
PuRBAC: Purpose-aware Role-Based Access
Control

Amirreza Masoumzadeh and James B. D. Joshi

School of Information Sciences
University of Pittsburgh

{amirreza,jjoshi}@sis.pitt.edu

Abstract. Several researches in recent years have pointed out that for
the proper enforcement of privacy policies within enterprise data han-
dling practices the privacy requirements should be captured in access
control systems. In this paper, we extend the role-based access control
(RBAC) model to capture privacy requirements of an organization. The
proposed purpose-aware RBAC extension treats purpose as a central en-
tity in RBAC. The model assigns permissions to roles based on purpose
related to privacy policies. Furthermore, the use of purpose as a sepa-
rate entity reduces the complexity of policy administration by avoiding
complex rules and applying entity assignments, coherent with the idea
followed by RBAC. Our model also supports conditions (constraints and
obligations) with clear semantics for enforcement, and leverages hybrid
hierarchies for roles and purposes for enforcing fine grained purpose and
role based access control to ensure privacy protection.

1 Introduction

Privacy can be defined as the right of individuals and organizations to con-
trol the collection, storage, and dissemination of information about themselves.
Nowadays companies and enterprises gather more and more data about their
users in order to provide more competitive services. This is especially true about
applications on the Web that monitor the behavior of their users, resulting in
heightened concern about potential disclosure and misuse of private informa-
tion. Fortunately, the trend is such that organizations and enterprises are also
becoming more serious about respecting the privacy of their customers. They
not only are required to comply with existing privacy regulations, but also can
take advantage of their privacy practices as an important capital to increase (or
at least retain) their market share.

As described in a recently proposed road-map for web privacy by Antón et al.
[1], there still remain vital research problems to be addressed. One major chal-
lenge is actual enforcement of privacy policies once the data has been collected.
A big step towards enforcing privacy policies in an organization is considering
them when making decisions over access to private data in information systems.
With that vision, Powers et al. suggest privacy policy rules [2], comprising of
data type, operation on the data, data user, purpose of data access, condition

that restricts the accesses, and obligations that need to be carried out by the
organization after the user is allowed to access.

The well-known role-based access control model (RBAC) is a typical choice
for organizational access control [3]. Therefore, enabling privacy policy specifica-
tion within this model can be quite useful. Recently, Ni et al. propose P-RBAC
[4], a privacy-aware role-based access control model, which incorporates notions
of privacy policies defined in [2] into RBAC model. P-RBAC encapsulate data,
action, purpose, condition, and obligation as privacy data permission. Although
quite powerful, we argue that P-RBAC is moving away from the spirit of RBAC,
that is simplicity of policy administration. With the use of roles as the intermedi-
ary entities between users and permissions, RBAC shifts from simply-represented
but hard-to-manage paradigm that only consists of authorization rules, to a more
manageable user-role and permission-role assignment scheme. However, privacy
data permissions in P-RBAC do not consider that characteristic, and in pres-
ence of data and purpose hierarchies, the policy administration is as complex as
authorization rule approaches such as [5].

We propose a slightly different extension to RBAC, called purpose-aware
role-based access control (PuRBAC) model. In this model, we consider purpose
as an intermediary entity between role and permission entities. The proposed
PuRBAC model also includes constraints and obligations defined as conditions
on assignment of permissions to purposes. We summarize the reasons for con-
sidering purpose as a separate entity in our model as follows:

– The core part of privacy policies usually state purposes for and circumstances
under which collected data would be used, and the extent of use of personal
information may differ based on the purpose of use. For example, health
record of a job applicant may be used for the purpose of approval of qualifi-
cation for a special job requiring certain degree of health, without disclosing
details. However, the details may be used for the purpose of treatment of
that person as a patient.

– There is a close relation between the notion of purpose in privacy policies
and the notion of role in RBAC. A role in RBAC can be defined as a set of
actions and responsibilities associated with a particular activity [6]. Purpose
in privacy policies is defined as a reason for data collection and use [7],
and business purposes can be identified through task definition within an
organization’s IT systems and applications [2]. Here, a close relation can be
observed between what responsibility a user has (can be modeled as role)
and its associated tasks for fulfilling the responsibilities (can be modeled
as purpose). On the other hand, fulfilling the tasks requires access to data,
which is represented by permissions in RBAC. Thus, considering purpose as
intermediate entity between role and permission entities is intuitive.

– The other rational is to follow RBAC trend of breaking policy definition
into different entities and relations between them (e.g. assignment relation
between role and permission in RBAC), making management of different
part of the policy as independent as possible. Unlike P-RBAC [4], treating

purpose as a separate entity between role and permission makes our model
coherent with that approach.

There is also a difference between our model and traditional access control
models in that a subject should specifically assert the purpose of accessing data
in its request to access a piece of data. In terms of RBAC, the access request
can be treated as as a tuple containing a session identifier, purpose of access,
and permission requested. Authorizing such a request ensures that a private
information is accessed only for the valid purposes according to the privacy
policy, without any ambiguities (in compliance with the use limitation principle
as mentioned in [8]). Note that in practice the purpose assertion may be provided
without user intervention by the application.

The rest of the paper is organized as follows. In Section 2, we introduce
PuRBAC model; a base model is first defined formally (Section 2.1), followed
by its hierarchy-extended (Section 2.2) and hybrid hierarchy-extended (Section
2.3) versions. In Section 3, our condition model is described separately from
our access control model to simplify presentation. In Section 4, we discuss the
strength of our approach and justify the our modeling. We review the previous
major research in Section 5, and conclude the paper with a discussion of future
directions in Section 6.

