tr y])}.

Definition 3 (Minimal function). Let H be a hierarchy, i.e. 〈H,≤Tr〉 and
A be a set such that A ⊆ H. The function Minimal(H, A) returns the minimal
elements of the hierarchy H restricted to the elements in the set A. Formally,
Minimal(H, A) = {x | x ∈ A ∧ (6 ∃y ∈ A[y 6= x ∧ y ≤Tr x])}.

Notation 1 (tuple element) Let T be a tuple (t1, t2, . . . , tk). The notation
T.ti, 1 ≤ i ≤ k corresponds to the element ti of T .

Definition 4 (mapping). A function f : X1 × . . . × Xm → Y1 × . . . × Yn is
called a mapping if it satisfies: ∀ (x1, . . . , xm) ∈ X1 × . . . ×Xm[∃(y1, . . . , yn) ∈
Y1 × . . .× Ym, f(x1, . . . , xm) = (y1, . . . , yn)].

5.2 CA-PBAC Data Set: CAPDS

The CA-PBAC model uses a 4-tuple data set (DS, CI, ACMP, ACPR) that
formalizes any data structure used in the system.

1. DS = BDS∪CDS∪HDS; defines required data sets including basic access
control data sets, context-related data sets, and hierarchy-related data sets.
We introduce each group sets in the following paragraphs.
– BDS (Basic Data Sets) corresponds to the sets that define the basic

components of a provision-based access control model and propagation
strategies. It includes
• ActSet is a set of available actions that can be performed on objects

in ObjSet.
• PvnSet is a set of provisions defined according to the application

domain.
• PrmSet = {+,−, NIL}; is the set of permission results. They cor-

respond to grant, denial, and unspecified permissions, respectively.
• PrpStgSet = {most specific,most general, path traversing}; is the

set of alternative authorization propagation strategies on a hierar-
chy. According to a given member h of a hierarchy, “most specific”
means only authorization specified for the most specific member
is applicable, “most general” means only authorization specified
for the most general member is applicable, and “path traversing”
means that every authorization specified for members from the root
“any” to h are applicable.

– CDS (Context-related Data Sets) formalize the contextual information
used in the system. It includes
• EntSet is a set of entities that information about their situation can

be considered as context in the system. According to Dey’s definition
of context [2], subjects and objects of the access control system are
also considerable as entities that have context. Therefore, SbjSet is
a subset of entities (SbjSet ⊆ EntSet) that can act actively in the
system. Similarly, ObjSet is a subset of entities (ObjSet ⊆ EntSet)
that can act passively in the system.

• CtxTypeSet is a set of possible context types, e.g. location, time.
• CtxV alueSet is a set of possible values, e.g. room1, 8pm.
• CtxRelatorSet is a set of possible relators which relate context types

to values, e.g. entering, ≥.

• CtxSet = CtxTypeSet × CtxRelatorSet × CtxV alueSet; forms all
possible contexts without binding to a specific entity, e.g. (location,
entering, room1).

• EntCtxSet = EntSet×CtxTypeSet×CtxRelatorSet×CtxV alueSet;
forms all possible contextual information about entities in the sys-
tem, e.g. (Bob, location, entering, room1) considering Bob in EntSet.

– HDS = {SH1, . . . , SHn, OH1, . . . , OHm, SC1, . . . , SCn, OC1, . . . , OCm};
(Hierarchy-related Data Sets) composed of subject and object group hi-
erarchies and their corresponding context-assignments.
• ∀i, 1 ≤ i ≤ n, SHi is a set of subject groups forming a hierarchy, i.e.
〈SHi,≤Tr〉. There is a special subject group “any” ∈ SHi which is
the root of the hierarchy.

• ∀j, 1 ≤ j ≤ m,OHj is a set of object groups forming a hierarchy, i.e.
〈OHj ,≤Tr〉. There is a special object group “any” ∈ OHj which is
the root of the hierarchy.

• ∀i, 1 ≤ i ≤ n, SCi : SHi → P(CtxSet); is a mapping which assigns
some contexts to each subject group. Note that SCi(any) is fixed
and equals to Ø. The function result is used to map subjects in
SbjSet to subject groups in SHi.

