
Conflict Detection and Resolution in Context-Aware Authorization

Amirreza Masoumzadeh, Morteza Amini, and Rasool Jalili
Department of Computer Engineering

Sharif University of Technology
Tehran, Iran ∗

{masoumzadeh@ce., m amini@ce., jalili@}sharif.edu

Abstract

Pervasive computing environments introduce new re-
quirements in expressiveness and flexibility of access con-
trol policies which are almost addressable leveraging con-
textual information. Although context-awareness augments
the expressiveness of policies, it increases the probability of
arising conflicts. Generally, context-aware authorizations
are defined using some contextual constraints on the in-
volved entities in an access request. Accordingly, principles
like “more specific overrides”, which are employed to re-
solve possible conflicts, are required to consider the contex-
tual constraints. In this paper, we formalize the use of con-
text constraints in a typical context-aware multi-authority
policy model; each authority is capable of defining an ex-
pressive conflict resolution policy leveraging context-based
precedence establishment principles. Based on the policy
model, we propose a comprehensive graph-based approach
to resolve conflicts. The strength of the approach is that
conflict detection which requires context-based inference is
almost done statically and resolution is left for run-time.

1. Introduction

Evolution of distributed systems, mobile computing en-
vironments, and moving toward pervasive computing en-
vironments introduced new security and access control re-
quirements [14], including expressiveness and flexibility of
security policies. Leveraging contextual information can
address some of these requirements. Context as defined ex-
pressively by Dey [3] is “any information that can be used
to characterize the situation of an entity.” An entity is a
person, place, or object that is considered relevant to the in-
teraction between a user and an application, including the
user and applications themselves. In an access control sys-
tem, authorization policies specify which activities should

∗This work is partially supported by Iran Telecommunication Research
Center (ITRC) under grant No. 500/8478.

be permitted or forbidden. Classic access control models
express their policies using the notions of subjects, objects,
and rights [11]. Several works addressed context-aware ac-
cess control models or security infrastructures such as [5, 2].
We also proposed a context-aware provisional access con-
trol model that decides some required provisional actions in
addition to common binary access decision according to the
context [8]. The central idea of all these models is express-
ing subjects, objects, groups, roles, etc. through context
expressions.

Authorization conflicts arise where two or more differ-
ent policies both permit and forbid an access in a situation.
Although context-awareness highly augments the expres-
siveness of authorization policies, it increases the probabil-
ity of conflicts among different policies. A practical so-
lution for resolving conflicts is establishing a precedence
among conflicting policies. This can be performed by man-
ual assignment of specific priority to each conflicting policy.
However, precedence establishment is more preferred to
be done automatically because manual assignment may be
cumbersome and impractical in real-world situations. Sev-
eral principles have been suggested for establishing prece-
dence automatically such as specific overrides general pol-
icy (more specific overrides), newer overrides older policy,
negative/positive policy takes precedence, and higher au-
thority overrides lower authority [7, 4]. Practically, each
principle has its specific application and is useful in a par-
ticular situation.

To the best of our knowledge, precedence establish-
ment principles, such as “more specific overrides”, has been
used to resolve conflicts in context-aware authorization sys-
tems only considering a few aspects of context. Our main
contribution in this paper is the definition and employ-
ment of precedence establishment principals in a context-
aware manner, particularly context-based specificity rela-
tion among context-aware authorizations. To achieve that,
context-aware authorizations are formalized in a rule-based
policy model which tends to serve as a common basis for
other context-aware authorization models. Since central-

21st International Conference on
Advanced Information Networking and Applications Workshops (AINAW'07)
0-7695-2847-3/07 $20.00 © 2007

ized authorization is not feasible for large distributed sys-
tems [12] and many context-aware environments are inher-
ently distributed, the policy model supports multi-authority
to enable decentralized authorization.

We propose a comprehensive conflict detection and res-
olution method which supports flexible conflict resolu-
tion policies capable of employing different context-based
precedence establishment principals. The formalization of
the method is expressed through graphs to make it more
comprehensible. Our approach considers all the conflicting
authorizations together. This is due to the possibility of re-
lationship among conflicts [7], and yielding different results
when the sequence of pairwise conflict resolution changes.