2 Purpose-Aware RBAC Model (PuRBAC)

USERS ROLES

PRPS PRMS
SESS-
IONS

CNDS

SessionUser

UA

PRMA

PRPA
SessionRoles

PRBACH

PRBACHH

RH (RHH)

PRPH(PRPHH)

(a) (b)

PRBACB

PRMH

CNDA

Fig. 1. Proposed Purpose-Aware Role-Based Access Control (PuRBAC) Model

We define a hierarchy of Purpose-aware RBAC (PuRBAC) models to clearly
distinguish different features, following classic scheme of RBAC models [3]. Fig-

ure 1 shows the PuRBAC family of models. Figure 1.a illustrates the relation-
ship between different models, and Figure 1.b shows different components and
relations in the models. PuRBACB is the base model that specifies minimum re-
quired characteristics PuRBAC. PuRBACH extends PuRBACB with the notion
of hierarchies of roles, purposes, and permissions. Although standard hierarchies
are considered a powerful property of RBAC models, they may introduce some
risks because of conditional assignments that exist in the proposed PuRBAC
model. To preclude such risks, PuRBACHH extends PuRBACH with the notion
of hybrid hierarchies [9] for roles and purposes.

In the following, we provide definition and semantics for each proposed model
in the family.

2.1 Base Model: PuRBACB

Figure 1.b shows the overall structure of the proposed model. USERS, ROLES,
and SESSIONS components and the relations among them are inherited from the
standard RBAC [10]: individual users (USERS) are assigned to roles (ROLES),
who can create sessions (SESSIONS) at runtime and activate assigned roles in
the created sessions. The extension in PuRBAC is based on how permissions
(PRMS) are exercised. We argue that permissions are exercised for a particular
purpose; therefore, permissions are assigned to purposes (PRPS) for which they
can be exercised, and then purposes are assigned to proper roles.

We adopt a similar approach to to the proposed NIST standard RBAC for
permissions, in which permission represents a data type and corresponding action
on that data. To enforce privacy policies in an enterprise data access system, such
a model would be close to actual implementations. Whenever possible, we try
to use the general notion of a permission.

As described before, privacy policies require flexible conditions for privilege
management. To provide such flexibility, we enable conditions (CNDS) defined on
permission assignments to purposes, that limit the assignment to particular cases
or impose obligations. Here, we deliberately do not bring in an accurate definition
for conditions to avoid complication in presentation of the model; though such a
definition is independently provided in Section 3. For now, consider conditions
as boolean predicates. An assignment is valid in a situation if and only if its
condition is satisfied.

Formally speaking, the following sets and relations define the purpose-aware
access control policy in PuRBACB model:

– USERS, ROLES, PRPS, and DATA; sets of users, roles, purposes, and
data types, respectively.

– PRMS; set of pairs of the form 〈d, a〉 where d ∈ DATA is a data type, and
a is a valid action on that.

– CNDS; set of possible conditions.
– UA ⊆ USERS ×ROLES; user to role assignment relation.
– PRPA ⊆ PRPS ×ROLES; purpose to role assignment relation.
– PRMA ⊆ PRMS × PRPS; permission to purpose assignment relation.

– CNDA = CNDS × PRMA; condition to permission assignment binding
relation.

Note that according to the definition of the CNDA relation, there exists
exactly one condition for each permission assignment. The execution semantics
of the model is as follows. As in standard RBAC, assigned roles to a user can
be activated and deactivated by her in corresponding sessions; for a working
user there is at least one session, which is unique to her. For exercising privacy-
sensitive permissions, a user needs to provide a purpose; while only purposes
assigned to the current active roles of a user can be asserted. The user is au-
thorized to exercise permissions assigned to the provided purpose, given their
conditions are satisfied. The following sets and functions capture the state of the
system at runtime based on user interaction with the system:

– SESSIONS; set of sessions created by the users.
– SessionUser : SESSIONS → USERS; mapping function from a session

to its corresponding user.
– SessionRoles : SESSIONS → 2ROLES ; mapping function from a session s

to its active roles rs, where rs ⊆ {r|〈SessionUser(s), r〉 ∈ UA}.

Although the principal requesting access in an access scenario is the user,
but in RBAC such requests are mediated through sessions. Therefore, we discuss
authorizations for sessions in which authorizations are requested on behalf of a
user. The following functions capture runtime authorization for role activation,
purpose assertion, and conditional permission exercise in PuRBACB:

– AuthRoles : SESSSION → 2ROLES ; mapping function from a session to
the roles that can be activated in it. Formally: AuthRoles(s : SESSIONS) =
{r ∈ ROLES|〈SessionUser(s), r〉 ∈ UA}.

– AuthPurposes : SESSSION → 2PRPS ; mapping function from a session
to the purposes that can be asserted for exercising permissions. Formally:
AuthPurposes(s : SESSIONS) = {prp ∈ PRPS|〈prp, r〉 ∈ PRPA ∧ r ∈
SessionRoles(s)}.

– CAuthPurposePermissions : PRPS → 2CNDS×PRMS ; mapping function
from a purpose to the conditional permissions that can be exercised through.
Formally: CAuthPurposePermissions(prp : PRPS) =
{〈cnd, prm〉 ∈ CNDS×PRMS|〈prm, prp〉 ∈ PRMA ∧ 〈cnd, 〈prm, prp〉〉 ∈
CNDA}.