• ∀j, 1 ≤ j ≤ m,OCj : OHj → P(CtxSet); is a mapping which assigns
some contexts to each object group. Note that OCj(any) is fixed and
equals to Ø. The function result is used to map objects in ObjSet
to object groups in OHj .

2. CI ∈ P(EntCtxSet); corresponds to the set of all contextual information in
the current state of the system.

3. ACMP = (PSH1 , . . . , PSHn , POH1 , . . . , POHm , HsPr, PrmConfRes,
DefPrm, PvnConfRes); is a tuple corresponding to access control meta-
policy. Its elements are defined as:
– ∀i, 1 ≤ i ≤ n, PSHi ∈ PrpStgSet; specifies authorization propagation

strategy for the ith subject hierarchy.
– ∀j, 1 ≤ j ≤ m,POHj ∈ PrpStgSet; specifies authorization propagation

strategy for the jth object hierarchy.
– HsPr : {1, . . . , n+m} → {SH1, . . . , SHn, OH1, . . . , OHm}; is a bijective

(one-to-one and onto) function that associates a distinguished subject
or object hierarchy to an input rank, establishing a total order among
hierarchies. This order affects the selection of applicable policy rules due
to different propagation strategies on hierarchies.

– PrmConfRes ∈ {denials take precednece, grants take precedence};
specifies which permission overrides when a conflict occurs.
“denials take precednece” means that “−” permission takes precedence
over “+” permission, and “grants take precedence” means that “+”
permission takes precedence over “−” permission.

– DefPrm ∈ PrmSet−{NIL}; specifies default permission for an access
when no authorization is specified. “+” indicates an open system and
“−” corresponds to a close one.

– PvnConfRes : P(PvnSet) → P(PvnSet); is a domain specific conflict
resolution function for provisions.

4. ACPR ∈ P(SH1×. . .×SHn×OH1×. . .×OHm×ActSet×P(EntCtxSet)×
PrmSet×P(PvnSet)); corresponds to the set of access control policy rules.
Each policy rule r ∈ ACPR, structured as (gSH1 , . . . , gSHn

, gOH1 , . . . , gOHm
,

act, c, prm, pvns), is composed of a member of each subject and object hier-
archy, an action, a constraint defined by some contextual information entries,
a permission specified for such request, and some provisions.
Note that when “NIL” used as the permission in a rule it indicates that no
permission is specified by the rule and only provisions are considered.

5.3 Access Control Framework Components

Components of the access control framework defined in section 4 are formally
defined by the set {DR, AD, ADI, CI, ACPR,ACMP} as follows.

– DR = (sbj, obj, act) ∈ SbjSet×ObjSet×ActSet; Decision request consists
of a subject sbj, an object obj, and an action act requested by the subject
to be performed on the object.

– AD = (prm, pvns) ∈ (PrmSet − {NIL}) × P(PvnSet); Access decision
consists of a permission prm and a set of provisions pvns to be enforced.

– ADI = (SC1, . . . , SCn, OC1, . . . , OCm); Access decision information con-
sists of subject and object context-assignments.

– CI, ACPR, and ACMP are exactly as defined in CAPDS.

5.4 Access Decision Function

The access decision function is the mapping ADF : CAPDS×DR → PrmSet×
P(PvnSet). It consists of the following steps:

1. Context-Aware Mapping Step:
In this step, groups of subjects and objects to which DR.sbj and DR.obj can
be mapped respectively are selected. To achieve this, each subject group g
in the hierarchy SHi is considered. The subject DR.sbj is mapped to g if it
satisfies the contexts defined by the hierarchy context-assignment function
SCi, i.e. {(DR.sbj, t, r, v)|(t, r, v) ∈ SCi(g)} ⊆ CI. Since it is possible to
have more than one group from each hierarchy selected for a subject, the set
of such subject groups in the hierarchy SHi are collected in SGi. Formally,
∀i, 1 ≤ i ≤ n, SGi = {g ∈ SHi | ∀(t, r, v) ∈ SCi(g)[(DR.sbj, t, r, v) ∈ CI]}.
Note that according to the definition of SCi function, group “any′′ ∈ SHi

will be selected by default for any subject; i.e. {(DR.sbj, t, r, v)|(t, r, v) ∈
SCi(any)} = Ø ⊆ CI.
Analogously, OGj is formed for each object hierarchy OHj . Formally, ∀j, 1 ≤
j ≤ m,OGj = {g ∈ OHj | ∀(t, r, v) ∈ OCj(g)[(DR.obj, t, r, v) ∈ CI]}.
Similarly, group “any′′ ∈ OHj will be selected by default for any object.