The remainder of this paper is organized as follows.
Some major works regarding conflict detection and reso-
lution are surveyed in section 2. In section 3, a typical
context-aware authorization policy model leveraging a for-
mal definition of context is presented. The context-aware
conflict detection and resolution scheme based on the men-
tioned policy model is proposed in section 4. Section 5 con-
cludes the paper.

2. Related Work

Lupu et al studied conflicts in authorization and oblig-
ation policies [7] and defined specificity related to domain
nesting as an equivalent for “more specific overrides” prin-
ciple. Authorization models such as [6] handle principles
like “more specific overrides” through different derivation
schemes along subject hierarchies.

Ruan et al addressed conflict resolution in presence
of authorization delegation through a formal graph based
framework [10].

Dunlop et al considered four possible approaches for the
process of conflict resolution [4]. In pessimistic approach
both potential and actual conflicts are resolved at compile-
time, while sin opposite, optimistic approach does the all
at run-time. In the balanced alternative, actual conflicts are
resolved at compile-time and potential ones remain to run-
time. Another alternative is deciding to resolve each conflict
individually based on its likelihood of occurring and cost of
resolution.

Syukur et al investigated policy conflict resolution in per-
vasive computing environments [13]. They discussed differ-
ent timing strategies for conflict detection: static, reactive,
proactive, and predictive. However their conflict resolution
techniques seems too limited.

Al-Kahtani et al used the notion of dominance between
authorization rules in their attribute-based user-role assign-
ment model [1]. Dominance in their work is somehow the
reverse notion of context-based specificity in our approach.
However, it supports a limited concepts such as ordinal at-

tributes and is used to induce seniority among authoriza-
tions in order to construct the induced role hierarchies.

3. Context-Aware Authorization Policy Model

In this section, we provide a typical authority policy
model in order that the conflict resolution scheme be general
enough to support a wide range of context-aware authoriza-
tion systems. The model is rule-based in which authoriza-
tion rules are defined in terms of some constraints on the
contextual information.

3.1. Context Definitions

In order to formalize the use of contextual information in
the model, some definitions regarding context are provided.

Definition 1 (Context Predicate) A context predicate is a
4-ary tuple 〈subject, type, relater, object〉.
Subject is an entity with which the context is con-
cerned, type refers to the type of context the pred-
icate is describing, and object is the value related
to the subject through the relater. For example,
〈Bob, location, entering, roomA〉 states that Bob is en-
tering the roomA, and 〈John, position, is, secretary〉 ex-
presses John’s position. The basic idea of such context pred-
icates has been adopted from Gaia project which provides
the infrastructure for constructing smart spaces [9]. It is
supposed that there is a means to verify a context predi-
cate in the actual environment. This can be performed by
a context infrastructure or a separate component in the sys-
tem architecture usually called context inference engine. A
context predicate is satisfied if it is verified as correct.

Definition 2 (Context Constraint) A context constraint is
a set of context predicates.

In fact, a context constraint is interpreted as logical conjunc-
tion of its predicates. It is satisfied if all its context predi-
cates are satisfied. An empty context constraint, which is
denoted by ∅, is satisfied by default. A context constraint
can descriptively express a situation based on context in-
formation. For instance, the following constraint expresses
that Bob is entering the conference room in which a presen-
tation is carried out:

{ 〈Bob, location, entering, conf room〉,
〈conf room, social activity, is, presentation〉}

Since one of the most preferable principles to establish
precedence is “more specific overrides”, we provide the de-
finition of specificity based on context predicates and con-
straints. For example, a predicate stating that the age of the

21st International Conference on
Advanced Information Networking and Applications Workshops (AINAW'07)
0-7695-2847-3/07 $20.00 © 2007

user must be over 30 should be considered more specific
than a predicate expressing the age of the user must be over
20.

Definition 3 (More Specific Context Predicate) Context
predicate p1 is more specific than context predicate p2,
denoted by p1 <MS p2, if they both have equal subject and
type, and p2 is inferable by p1; i.e. wherever p1 is satisfied,
p2 is also satisfied.