The access control process of PuRBAC is different from classic access con-
trol models that only grant or deny the access request. At runtime, a user access
request is submitted as a session, purpose, and requested permission. The ac-
cess decision function (ADF) either determines a conditional authorization or
responds with a denial decision (if no conditional authorization is resolved):

ADF (s : SESSIONS, prp : PRPS, prm : PRMS) = cnd if
prp ∈ AuthPurposes(s)
∧ ∃〈cnd, prm〉 ∈ CAuthPurposePermissions(prp)

“deny” otherwise

If a conditional authorization is resolved by ADF, it will be passed to the access
control enforcement function (AEF). The actual enforcement of condition by
AEF is dependant on the condition model in use. However, generally it will
check some constraints and enforce some obligations that eventually may result
in granting or denying the access. We will provide enforcement details in Section
3.

2.2 Hierarchical Model: PuRBACH

Hierarchies have been widely employed for propagation of authorization decision
in access control models. Role hierarchy in standard RBAC allows senior roles
to inherit permissions of junior roles. In PuRBACH, senior roles inherit the
purposes allowed for junior roles. Hierarchies are also useful for purpose based
on generality/specificity concepts [11, 12]. If a user can access an object for one
purpose, she can also access that object for a more specific purpose. We also
consider hierarchy for permissions, specifically based on data hierarchy (e.g.
aggregation hierarchy) for the same actions; if a user is authorized for an action
on one data type, she is also authorized for the same action on descendents of
that data type.

PuRBACH considers hierarchies for roles, purposes, and permissions in the
policy, defined as follows:

– RH ⊆ ROLES ×ROLES; a partial order relation on roles, denoted as ≥r.
– PRPH ⊆ PRPS ×PRPS; a partial order relation on purposes, denoted as
≥prp.

– PRMH ⊆ PRMS×PRMS; a partial order relation on permissions, denoted
as ≥prm.

The existence of hierarchies impose some changes to the base model. In ad-
dition to directly assigned roles, a user can activate roles that are junior to the
assigned roles. Because of role hierarchy the user can assert purposes assigned
to not only her active roles, but also junior roles of her active roles. Moreover,
because of purpose hierarchy the user can assert any more general purpose than
she is entitled through role hierarchy.

Special care should also be taken when dealing with exercising permissions,
which are conditionally assigned to purposes. Hierarchies in standard RBAC
have only permissive behavior while in PuRBAC they can be both permissive and
constraining. Since there are no condition on permission assignment in standard
RBAC, inheritance of a previously owned permission by a role through hierar-
chy does not change the role permissions; therefore, the only effect of hierarchy
is inheriting permissions assigned to junior roles by senior roles. In contrast,
due to the existence of conditions on permission assignments in our model, if
a hierarchical relation for a purpose leads to inheritance of a permission that
was previously assigned to the purpose, there will be different conditional as-
signments for the same permission. In such a situation, there are two possible
approaches for authorizing the permission for purpose: whether one of the con-
ditions or all of them should be satisfied. We take the conservative approach and

consider all the conditions applicable. Because the administrator can define more
general privacy conditions at lower levels of the hierarchies, and be ensured that
they are applicable to more fine-grained purposes and permissions. Hierarchical
inheritance in this way constrains the permission by putting more conditions for
the exercise. We show an example of such a scenario later in this section.

The following functions capture runtime authorization for role activation,
purpose assertion, and conditionally assuming permissions in PuRBACH:

– AuthRoles : SESSSION → 2ROLES ; mapping function from a session to
the roles that can be activated in it. Formally: AuthRoles(s : SESSIONS) =
{r ∈ ROLES|〈SessionUser(s), r′〉 ∈ UA ∧ r ≥r r′}.

– AuthPurposes : SESSSION → 2PRPS ; mapping function from a session
to the purposes that can be asserted for exercising permissions. Formally:
AuthPurposes(s : SESSIONS) = {prp ∈ PRPS|〈prp′, r′〉 ∈ PRPA ∧
prp ≥prp prp′ ∧ r ≥r r′ ∧ r ∈ SessionRoles(s)}.

– CAuthPurposePermissions : PRPS → 2CNDS×PRMS ; mapping func-
tion from a purpose to the conditional permissions which can be exercised
through. Formally: CAuthPurposePermissions(prp : PRPS) =
{〈

∏
cndi, prm〉 ∈ CNDS × PRMS|〈prm′, prp′〉 ∈ PRMA ∧ prp ≥prp

prp′ ∧ prm ≥prm prm′ ∧ 〈cndi, 〈prm′, prp′〉〉 ∈ CNDA}.

As described earlier in the case there are multiple applicable conditional
assignments, all of them should be aggregated to be enforced; the term

∏
cndi

refers to such an aggregation. The aggregation function itself is dependent to
condition model in use. We provide the aggregation process of the conditions
followed by our condition model in Section 3. Note that the access decision
function ADF needs no change compared to the base model.