2. Hierarchy Pruning Step:
In this step, each hierarchy SHi is pruned to form a sub-hierarchy QSHi

limited to the elements in SGi. Formally, ∀i, 1 ≤ i ≤ n,QSHi
= {s | s ∈

SHi ∧∃g ∈ SGi[s ≤Tr g]}. Analogously, a sub-hierarchy QOHj is formed for
each hierarchy OHj . Formally, ∀j, 1 ≤ j ≤ m,QOHj = {o | o ∈ OHj ∧ ∃g ∈
OGj [o ≤Tr g]}.

3. Context-Aware Permission Retrieval Step:
Firstly, acceptable rules are gathered in a temporary set R1. A rule is accept-
able if its subject/object groups are in the pruned hierarchies resultant from
the previous step, its action is equal to the requested action, its permission
is definite, and finally its condition is satisfied. Recalling the definition of
a single rule r ∈ ACPR, constraint r.c consists of some contextual propo-
sitions. Constraint r.c is satisfied if current contextual information include
contents of the constraint, i.e. r.c ⊆ CI. Next, according to the order de-
fined by ACMP.HsPr, the set R1 is refined considering the propagation
strategy of each hierarchy. The resulting set RPRM expresses the applicable
rules according to the propagation strategies. Finally, the permission result
set PRM is retrieved from the refined rule set. The following algorithm
describes this step formally:

(a) R1 = {r ∈ ACPR | ∀i, 1 ≤ i ≤ n[r.gSHi ∈ QSHi] ∧ ∀j, 1 ≤ j ≤
m[r.gOHj ∈ QOHj] ∧ r.act = DR.act ∧ r.prm 6= “NIL” ∧ r.c ⊆ CI}

(b) ∀k, 1 ≤ k ≤ n + m

i. H = HsPr(k)
ii. A = {r.gH | r ∈ R1}

iii. B =

Maximal(QH , A) if ACMP.PH = “most specific”
Minimal(QH , A) if ACMP.PH = “most general”
A if ACMP.PH = “path traversing”

iv. R1 = {r ∈ R1 | r.gH ∈ B}
(c) RPRM = R1

(d) PRM = {r.prm | r ∈ RPRM}
Note that Maximal and Minimal functions are defined in section 5.1.

4. Permission Conflict Resolution Step:
If no permission could be retrieved, the meta-policy ACMP.DefPrm be-
comes the permission decision. It is also possible that conflict occurs in
the retrieved permission set PRM , i.e. both “+” and “−” permissions are
retrieved. In this case, conflict is resolved according to the meta-policy
ACMP.PrmConfRes. Formally, the access permission is decided as

AD.prm =

ACMP.DefPrm if |PRM | = 0
p ∈ PRM if |PRM | = 1
“ + ” if |PRM | = 2 ∧

ACMP.PrmConfRes =
“grants take precedence”

“− ” if |PRM | = 2 ∧
ACMP.PrmConfRes =
“denials take precedence”

5. Context-Aware Provision Retrieval Step:
The set of applicable rules for retrieving provisions are formally stated by
RPV N = {r ∈ ACPR | ∀i, 1 ≤ i ≤ n, r.gSHi

∈ QSHi
∧ ∀j, 1 ≤ j ≤

m, r.gOHj ∈ QOHj∧r.act = DR.act∧(r.prm = AD.prm∨r.prm = “NIL”)∧
r.c ⊆ CI}. Note that AD.prm was a result of previous step. Therefore the
set of provision result is computed as PV N = {p ∈ r.pvns | r ∈ RPV N}.