Several approaches can be employed to perform the re-
quired inference, i.e. p1 → p2. A simple approach is using
a knowledge base and a rule-based inference mechanism.
Using the following rule could easily yield the previous ex-
ample, i.e. 〈user, age, >, 30〉 <MS 〈user, age, >, 20〉:

〈S, T, >, O1〉 ∧ O1 > O2 → 〈S, T, >, O2〉
Definition 4 (More Specific Context Constraint) context
constraint c1 is more specific than context constraint c2

regarding a tuple 〈s, t〉, denoted by c1 <s,t
MS c2, if c1

contains a predicate with subject s and type t, and either
c2 does not have a predicate with the same subject and type
or the c1’s predicate is more specific than c2’s.

For instance, consider the following two constraints and the
specificity relations between them:

C1 = {(user, age, >, 20), (user, location, in, class A)}
C2 = {(user, age,≥, 30)}
C2 <user,age

MS C1 , C1 <user,location
MS C2

3.2. Policy Model

Authorization policy is actually a collection of authoriza-
tion rules briefly termed authorizations.

Definition 5 (Authorization) An authorization is a tuple
〈sign, condition〉.
The sign can be either “+” to state a positive authorization
or “−” to declare a negative one. The condition is a context
constraint that specifies the situation at which the authoriza-
tion is active. Notations SBJ, OBJ, and ACT may be used
to address typical access request components as entities of
context predicates. For instance, the following authoriza-
tion denies any access from a user to a confidential or higher
classified document remotely:

〈 − , { 〈SBJ, connection type, is, remote〉,
〈OBJ, type, is, document〉,
〈OBJ, class,≥, confidential〉 } 〉

The condition part of the authorizations might seem
somewhat limited in the way that it does not allow disjunc-
tions. However, since all policy authorizations whose con-
dition is satisfied are active and enforceable in an access sit-
uation, the enforced policy is considered as the disjunction

of all active authorizations. In order to state an authoriza-
tion with a disjoint condition A∨B, two authorizations, one
with condition A and one with condition B and both with
the same sign, should be defined. The mentioned limitation
facilitates conflict resolution based on context which in its
absence can be quite complicated and costly.

Since many context-aware environments such as per-
vasive computing environments are inherently distributed,
centralized authorization management is not practical. So,
in order to support decentralized authorization, the policy
model supports multiple authorities. Each authority is ca-
pable of defining policy for a restricted virtual space called
authority space.

Definition 6 (Authority Space) An Authority space is de-
fined and limited by a context constraint.

Within an authority space, an authority defines its policy
using authorization rules. Based on the current context, an
authority space restricts the subjects, objects, and actions on
which policy can be defined or the situation when it is ap-
plicable. Actually, an authorization defined by the authority
is enforceable when both authority space constraint and au-
thorization condition are met.

In this model, the authorities are organized as follows.
There is a global authority which its authority space has no
constraint. An authority can create several sub-authorities
within a more restricted authority space than itself has; the
creator’s authority space constraint is enclosed in the con-
straint of the new authority space. Actually, an authority
delegates the policy specification responsibility to the sub-
authority restricted to its authority space constraint. Note
that the authority spaces of sub-authorities are not neces-
sarily isolated; they can overlap each other. In this man-
ner, authorities form a tree structure such that its root is the
aforementioned global authority, and each authority is the
parent of the authorities which it has created. This way, the
model provides authorities with maximal independency in
specification of policy. Also the distribution of conflict de-
tection and resolution would be facilitated. Figure 1 illus-
trates an authority hierarchy. Note that although authority
space of the three users is contained in the authority space
of the presenter, they are considered as sub-authorities of
the room manager.

4. Conflict Detection and Resolution

In the rule-based authorization policy model of section 3,
conflicts may arise among different authorizations specified
by an authority.

Definition 7 (Conflicting Authorizations) Two or more
authorizations are conflicting in a situation if their condi-
tion elements are satisfied and they have conflicting sign
elements; i.e. some have “+” and others have “−” sign.

21st International Conference on
Advanced Information Networking and Applications Workshops (AINAW'07)
0-7695-2847-3/07 $20.00 © 2007

(a) (b)

Global

RoomManager {〈SBJ,location,in,room〉,
〈OBJ,location,in,room〉}

Presenter {…, 〈OBJ,type,realates,presentation〉}

Global

RoomManager

Presenter User1 User2 User3

User1 {…,
〈OBJ,owner,
is,User1〉}

User2 {…,
〈OBJ,owner,
is,User2〉}

User3 {…,
〈OBJ,owner,
is,User3〉}

Figure 1. Sample authority spaces (a), and their corresponding authority hierarchy (b)

Furthermore, an access request may be in multiple author-
ity spaces, and different involved authorities may have con-
flicting decisions. Organizing authorities in a tree structure,
as described in section 3.2, provides a reasonable way to
resolve the conflicts among the different authorities: the de-
cision of a parent authority overrides the decisions of its
children. Thus an authority can resolve the conflicts among
its sub-authorities and its own authorization rules to make
its final decision. The resolution is done according to reso-
lution policies which are defined by the authority based on
the aforementioned principles in a context-aware manner.
The resolution is formally defined in section 4.2.