Contact
Info

Email
Address

Inform
Order

Problem

Inform
Customer

Phone
No

Role Hierarchy Purpose Hierarchy Permission Hierarchy

{TimeBetween(10am,4pm)}

{OwnerConsent(contact)}
Employee

Sale

Fig. 2. Example Hierarchies and Their Assignments

For an example of access control process in PuRBACH, consider Figure 2
as partial role, purpose, and permission hierarchies in an online store system,
along with their assignments. For simplicity, only the data types for permissions

have been specified, and the action is read for all. The hierarchical relations are
depicted with a directed line between entities. The role and purpose hierarchies
are similar, e.g., role sale is senior to role employee, and purpose inform order
problem is senior to (more specific than) purpose inform customer. The permis-
sion hierarchy is an aggregation hierarchy where the most coarse grained data is
depicted at the bottom, e.g., permission to read email address is part of (more
specific than) contact info. Data hierarchies are usually visualized in the oppo-
site direction, but our visualization is aligned with the assignment inheritance,
e.g., assignment of contact info to a role is also (indirectly) applied to email
address. Considering the mentioned relations, suppose that there is a problem
with a customer’s order and a sale employee wants to contact the customer. The
employee first activates her sale role, which is assigned to the purpose inform
order problem. For contacting the customer using email, she would request access
to the customer’s email address, asserting purpose inform order problem to the
system. According to the policy setting, contact information can be accessed for
purpose inform customer on the condition that owner of contact information
has consented for contacting him using it. Based on the purpose and permission
hierarchical relations, this authorization will be also applicable to the requested
permission/purpose. Alternatively, the employee may call the customer by as-
serting purpose inform order problem to access customer’s phone number. In that
case there are two assignments applicable: there is a direct assignment between
the requested purpose/permission with the condition of being daytime, and the
previously mentioned assignment is also inherited through hierarchies with the
condition of owner having consent. Therefore, the combined condition should be
evaluated to true in order that access be granted to the employee.

2.3 Hybrid Hierarchical Model: PuRBACHH

Hybrid hierarchy have been originally defined in the context of Generalized Tem-
poral RBAC (GTRBAC) [13]. It separates the notion of permission inheritance
and activation inheritance in role hierarchy, taking into account three types of
relations: inheritance (I), activation (A), and inheritance-activation (IA). If r1

is I-senior to r2, it inherits the permissions of r2. If r1 is A-senior to r2, any user
assigned to r1 can activate r2, but the role r1 does not inherit permissions of r2.
Finally, if r1 is IA-senior to r2, it inherits the r2’s permissions and also r2 can be
activated by anyone who can activate r1. PuRBACHH leverages hybrid hierar-
chy for roles and purposes to provide more flexibility and overcome a weakness
of PuRBACH. Note that the semantics of hybrid hierarchy for purposes slightly
differs from their semantic for roles in the way that purposes can be asserted
instead of being activated.

One of the strengths of role hierarchy in RBAC is support for the principle of
least privilege: a user is able to activate a junior role, which holds less permissions
compared to a senior role, in the case she does not need the added permissions
of the senior role for her current use of the system. PuRBACH model enables
activating more junior roles in role hierarchy, and similarly asserting more general
purposes in purpose hierarchy. Although purpose hierarchies are very similar to

role hierarchies, asserting a more general purposes does not necessarily mean
acquiring less privilege as it may even result in more privilege; if a user asserts
a more general purpose than what she really intended for, she may have less
restrictions for accessing some privacy-sensitive data. For instance, consider the
previous example depicted in Figure 2. As mentioned before, if a sale employee
asserts purpose inform order problem to access a customer’s phone number, she
is only allowed if the customer has consented before and it is daytime. But
leveraging the hierarchical relation inform order problem ≥prp inform customer,
if the employee asserts purpose inform customer, she will be no longer restricted
by the time constraint for accessing the phone number.

As described in previous section, the reason behind the possibility of such
incident is that purpose hierarchies in our model can be either permissive or
constraining, while role hierarchies in RBAC are permissive in nature. We can
leverage the notion of hybrid hierarchies to overcome this issue, by allowing
inheritance-only relation whenever we want to restrict the user’s purpose asser-
tions. For instance in the example above, if the relation between inform customer
and inform order shipment is chosen as I-relation, user assigned to purpose in-
form order shipment will not be able to assert inform customer anymore, while
the constraint for its corresponding assignment is still applied.

PuRBACHH redefines role and purpose hierarchies in RBACH with the no-
tion of hybrid hierarchies (permission hierarchy remains unchanged) as follows:

– RHH; hybrid hierarchy over roles includes three relations defined in ROLES:
inheritance denoted as ≥rI , activation denoted as ≥rA, and inheritance-
activation denoted as ≥rIA. Note that r1 ≥rIA r2 ⇔ r1 ≥rI r2 ∧ r1 ≥rA r2.

– PRPHH; hybrid hierarchy over purposes includes three relations defined
in PRPS: inheritance denoted as ≥prpI , assertion denoted as ≥prpA, and
inheritance-assertion denoted as ≥prpIA. Note that prp1 ≥prpIA prp2 ⇔
prp1 ≥prpI prp2 ∧ prp1 ≥prpA prp2.

The definitions for functions capturing runtime authorizations in PuRBACH
are applicable to PuRBACHH considering a few changes:

– In definition of AuthRoles, ≥r should be substituted with ≥rA.
– In definition of AuthPurposes, ≥r and ≥prp should be substituted with ≥rI

and ≥prpA, respectively.
– In definition of CAuthPurposePermissions, ≥prp should be substituted

with ≥prpI .

3 Condition Model

Conditions that bind to permission assignments in PuRBAC have an important
role in configuring access control policy to truly reflect the required privacy
requirement. In Section 2, we defined a condition as a boolean predicate where
the truth value affects the validity of corresponding permission assignment. In
this section, we provide a more detailed approach for conditions defining their
components and semantics.