6. Provision Conflict Resolution Step:
The calculated set in the previous step, PV N , may have some conflicting
provisions. Such conflicts are domain specific and relevant to semantics of de-
fined provisions. Therefore the domain specific function ACMP.PvnConfRes :
P(PvnSet) → P(PvnSet) resolves these conflicts. Finally, AD.pvns is com-
puted by ACMP.PvnConfRes(PV N).

5.5 CA-PBAC Access Control Model

The CA-PBAC model uses an authorization model formally defined by a 4-tuple
(CAPDS,ADF, DR, AD). Based on the framework explained in section 4, CA-
PBAC controls accesses by sending an access request as DR into ADF , which
itself makes the access decision AD based on the model data set CAPDS, and
finally enforcing AD. Enforcing AD includes fulfilment of some provisions prior
to statement of permission decision.

6 Application Example

In order to illustrate applicability of CA-PBAC, controlling accesses to the inter-
net applications in a university department is given as an example. The required
data sets according to section 5.2 are explained very briefly. Basic data sets in
BDS are defined as:

ActSet = {use},
PvnSet = {Log, LimitBW, SetMaxSecurity, NotifyTeacher, NotifyManager}

Context-related data sets in CDS are defined as:

EntSet = {Alice, Bob, MsnMessenger, InternetExplorer, Emule,

RealP layer, env, network}
SbjSet = {Alice, Bob}
ObjSet = {MsnMessenger, InternetExplorer, Emule, RealP layer}

CtxTypeSet = {occupation, position, resources, type, traffic, time}
CtxV alueSet = {student, employee, professor, staff, class, laboratory, internet,

P2P, messenger, multimedia, browser, low, launch time}
CtxRelatorSet = {is, in, not in}

Figure 2 illustrates subject and object hierarchies in the system, namely SH1,
SH2, and OH1. For instance according to Figure 2.a, we have EMP ≤Tr PROF

any

STU

PROF

any

CLS LAB P2P IM MM BR

IAPP

any

APPEMP

(a) (b) (c)

STAF

Fig. 2. Example hierarchies in a university department: a)SH1 b)SH2 c)OH1

in SH1. The formal definition of each hierarchy and its context-assignment func-
tion follows:

SH1 = {any, STU, EMP, PROF, STAF | any ≤Tr STU ∧ any ≤Tr EMP∧
EMP ≤Tr PROF ∧ EMP ≤Tr STAF }

SC1 = {(any, Ø), (STU, {(occupation, is, student)}),
(EMP, {(occupation, is, employee)}), (PROF, {(position, is, professor)}),
(STAF, {(position, is, staff)}) }

SH2 = {any, CLS, LAB | . . .}
SC2 = {(any, Ø), (CLS, {(location, in, class)}), (LAB, {(location, in, laboratory)}) }
OH1 = {any, IAPP, APP, P2P, IM, MM, BR | . . .}
OC1 = {(any, Ø),

(IAPP, {(resources, include, internet)}),
(APP, {(resources, not include, internet)})
(P2P, {(resources, include, internet), (type, is, P2P)}),
(IM, {(resources, include, internet), (type, is, messenger)}),
(MM, {(resources, include, internet), (type, is, multimedia)}),
(BR, {(resources, include, internet), (type, is, browser)})}

The CI component should be considered when an access request is made. Ele-
ments of the ACMP tuple containing meta-policies is defined as:

PSH1 = “most specific”, PSH2 = “most specific”, POH1 = “path traversing”,
HsPr = {(1, SH1), (2, SH1), (3, OH1)}, P rmConfRes = “denials take precedence”,
DefPrm = “ + ”, PvnConfRes = {(pvns, pvns) | pvns ∈ P(PvnSet)}

Finally, the system has following policy rules defined in ACPR:

ACPR = {r1, r2, r3, r4, r5, r6}

r1 = (STU, any, MM, use, {(network, traffic, is, low)}, +, {LimitBW (128kbps)}),
r2 = (STU, CLS, IAPP, use, {},−, {NotifyTeacher}),
r3 = (STU, CLS, any, use, {}, +, {log}),
r4 = (EMP, any, IM, use, {}, NIL, {log}),
r5 = (EMP, any, IAPP, use, {}, +, {SetMaxSecurity}),
r6 = (STAF, any, IM, use, {(env, time, not in, launch time)},−, {NotifyManager}).

r1 states that if the network traffic is low students are allowed to use multimedia
applications, provided that their bandwidth is limited to 128kbps. r2 states that
students in class are not allowed to use internet applications, but their teacher
is notified of their request. r3 states that students can use anything (here any
applications), but prior to use it is logged. r4 states that employees’ request of
using instant messaging applications will be logged. r5 states that employees
are allowed to use internet applications, provided that the security level of their
application is set to maximum. r6 states that staff are not allowed to use instant
messaging applications out of launch time, however their manager is notified of
such request.

Now consider the following scenario. Alice, who is a student, wants to use
Real Player application to watch news online in class. The decision request
DR = (Alice, RealP layer, use) is submitted to the ADF function. The con-
textual information CI at the time of the request consists of

CI = {(Alice, occupation, is, student), (Alice, location, in, class),

(RealP layer, resources, include, internet), (RealP layer, type, is, multimedia),

(network, traffic, is, low), . . .}

The following steps are taken in the ADF :

1. The result of mappings becomes SG1 = {any, STU}, SG2 = {any, CLS},
and OG1 = {any, IAPP, IM}

2. Pruning each hierarchy according to the above sets results to QSH1 =
{any, STU | any ≤Tr STU}, QSH2 = {any, CLS | any ≤Tr CLS}, and
QOH1 = {any, IAPP, IM | any ≤Tr IAPP ∧ IAPP ≤Tr IM}

3. Policy rule r1 is acceptable because STU ∈ QSH1 ∧ any ∈ QSH2 ∧MM ∈
QOH1 ∧DR.act = “use” ∧ “ + ” 6= “NIL” ∧ {(network, traffic, is, low)} ⊆
CI. Similarly, r2 and r3 are selected. Therefore, in step (a) of the algorithm
R1 = {r1, r2, r3}. The following table shows the execution of loop at step
(b):

k R1 H A ACMP.PH B
1 {r1, r2, r3} SH1 {STU} most specific {STU}
2 {r1, r2, r3} SH2 {any,CLS} most specific {CLS}
3 {r2, r3} OH1 {any, IAPP, MM} path traversing {any, IAPP, MM}
4 {r2, r3} - - - -

The applicable rules RPRM becomes {r2, r3} and the retrieved permission
set PRM becomes {−,+}.

4. Since there is a permission conflict and ACMP.PrmConfRes equals to
“denials take precedence”, AD.prm becomes “−”.

5. The set of applicable rules to retrieve provisions RPV N becomes {r2}. So
the set of provisions becomes PV N = {NotifyTeacher}.

6. Since ACMP.PvnConfRes is defined as a reflexive function, the final pro-
visions becomes:
AD.pvns = ACMP.PvnConfRes({NotifyTeacher}) = {NotifyTeacher}.

Eventually, the access decision is composed from results of steps 4 and 6, i.e.
AD = (“ − ”, NotifyTeacher). Alice is denied to use Real Player application
and also her teacher is notified of her request.

Consider another scenario; A staff named Bob requests to use MSN messenger
application in launch time. CI at the time of the request consists of

CI = {(Bob, occupation, is, employee), (Bob, position, is, staff),

(MsnMessenger, resources, include, internet), (MsnMessenger, type, is, messenger),

(env, time, in, launch time), . . .}

Following the steps in ADF , it is decided that Bob is allowed to use MSN
messenger application provided its security level is set to maximum and the
access is logged.