The principles for establishing precedence among au-
thorizations may seem inappropriate for resolving conflicts
among sub-authorities. Therefore, in addition to use of
those principles, each authority can define a context-aware
seniority relation among its sub-authorities.

Definition 8 (Seniority Rule) A seniority rule is a triple
〈condition, SA1, SA2〉.
if the context constraint condition is satisfied, then sub-
authority SA1 is senior to sub-authority SA2; i.e. SA1’s
decision overrides SA2’s. Note that leaving the condition of
a rule empty makes it active constantly and imposes a strict
seniority. The seniority relation in an authority is comprised
of multiple seniority rules.

4.1. Conflict Detection

We express the formalism of our approach through
graphs to make it more comprehensible. Forming a poten-
tial conflict graph, an authority detects potential conflicts
and investigates possible precedence relations among its au-
thorizations. As mentioned in section 3.2 an authority is re-
sponsible for resolving conflicts among its sub-authorities
in addition to its defined authorizations. In order to increase
the consistency of the graph, in the decision situation for
a specific access request, a sub-authority is considered as

a single authorization: context constraint of sub-authority
space as its condition, and its determined decision for the
request as its sign.

Definition 9 (Potential Conflict Graph) Potential conflict
graph is a multi graph in which each vertex corresponds to
an authorization or a sub-authority. Each edge in the graph
represents an overriding relation between two vertices and
is labeled with the relations’s symbol.

Possible relations corresponding to an edge from vertex a1

to a2 include

• <s,t
MS , for different values of subject s and type t,

if and only if a1 and a2 have conflicting signs and
a1.condition <s,t

MS a2.condition

• NoP , if and only if a1 is a negative authorization and
a2 is a positive one

• >S , if and only if there is a seniority rule 〈c, a1, a2〉
and condition c is satisfied

Overriding relations, presented by labels, can be extended
to include more details or complicated context of autho-
rizations such as relation about time of authorization defi-
nition. In practice, since there can be various relations of
type <s,t

MS , considering different values for subject s and
type t, it is better to limit the subject and types on which the
relation is definable.

Also, note that a reverse relation for each relation is sup-
posable. For instance, for each more specific relation we can
assume a more general relation in reverse. Those relations
are not mentioned in the graph due to redundancy issues;
whenever needed, the reverse of relation α is denoted by

α−1. For instance, relation <SBJ,location
MS

−1
states a more

general location context for subject, or relation NoP−1 ex-
presses that a positive authorization overrides a negative
one.

21st International Conference on
Advanced Information Networking and Applications Workshops (AINAW'07)
0-7695-2847-3/07 $20.00 © 2007

4.2. Conflict Resolution

In order to define in an expressive how the conflicts in an
authority space should be dealt with, the notion of resolu-
tion policy is introduced.

Definition 10 (Resolution Policy) Resolution policy is a
subset of possible relations’ symbols in the potential con-
flict graph or their reverses.

Resolution policy can be considered as a group of prece-
dence relations; if all relations corresponding to symbols in
a resolution policy exist from authorization a1 to a2, then a1

overrides a2. For instance, resolution policy {<SBJ,location
MS

, <OBJ,location
MS } states that for each two authorizations, if

the first authorization specifies more specific location con-
text condition for subject and object then it overrides the
second authorization. An advantage of utilization of differ-
ent relations in a resolution policy is the ability of combin-
ing different precedence establishment principles. For ex-
ample, {<ACT,type

MS , NoP} expresses that negative autho-
rizations with more specific action types precede positive
authorizations.

An authority is capable of expressing its conflict resolu-
tion policy using a resolution policy sequence.