Conditions can impose constraints on the assignment validity by the means
of checking some data related to the accessed permission or any other access
contexts. For instance, the consent of a data owner may be required to grant
an access to the data. Also some data accesses may require that certain actions
be properly pursued by the system or user before the access can be granted,
referred to as pre-obligations. For instance, the policy may require the system
to re-authenticate the user before authorizing access to highly privacy sensi-
tive data such as social security numbers. In such a situation, if the user fails
to re-authenticate properly the permission can not be granted. Some other ac-
tions may be required to be carried out based on a data access after an access
is granted, referred to as post-obligations. For example a data retention policy
would schedule deletion of a data item in one year after its creation in data stor-
age. Therefore, we model three types of conditions: constraints, pre-obligations,
and post-obligations.

In order to provide the expected expressiveness for conditions, we define
conditional constraints, pre-obligations, and post-obligations as follows:

– CNDS; conditions include conditional constraints, pre-obligations, and post-
obligations. Formally: CNDS = {P(PRDS × CONS) ∪ P(PRDS ×
PREOBGS) ∪ P(PRDS × POSTOBGS)}, where
• PRDS and CONS are sets of boolean predicates based on data variables

in the system, representing general conditions and constraints, respec-
tively.

• PREOBGS is the set of all valid pre-obligations in the system. Pre-
obligations may require input parameters.

• POSTOBGS is the set of all valid post-obligations in the system. Post-
obligations may require input parameters.

Semantically, constraints only query for data and provide a boolean result.
Pre-obligations require the system or user to exercise some actions that may in-
fluence the access, while returning a boolean value that determines their proper
enforcement. If any pre-obligation is not enforced properly, the access should
be denied (and probably already-enforced pre-obligations be rollbacked). Post-
obligations are enforced after the access is exercised. A special conditional predi-
cate is available for post-obligations: AccessGranted, that can be used to control
the dependency of enforcement of post-obligations on the result of access autho-
rization. Figure 3 depicts how access control enforcement function (AEF) does
the condition enforcement. The steps showing determination of constraints and
obligations check corresponding conditional predicates to decide which of them
are applicable. Note that some post-obligations can be enforced even when the
access is denied. Generally if a post-obligation does not check the conditional
predicate AccessGranted, it will be enforced regardless of access decision. For
instance, a post-obligation can log access attempt to an highly sensitive data
item for operator review.

Different types of conditions can be defined and enforced based on our con-
dition model. In the following examples d and a refer to the data instance being
accessed and action on the data, respectively. Note that we use CN , PO, and

Constraints
Satisfied?

Enforce Pre-
obligations

All pre-obligations
enforced properly?

Determine
Constraints

Determine
Pre-

obligations

Determine
Post-

obligations
Grant Access

Deny
Access

Enforce
Post-

obligations

No

Yes

Yes

No

Fig. 3. Flowchart of Condition Enforcement by AEF

OP for denoting conditional constraints, pre-obligations, and post-obligations,
respectively. A category of important constraints in privacy policies is consent
of data owner for collection or use of data. Such a constraint can simply be ex-
pressed as CN(True,OwnerConsent(d, a) = True), where d and a refer to the
data instance being accessed and type of access, respectively. However, in some
situations a constraint is not applied for all instances of a data type. For example,
Children Online Privacy Protection Act of 1998 (COPPA) [14] describes policies
that are applicable to collection and processing of information about children
under age 13. Here, there is a need to define conditional constraint whose con-
dition is OwnerAge(d) < 13. In the case of COPPA, the consent of collection
and use of data should be provided by a child’s parent; therefore, the conditional
constraint becomes CN(OwnerAge(d) < 13, ParentalConsent(d, a) = True).
Another category of conditions is data accuracy control which can be enforced
through pre-obligations. For instance, suppose that a customer support wants to
inform a buyer about the actual credit card that is billed, in response to an in-
quiry by the buyer. For such a purpose she needs only to verify the last 4 digits of
the customer’s credit card numbers. Such an accuracy can be controlled using an
always-true pre-obligation on the permission assignment of accessing the credit
card data field: PO(True, F ilterStringData(Length(d)−4, Length(d))). In an-
other example, suppose a child under age 13 wants to register in a Web site. The
creation of a record for such a child fails in the first run because of a constraint
similar to one mentioned previously. In such a situation, a post-obligation may
seek parental consent if it hasn’t been sought before: OP (¬AccessGranted ∧
ParentConsent = NA, AcquireParentalConsent(d, a)). Other typical post-
obligations for privacy policies are logging access or notifying some party such
as the data owner about the access occurrence. Such post-obligations may be
chosen to be enforced regardless of the access decision. The mentioned condi-
tions do not constitute a complete list for possible conditions, but show a good
variety of conditions for privacy control addressable by our model.