7 Conclusion

In this paper, we extended a standard access control framework to include con-
textual information, access control meta policies, and provisions. Based on the
framework, we proposed and formally specified our CA-PBAC model which en-
ables definition of context-aware policy and enriches the access control by enforc-
ing provisions in addition to common permissions. Context is incorporated into
group hierarchies using contextual condition assignment to each group. Actually,
hierarchies are formed over contextual groups to which subjects and objects are
mapped. Constructing multiple hierarchies, each probably based on a particular
set of context types, allows high flexibility in defining subjects and objects based
on their context. In addition, different propagation strategies enable different hi-
erarchical definition semantics. Moreover, specification of contextual constraints
in policy rules controls the applicability of rules according to the context, i.e.
the overall policy is dynamically adapted to the current context.

Enhancements to the model can be considered as future works. These include
1) separation of the access control model from the context model, 2) contextual
provisions which are determined according to the context, and 3) conflict reso-
lution based on the context of rules.

References

1. Korkea-aho, M.: Context-aware applications survey. Technical report, Helsinki
University of Technology (2000)

2. Dey, A.K.: Understanding and using context. Personal and Ubiquitous Computing
5(1) (2001) 4–7

3. Thomas, R.K., Sandhu, R.S.: Models, protocols, and architectures for secure per-
vasive computing: Challenges and research directions. In: 2nd IEEE Conference on
Pervasive Computing and Communications Workshops (PerCom 2004 Workshops),
Orlando, FL, USA (2004) 164–170

4. McDaniel, P.D.: On context in authorization policy. In: 8th ACM Symposium
on Access Control Models and Technologies (SACMAT 2003), Villa Gallia, Como,
Italy, ACM (2003)

5. Jajodia, S., Kudo, M., Subrahmanian, V.S.: Provisional authorizations. In: 1st
Workshop on Security and Privacy in E-Commerce, Athens, Greece (2000)

6. Kudo, M.: Pbac: Provision-based access control model. International Journal of
Information Security 1(2) (2002) 116–130

7. Bettini, C., Jajodia, S., Sean Wang, X., Wijesekera, D.: Provisions and obligations
in policy management and security applications. In: 28th International Conference
on Very Large Data Bases (VLDB 2002), Hong Kong, China, Morgan Kaufmann
(2002) 502–513

8. Park, J., Sandhu, R.S.: The uconabc usage control model. ACM Transactions on
Information and System Security 7(1) (2004) 128–174

9. Han, W., Zhang, J., Yao, X.: Context-sensitive access control model and im-
plementation. In: Fifth International Conference on Computer and Information
Technology (CIT 2005), Shanghai, China, IEEE Computer Society (2005) 757–763

10. Kouadri Mostéfaoui, G., Brézillon, P.: Modeling context-based security policies
with contextual graphs. In: 2nd IEEE Conference on Pervasive Computing and
Communications Workshops (PerCom 2004 Workshops), Orlando, FL, USA, IEEE
Computer Society (2004) 28–32

11. Al-Kahtani, M.A., Sandhu, R.S.: A model for attribute-based user-role assignment.
In: 18th Annual Computer Security Applications Conference (ACSAC 2002), Las
Vegas, NV, USA, IEEE Computer Society (2002) 353–364

12. Moyer, M.J., Ahamad, M.: Generalized role-based access control. In: 21st Inter-
national Conference on Distributed Computing Systems. (2001) 391–398

13. Zhang, G., Parashar, M.: Context-aware dynamic access control for pervasive
applications. In: Communication Networks and Distributed Systems Modeling
and Simulation Conference, San Diego, USA (2004)

14. Roman, M., Hess, C., Cerqueira, R., Ranganathan, A., Campbell, R.H., Nahrstedt,
K.: A middleware infrastructure for active spaces. IEEE Pervasive Computing 1(4)
(2002) 74–83

15. Jajodia, S., Samarati, P., Subrahmanian, V.S.: A logical language for expressing
authorizations. In: IEEE Symposium on Security and Privacy, Oakland, CA, USA,
IEEE Computer Society (1997) 31–42

16. Dunlop, N., Indulska, J., Raymond, K.: Methods for conflict resolution in
policy-based management systems. In: 7th IEEE International Enterprise Dis-
tributed Object Computing Conference, Brisbane, Australia, IEEE Computer So-
ciety (2003) 98–109

17. ITU-T: Security Frameworks for Open Systems: Access Control Framework. ITU-
T Recommendation X.812. (1995)