Definition 11 (Resolution Policy Sequence) Resolution
policy sequence is a total order of some resolution policies.
The last resolution policy in the sequence must be either
{NoP} or {NoP−1}.
The conflict resolution is a step by step process. Sequen-
tially, at each step, a resolution policy from resolution pol-
icy sequence is selected to resolve remaining conflicts; until
no conflict remains. As defined, the last resolution policy
must state that either negative or positive authorization pre-
cedes. That way, it is assured that existing conflicts in an
authority space are resolved eventually.

In an actual conflict situation, an actual conflict graph is
constructed from the potential conflict graph.

Definition 12 (Actual Conflict Graph) Actual conflict
graph is a multi graph extracted from the potential conflict
graph which is composed of vertices corresponding to
conflicting authorizations at the actual conflict situation
and their corresponding edges; i.e. by eliminating those
vertices whose corresponding authorizations are not in
conflict.

Actual conflict graph is then pruned according to the reso-
lution policy sequence; Sequentially a resolution policy is
selected and the corresponding elimination graph is con-
structed.

Definition 13 (Elimination Graph) Let AG be an actual
conflict graph and R be a resolution policy. The elimination
graph EGAG,R is a single graph in which

a1
-

a2
+

a3
+

a4
-

NoP

NoP

NoP

NoP

<MS
SBJ, location

<MS
SBJ, location

<MS
SBJ, location

<MS
SBJ, location

<MS
OBJ, type

<MS
OBJ, type

a1
-

a2
+

a3
+

a4
-

(a)

(b)

a1
-

a2
+

a3
+

a4
-

(c)

Figure 2. Sample actual conflict graph (a), and
its corresponding elimination graphs regard-
ing resolution policy {<SBJ,location

MS } (b), and
resolution policy {<SBJ,location

MS , NoP} (c)

• there is a vertex for each vertex in AG, and

• there is an unlabeled edge from vertex a1 to vertex a2

if an edge exists in AG

– from a1 to a2, for every relation’s symbol in R
with the same symbol as its label, and

– from a2 to a1, for every reverse relation’s symbol
in R with the same symbol as its label.

Constructing the elimination graph, the actual graph is
pruned by omitting vertices corresponding to non-root ver-
tices in the elimination graph. The enforcement of resolu-
tion policies is continued until no conflict exists. Enforcing
last resolution policy according to the definition, eventually
resolves either negative or positive authorization.

Let us illustrate the approach through a simple example.
Consider figure 2.a as an actual conflict graph constructed
in a conflict situation by omitting non-conflicting vertices.
If we use the resolution policy {<SBJ,location

MS }, the elim-
ination graph in figure 2.b would be constructed. Using
this graph to prune the actual conflict graph, all non-root
vertices in elimination graph, i.e. a1, a3, and a4 must be
deleted from the actual graph. If we use resolution policy
{<SBJ,location

MS , NoP} instead, the elimination graph in fig-
ure 2.c would be constructed. Accordingly, only vertex a3

must be omitted from the actual conflict graph.

4.3. Timing Strategy

Factually speaking, the conflict resolution process is a
computationally intensive and time consuming task. Con-
flicts can be detected and resolved either statically at com-
pile time, or dynamically at run time. But due to its cost,

21st International Conference on
Advanced Information Networking and Applications Workshops (AINAW'07)
0-7695-2847-3/07 $20.00 © 2007

it is more preferable to be done statically [4]. Conflict
resolution in a context-aware authorization system is even
more complicated; determination of context specificity rela-
tions among authorizations requires inference power which
is computationally intensive.

The strength of the proposed scheme in this paper is
that conflict detection can be performed almost statically,
and the resolution process is left for run time. The fre-
quency of policy modification is generally far less than the
frequency of arising conflicts in a context-aware policy at
run time. Therefore a potential conflict graph is maintained
for each authority which is altered by modification of the
policy; i.e. adding, deleting, and updating authorizations.
Almost all overriding relations among authorizations and
sub-authorities which are computationally intensive due to
inference requirement are determinable statically. Excep-
tions are those relations pertaining to the sign, e.g. NoP,
between two sub-authorities or between a sub-authority and
an authorization. Undoubtedly, those relations should be
checked at run time if necessary.