Besides support for different conditions, our model also supports aggregation
of conditions. As mentioned in the previous section, in the case of PuRBACH
and PuRBACHH models, that multiple assignments may apply to an access
request, all the bound conditions should be aggregated and applied to the access.
Since conditions are sets of conditional constraint or obligations, aggregation of
multiple conditions is the union of those conditions. For instance, consider the
following conditions:

c1 = {CN(True,OwnerConsent(d, a)),
OP (AccessGranted, SendOwnerNotification())}

c2 = {PO(True,GetUserAcknowledgement()),
OP (Owner(d) ∈MonitoredOwners, LogAccess())}

c3 = {CN(True,OwnerConsent(d, a)),
PO(True,GetUserAcknowledgement()),
OP (Owner(d) ∈MonitoredOwners, LogAccess()),
OP (AccessGranted, SendOwnerNotification()}

Here, condition c1 includes a constraint (checking owner’s consent) and a post-
obligation (sending a notification to the data owner if access is granted). Condi-
tion c2 imposes a pre-obligation (getting acknowledgement from user for access-
ing data) and a post-obligation (logging the access if the data owner is being
monitored). Condition c3 is the union of conditions c1 and c2, which includes all
the mentioned constraints and obligations.

As conditions include obligations in addition to constraints, the unified set
of conditions can result in inconsistencies or conflicts between obligations for
enforcement. Moreover, enforcement of individual obligations may have incon-
sistencies or conflicts with the ongoing obligations in the system. In the case
of two inconsistent obligations, the inconsistency can be resolved by overriding
the one that can subsume the other. For instance, if an access results to a data
retention post-obligation of one month, and there already exists a data reten-
tion obligation for one year, the one-month retention is enforced, discarding the
other. But in the case of conflict, where none of the obligations can subsume the
other, the system needs a meta-policy according to which it can determine which
obligation should override, or possibly the access is being denied if no resolution
is possible.

4 Analysis and Discussion

In this section we discuss strengths of the proposed model in Section 2 and some
related issues.

4.1 Privacy Policy Management

Many privacy policies, particularly privacy acts and regulations, provide manda-
tory requirements for organizations to comply with. Those policies usually do

not capture the internal system entities. Instead, they are focused on purposes
and conditions that private data may be used. Therefore, the assignment of per-
missions on privacy-sensitive data to purposes along with the constraints can
satisfactory model those privacy requirements; while authorization of roles for
proper purposes complements the privacy policy.

The separation mentioned enables some independence for administration of
the two assignment relations. Permission assignment should strictly consider
privacy regulations, for which the corresponding administrator should be com-
pletely informed and have clear understanding. However the latter part, purpose
to role assignment, is more of an organizational issue and depend on roles’ re-
sponsibilities, which possibly needs more modification over time compared to the
former part. Therefore, we decrease the possibility of inadvertent manipulation
of assignments privacy permission in the process of management of authorized
organizational responsibilities and activities. Also, more flexibility for distributed
administration is provided.

For instance, for the purpose shipping order in a company multiple permis-
sions may be assigned to such as read customer’s shipping address information.
Suppose that shipping is done by sales department for some time, and hence
purpose shipping order is assigned to role sale. Later if due to changes in orga-
nizational structure, shipment task is moved to the new shipping department,
we need to change only the assignment of the purpose shipping order to the role
sale to the new role shipping ; there is no need to redefine the privacy permissions
required for the purpose of shipping orders. In approaches such as P-RBAC [4],
such a change requires manipulation of every privacy permission that is related
to the purpose of shipping order.

In addition to the separation fact, a numerical comparison of possible assign-
ments between our model and P-RBAC [4] can show the complexity differences.
Note that we usually use term assignment for relating a pair of entities, and rule
for relating multiple entities together (tuples). Therefore, assignments can also
be considered as a tuple with two entities. The more the number of the rules a
model deal with, the more complex it is to administer. For this comparison we
exclude conditions (constraints and obligations), since they are present in both
models and have similar influence on complexity. Suppose there are n roles, p
purposes, and m permissions defined in a system. There can be as many as
n×m× p different authorization rules for roles in P-RBAC; while in our model
we can have at most p× n assignments in PRPA (purpose to role assignments)
and n × p assignments in PRMA (permission to purpose assignments), which
sum up to (n + m)× p assignments. Considering that in practice the number of
permissions (m) is much higher than the number of roles (n) in a system, our
model can have about a factor of n less possible assignments, and hence is much
less complex to administer.

4.2 Expressiveness Power

As described in the previous subsection, PuRBAC decreases the policy complex-
ity by avoiding rules involving multiple components, namely role, purpose, and

permission. Surely, such simplification comes at the expense of some loss in ex-
pressive power. The problem arises if we have a policy that different roles with
the same purpose can have different accesses. Consider the following scenario
in a health-care institute. The role senior researcher can access complete profile
of specific patients with the purpose research, with previous consent though.
However, the role research assistant with the same purpose has only access to
a limited profile. We believe that if purposes are defined fine-grained enough in
the system, there would not be an expression problem most of the time. For
the mentioned scenario, although both accesses have the purpose research at
high level, they can be categorized into purposes complete research and limited
research.

In the worst case, if fine-grained purposes are not definable, PuRBAC can
cope with the issue by allowing predicates based on role in the conditional con-
straints on permission to purpose assignment. However, the use of such a role-
based constraints should be restricted to special situations to keep the decreased-
complexity advantage.

4.3 Control over Purpose

Access control models that support privacy policies usually require the user
to indicate the purpose of accessing information as one of the access request
parameters. The indicated purpose is then used to check for compliance with
policies in the system. The drawback in existing models is that users can indi-
cate any purpose for information access without any restriction. Although the
indicated purpose is checked against the policy, but that freedom makes system
very vulnerable to misuse of data for purposes not really related to a role. That
can happen with the existence of a simple error in the policy rules, that is not
unlikely in practice considering the presence of role and purpose hierarchies.