4.4. Algorithms

In this section we provide detailed algorithms to imple-
ment the conflict resolution scheme. We also provide the
computational complexity of the algorithms in which N is
the number of vertices in the conflict graph, and L is the
number of possible precedence establishment relations. Ac-
tually, N is the number of authorization rules that an indi-
vidual policy administrator considers and probably is not
very high. However, the number of possible edge labels L
should be limited for the scheme to be practical.

Algorithm 1 UpdatePotentialGraph AddAuth(PG, A)

Input: potential conflict graph PG = (V, E), newly added
authorization A
Output: updated potential graph PG

1: V ← V ∪ {A}
2: for each v ∈ V \{A} do
3: for each α ∈ PossibleRelationSymbols do
4: if v.sign �= A.sign then
5: if v.condition α A.condition then
6: E ← E ∪ {(v, A, α)}
7: end if
8: if A.condition α v.condition then
9: E ← E ∪ {(A, v, α)}

10: end if
11: end if
12: end for
13: end for

Potential conflict graph can be maintained statically. Al-
gorithm 1 demonstrates how to update the potential conflict

graph PG when a new authorization A is defined by the au-
thority. First, a vertex corresponding to the new authoriza-
tion is added to PG. Then, for each vertex of PG except
A, existence of different types of relations between the ver-
tex and A is checked. The complexity of the algorithm is
O(LN).O(I) where O(I) is the complexity of inferring a
context-based relation.

Algorithm 2 CreateElimGraph(AG, R)

Input: AG = (V, E), and resolution policy R
Output: EGAG,R = (V ′, E′)

1: V ′ ← V
2: E′ ← ∅
3: for each two different vertices a and b in V do
4: Lab ← {l | (a, b, l) ∈ E}
5: Lba ← {l | (b, a, l) ∈ E}
6: Qr ← {α | α−1 ∈ R}
7: Q← R \ Qr

8: if Q ⊆ Lab ∧Qr ⊆ Lba then
9: E′ ← E′ ∪ {(a, b)}

10: end if
11: if Q ⊆ Lba ∧Qr ⊆ Lab then
12: E′ ← E′ ∪ {(b, a)}
13: end if
14: end for

Algorithm 2 is used to create a filtered graph from the
actual conflict graph AG based on the resolution policy R.
It first copies the vertices of AG to FGAG,R and initializes
the edges of FGAG,R to null. Then, it checks for every two
possible vertices in AG if one of them overrides the other
according to the resolution policy R. The complexity of the
algorithm is O(LN2)

Algorithm 3 ResolveConflicts(AG, RS)

Input: actual conflict graph AG = (V, E), and resolution
policy RS = (R1, R2, . . . , Rm)
Output: resolved sign D

1: for i← 1 to m do
2: if E = ∅ then
3: break
4: end if
5: EGAG,Ri = (V ′, E′)←CreateElimGraph(AG, Ri)
6: V ← {b ∈ V | � ∃(a, b) ∈ E′}
7: E ← {(a, b, l) ∈ E | a ∈ V ∧ b ∈ V }
8: end for
9: D ← V [0].sign

Algorithm 3 resolves the conflicts in an actual conflict
graph AG using resolution policy sequence RS and results
the final decision D. The algorithm sequentially selects the
next resolution policy and uses it to construct the elimina-
tion graph EG. It then keeps only those vertices of AG

21st International Conference on
Advanced Information Networking and Applications Workshops (AINAW'07)
0-7695-2847-3/07 $20.00 © 2007

whose corresponding vertices in EG have no input edges;
i.e. those authorizations which are not overridden by others
according to the current resolution policy. The edges corre-
sponding to deleted vertices are also removed. The iteration
stops when no conflict remains among authorizations; i.e.
AG has no edges. Note that an edge in AG means the ex-
istence of a conflict. Finally, the sign of the authorization
corresponding to one of the vertices is returned as the re-
sult. The complexity of the algorithm is O(mLN2) where
m is the number of resolution policies in the resolution pol-
icy sequence RS.

Note that algorithm 3 resolves only conflicts in an au-
thority. The overall conflict resolution is a recursive process
in which an authority requires determination by its involved
children authorities and resolves the possible conflicts; The
process is continued until no conflict exists among involved
authorities. Since the depth of the authorization hierarchy
roughly corresponds to the administration levels which is
restricted in nature, it can be inferred that the overall time
complexity of the resolution scheme in a distributed envi-
ronment is bounded to a constant factor of the resolution
Algorithm 3.