In our model, the user cannot use data for a purpose without first having
been authorized for that purpose. Such authorization is possible only for those
purposes assigned to the user’s currently active roles; and those assignment come
from the fact that any role has a restricted set of responsibilities and function-
alities which will define purposes for privacy-sensitive information access.

4.4 Role vs. Purpose

As mentioned in Section 1, notions of purpose and role can be very similar.
The closeness and similarities between them tend to make it difficult to make
distinction in some situations. For example, order processing in a store can be
modeled as a specific role compared to widely scoped roles (as described in [15]),
as well as a purpose for accessing customer record (as described in [11]). We
take advantage of this tight relation to justify their direct assignment in our
model, and argue against considering them both as (different type of) roles.
Roles are usually derived based on organizational positions and responsibilities.
But purposes have no relation to organizational structure, but to functions.

Someone may argue that the role entity itself can support both notions of
role and purpose in our model, by having organizational and functional roles,
respectively. In such an approach, the model needs to deal differently with those
two role types: allowing assignment of permissions only to functional roles, in-
herence of functional roles by organizational roles, and assignment of users only
to organizational roles. Moreover, a major difference of authorization model of
PuRBAC, compared to RBAC, is asserting the purpose as part of access request.
That feature is not supported in standard RBAC, as access check is only based
on session and requested permission [10]. Therefore, there is a need to change the
access checking function in the standard to make it aware of the access purpose.
Considering the mentioned differences and also the administration independence
for role and purpose hierarchies in our model, we believe that there is enough
motivation to consider purpose as a separate entity from role.

4.5 Sticky Policies

A very flexible approach for privacy policies would be the sticky policy paradigm
[16]. In that approach, policies are defined and maintained for each data instance.
Therefore, privacy policies can be different for different instances of the same
data type. Although quite promising, we argue that it is less probable to be
followed by organizations. The main drawback is that the organization would
loose its centralized control over access control policies once the policy is stuck
to the data. That is not preferred since the access control policy may require
changes due to revision of high-level policies, or frequent improvement of the
access control policy itself. Moreover, the storage and processing of access control
policies will be very expensive in the case of using sticky policy approach.

5 Related Work

Enforcement of privacy policies have been studied by several researchers. Kar-
joth et al. propose Enterprise Privacy Architecture (EPA) as a methodology
for enterprises to provide privacy-enabled service to their customers [17]. In
[2], Powers et al. investigate privacy concerns from organizations’ point of view
and existing technologies, and describe an approach for enterprise-wide privacy
management. They suggest expressing privacy policy in terms of privacy rules
comprising of data type, operation on it, data user, purpose of data access, con-
dition that restricts that access, and obligatory actions taken by the user when
she is authorized. The Platform for Enterprise Privacy Practices (E-P3P) policy
language, proposed in [5], contains authorization rules. In addition to mentioned
components of the privacy policy, each authorization rule in E-P3P contains a
parameter that indicates if the rule is either positive or negative authorization,
and a precedence value. Tree hierarchies for data categories, users, and purposes
are also considered. Another similar work has been done by Karjoth et al. that
extends Jajodia’s Authorization Specification Language (ASL) [18], to include
obligations and user consent [11]. They also discuss a solution to automatically

translate inner-enterprise privacy policy stated using E-P3P to publishable P3P
policies for customers [19]. The language has been formalized and refined to form
IBM Enterprise Privacy Authorization Language (EPAL) [20].

Ni et al. propose P-RBAC [4], a privacy-aware role-based access control
model, which incorporates privacy policies into RBAC [3]. They encapsulate
data, action, purpose, condition, and obligation as privacy data permission. A
permission assignment in P-RBAC is an assignment of a privacy data permission
to a role (equivalent to data user in [2]). Also, more complex conditions have
been considered in a conditional version of P-RBAC [21]. In previous sections,
especially Section 4, we described and analyzed the advantages of our approach
to modeling purposes compared to P-RBAC. From condition model perspec-
tive, compared to P-RBAC the support of conditional constraint and obligations
in our model enables more concise privacy policy definition. P-RBAC requires
specifying explicitly all the conditions when a privacy-sensitive data can be ac-
cessed (the notion of condition in P-RBAC is close to constraint in our model).
However, conditional constraints in our model allows enforcement of constraints
on permissions only when some conditional predicates are met. P-RBAC also
lacks clear semantics for enforcement of obligations; our model provides clear
semantics for the enforcement process flow of constraints, pre-obligation, and
post-obligations. Ni et al. have proposed an obligation model extension for P-
RBAC very recently, which includes the notion of conditional obligation (but
not conditional constraints), and deals with temporal obligations and obligation
dominance [22].

Byun et al. address the notion of purpose-based access control [12], seek-
ing compliance between intended (allowed or prohibited) purposes defined for
data and access purposes requested by users at runtime. The strength of their
approach is dealing with purpose in complex hierarchical data management sys-
tems. However, the approach seems too complicated to be used as a general
purpose access control model.

6 Conclusions

We proposed purpose-aware role-based access control (PuRBAC) model as a nat-
ural RBAC extension to include privacy policies. In PuRBAC, purpose is defined
as an intermediary entity between role and permission. Users can only exercise
permissions assigned to an asserted purpose, which itself should be authorized
through assignment to the user’s active roles. Also, assignments of permissions
to purposes are bound with conditions that constrain the assignment validity
or impose obligations. We also defined a general model of conditions, provid-
ing the enforcement semantics for conditional constraints, pre-obligations, and
post-obligations.