5. Conclusion

In this paper, we formalized conflict detection and res-
olution in a context-aware authorization system. A typi-
cal context-aware authorization policy model is presented
leveraging formalized context constraints. Specificity rela-
tions concerning contextual information are discussed and
formally defined. Then, a novel graph-based approach is
proposed to enable precedence establishment among autho-
rizations in a conflict situation. The method is capable of
using expressive resolution policies based on context and
considers all authorization in a conflict situation as a whole.
In the detection phase, a potential conflict graph is con-
structed, which is almost statically performable. Leverag-
ing this graph in the actual conflict situation provides cost-
effective context-based conflict resolution. In addition, tim-
ing strategy and detailed algorithms are provided and ana-
lyzed.

References

[1] M. A. Al-Kahtani and R. S. Sandhu. Induced role hierarchies
with attribute-based rbac. In 8th ACM Symposium on Access
Control Models and Technologies (SACMAT), pages 142–
148, Como, Italy, 2003. ACM.

[2] J. Al-Muhtadi, A. Ranganathan, R. H. Campbell, and M. D.
Mickunas. Cerberus: A context-aware security scheme for
smart spaces. In 1st IEEE International Conference on
Pervasive Computing and Communications (PerCom 2003),
pages 489–496, Fort Worth, Texas, USA, 2003. IEEE Com-
puter Society.

[3] A. K. Dey. Understanding and using context. Personal and
Ubiquitous Computing, 5(1):4–7, 2001.

[4] N. Dunlop, J. Indulska, and K. Raymond. Methods for con-
flict resolution in policy-based management systems. In 7th
IEEE International Enterprise Distributed Object Comput-
ing Conference, pages 98–109, Brisbane, Australia, 2003.
IEEE Computer Society.

[5] W. Han, J. Zhang, and X. Yao. Context-sensitive access con-
trol model and implementation. In 5th International Confer-
ence on Computer and Information Technology (CIT 2005),
pages 757–763, Shanghai, China, 2005. IEEE Computer So-
ciety.

[6] S. Jajodia, P. Samarati, and V. S. Subrahmanian. A logical
language for expressing authorizations. In IEEE Symposium
on Security and Privacy, pages 31–42, Oakland, CA, USA,
1997. IEEE Computer Society.

[7] E. Lupu and M. Sloman. Conflicts in policy-based distrib-
uted systems management. IEEE Transactions on Software
Engineering, 25(6):852–869, 1999.

[8] A. R. Masoumzadeh, M. Amini, and R. Jalili. Context-aware
provisional access control. In 2nd International Conference
on Information Systems Security, volume 4332 of Lecture
Notes in Computer Science, pages 132–146, Kolkata, India,
2006. Springer Verlag.

[9] M. Roman, C. Hess, R. Cerqueira, A. Ranganathan, R. H.
Campbell, and K. Nahrstedt. A middleware infrastructure
for active spaces. IEEE Pervasive Computing, 1(4):74–83,
2002.

[10] C. Ruan and V. Varadharajan. A formal graph based frame-
work for supporting authorization delegations and conflict
resolutions. International Journal of Information Security,
1(4):211–222, 2003.

[11] P. Samarati and S. De Capitani di Vimercati. Access con-
trol: Policies, models, and mechanisms. In R. Focardi and
R. Gorrieri, editors, Foundations of Security Analysis and
Design (FOSAD), volume 2171 of Lecture Notes in Com-
puter Science, pages 137–196. Springer-Verlag, 2001.

[12] R. S. Sandhu and P. Samarati. Access control: Principles
and practice. IEEE Communications Magazine, 32(9):40–
48, 1994.

[13] E. Syukur, S. W. Loke, and P. Stanski. Methods for pol-
icy conflict detection and resolution in pervasive computing
environments, May 10-14 2005.

[14] R. K. Thomas and R. S. Sandhu. Models, protocols, and
architectures for secure pervasive computing: Challenges
and research directions. In 2nd IEEE Conference on Per-
vasive Computing and Communications Workshops, pages
164–170, Orlando, FL, USA, 2004.

21st International Conference on
Advanced Information Networking and Applications Workshops (AINAW'07)
0-7695-2847-3/07 $20.00 © 2007