The introduction of purpose as a separate high-level entity in RBAC re-
quires further analysis of its impact on other aspects of RBAC paradigm such
as separation of duty constraints, policy administration model, etc. Moreover,
the assertion of purpose in the access control process needs to be studied in

more detail from usability and accountability perspectives. The ultimate goal
might be to enable the system intelligently identify the purpose of data access
according to the user’s tasks, while ensuring the user accountability.

Acknowledgements. This research has been supported by the US National
Science Foundation award IIS-0545912. We would like to thank the anonymous
reviewers for their helpful comments.

References

1. Antón, A.I., Bertino, E., Li, N., Yu, T.: A roadmap for comprehensive online
privacy policy management. Communications of the ACM 50(7) (2007) 109–116

2. Powers, C., Ashley, P., Schunter, M.: Privacy promises, access control, and privacy
management: Enforcing privacy throughout an enterprise by extending access con-
trol. In: Proc. 3rd International Symposium on Electronic Commerce. (18-19 Oct.
2002) 13–21

3. Sandhu, R.S., Coyne, E.J., Feinstein, H.L., Youman, C.E.: Role-based access con-
trol models. IEEE Computer 29(2) (1996) 38–47

4. Ni, Q., Trombetta, A., Bertino, E., Lobo, J.: Privacy-aware role based access
control. In: Proc. 12th ACM symposium on Access control models and technologies,
ACM Press (2007) 41–50

5. Ashley, P., Hada, S., Karjoth, G., Schunter, M.: E-P3P privacy policies and privacy
authorization. In: Proc. ACM workshop on Privacy in the Electronic Society, ACM
(2002) 103–109

6. Sandhu, R.S., Samarati, P.: Access control: Principles and practice. IEEE Com-
munications Magazine 32(9) (1994) 40–48

7. Cranor, L., Langheinrich, M., Marchiori, M., Presler-Marshall, M., Reagle, J.: The
platform for privacy preferences 1.0 specification. Technical report, W3C (2002)

8. OECD: Oecd guidelines on the protection of privacy
and transborder flows of personal data. Available at
http://www.oecd.org/document/18/0,3343,en 2649 34255 1815186 1 1 1 1,00.html
(1980)

9. Joshi, J.B.D., Bertino, E., Ghafoor, A., Zhang, Y.: Formal foundations for hybrid
hierarchies in gtrbac. ACM Transactions on Information and System Security
10(4) (2008) 1–39

10. Ferraiolo, D., Kuhn, D.R., Chandramouli, R.: Role-based access control. Artech
House computer security series. Artech House, Boston (2003)

11. Karjoth, G., Schunter, M.: A privacy policy model for enterprises. In: Proc. 15th
IEEE Computer Security Foundations Workshop. (24-26 June 2002) 271–281

12. Byun, J.W., Bertino, E., Li, N.: Purpose based access control of complex data for
privacy protection. In: Proc. 10th ACM symposium on Access control models and
technologies, ACM Press (2005) 102–110

13. Joshi, J., Bertino, E., Ghafoor, A.: Hybrid role hierarchy for generalized temporal
role based access control model. In: Proc. 26th Annual International Computer
Software and Applications Conference (COMPSAC). (26-29 Aug. 2002) 951–956

14. FTC: Children’s online privacy protection act of 1998 (coppa). Avialable at
http://www.ftc.gov/ogc/coppa1.htm (1998)

15. Samarati, P., De Capitani di Vimercati, S.: Access control: Policies, models, and
mechanisms. In Focardi, R., Gorrieri, R., eds.: Proc. Foundations of Security Anal-
ysis and Design (FOSAD). Volume 2171 of Lecture Notes in Computer Science.,
Springer-Verlag (2001) 137–196

16. Karjoth, G., Schunter, M., Waidner, M.: Platform for enterprise privacy prac-
tices: Privacy-enabled management of customer data. In: Proc. 2nd International
Workshop on Privacy Enhancing Technologies. Volume 2482 of Lecture Notes in
Computer Science., Springer (2002) 69–84

17. Karjoth, G., Schunter, M., Waidner, M.: Privacy-enabled services for enterprises.
In: Proc. 13th International Workshop on Database and Expert Systems Applica-
tions. (2-6 Sept. 2002) 483–487

18. Jajodia, S., Samarati, P., Sapino, M.L., Subrahmanian, V.S.: Flexible support for
multiple access control policies. ACM Transactions on Database Systems 26(2)
(2001) 214–260

19. Karjoth, G., Schunter, M., Van Herreweghen, E.: Translating privacy practices
into privacy promises: how to promise what you can keep. In: Proc. 4th IEEE
International Workshop on Policies for Distributed Systems and Networks. (4-6
June 2003) 135–146

20. IBM: The enterprise privacy authorization language. Available at
http://www.zurich.ibm.com/security/enterprise-privacy/epal/

21. Ni, Q., Lin, D., Bertino, E., Lobo, J.: Conditional privacy-aware role based access
control. In: Proc. 12th European Symposium On Research In Computer Security.
Volume 4734 of Lecture Notes in Computer Science., Springer (September 24-26
2007) 72–89

22. Ni, Q., Bertino, E., Lobo, J.: An obligation model bridging access control policies
and privacy policies. In: Proc. 13th ACM symposium on Access control models
and technologies, ACM (2008) 133–142

