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Abstract—A social network is a collection of social entities
and the relations among them. Collection and sharing of such
network data for analysis raise significant privacy concerns
for the involved individuals, especially when human users are
involved. To address such privacy concerns, several techniques,
such as k-anonymity based approaches, have been proposed in the
literature. However, such approaches introduce a large amount
of distortion to the original social network graphs, thus raising
serious questions about their utility for useful social network
analysis. Consequently, these techniques may never be applied
in practice. In this paper, we emphasize the use of network
structural semantics in the social network analysis theory to
address this problem. We propose an approach for enhancing
anonymization techniques that preserves the structural semantics
of the original social network by using the notion of roles and
positions. We present experimental results that demonstrate that
our approach can significantly help in preserving graph and
social network theoretic properties of the original social networks,
and hence improve utility of the anonymized data.

I. INTRODUCTION

Social networks have increasingly attracted interest from
different research communities such as academia, business,
and even intelligence agencies. The focus of research on social
networks is generally to identify structural properties and
patterns in the data depending on the application of interest.
With the advent of online social networks in recent years,
while capturing and recording social interactions is becoming
easier the concerns about the privacy of the individual users
captured in such social networks also grow significantly.
Such privacy concerns have direct influence on data handling
practices and can become a significant burden on potentially
fruitful collaboration and data sharing among organizations.

In order to reduce the risk of privacy violations by the expo-
sure of privacy-sensitive information to unauthorized entities,
it is important to anonymize the network data. Recent work
on social network analysis show that naive anonymization of
social network datasets such as simply removing personally
identifiable information (PII) associated with the nodes of a
network is not sufficient to fully preserve privacy [1][2][3].
Based on the topological structure of a network an adversary
may be able to identify certain nodes by leveraging external
background information that may be publicly available, e.g.,
over the Internet.

To cope with this problem, several researchers have pro-
posed various anonymization techniques for social networks
that can be broadly categorized into perturbation and gener-
alization approaches. In a perturbation approach, the struc-
ture of the original network is slightly modified, usually by
insertion/deletion of edges, to achieve a certain desired level
of anonymity. The notion of k-anonymity has been primarily
adopted from relational anonymization approaches for this
purpose [4]. Alternatively, generalization approaches partition
a social network into groups of nodes and replace them with
hyper nodes; further, these methods only report the connectiv-
ity among hyper nodes and some associated properties such
as the number of nodes and links within a hyper node.

Recent observations show that both these approaches
severely suffer from a same problem: if data is anonymized
up to an acceptable degree the results become highly distorted
compared to the original networks, thus, severely affecting
their utility for analysis purposes [3]. In order to use a social
network anonymized by a generalization method it is needed
to be reconstructed by randomly generating sub-structures
in place of hyper nodes based on the reported hyper node
properties in the results. Modifying links in the perturbation
methods to fulfill the anonymization criteria (e.g., degree k-
anonymity) also strongly affects the structure of the network.
For instance, a node with a low centrality value may become
of high centrality because of the introduction of many fake
links to other nodes. Such a change can make any judgement
made on the basis of the centrality of the nodes in the network
invalid. The key problem related to these methods is that they
usually focus on achieving the anonymization objectives and
disregard the crucial need to preserve the original structural
semantics of the network; hence, the outcome is a significant
decrease in the utility of the results.

In this paper, we consider such structural semantics in
the anonymization process by using concepts from the social
network analysis theory [5]. In particular, we leverage the
notion of structural roles and positions as the key entities to
enhance existing perturbation techniques so that the original
structural semantics are preserved. As we demonstrate in
this paper, this approach shows significant improvements in
maintaining the structural measurements of the social networks
such as network diameter, betweenness centrality, clustering



a 

b c d 

e f g h i 

Fig. 1: A Social Network of Managers

coefficient, etc., all of which have direct effect on the useful-
ness of the anonymization results. The key contributions of
the proposed work are as follows.
• We provide a formal approach towards preserving role

structure in social networks during perturbation. To the
best of our knowledge, this is the first attempt in the
literature that leverages such network theoretic properties
to lessen the negative effects of perturbation on the
structure of a social network.

• Based on the proposed formalism, we outline an enhance-
ment approach that can be easily applied to most of the
key perturbation techniques.

• We present experiments on enhancing two specific al-
gorithms proposed in the literature and demonstrate the
improvements on the utility of the anonymized networks.
The results show very encouraging results on preserving
structural properties of the social network, compared to
the original version of the algorithms.

The rest of the paper is organized as follows. In Section
II, we present preliminary concepts and techniques for our
approach. In particular, we define the notion of roles and
positions in a social network and present the conceptual
equivalency approaches to classify actors. Then, we review
an algorithm to identify such equivalency classes, and present
required modification to adapt it for undirected social net-
works. We also outline a generalized perturbation algorithm
that is later used as reference to apply the enhancements.
In Section III, we propose a formal approach to preserve
role structure during social network perturbation, and show
how such an approach can be used to enhance a typical
perturbation technique based on the algorithm outlined in
Section II. We empirically evaluate enhancement of structural
network properties in two major perturbation techniques by
using our approach in Section IV. In Section V, we review
the related literature, and subsequently conclude the paper in
Section VI.

II. PRELIMINARIES

A. Roles and Equivalence in Social Networks

Roles and positions are very helpful in representing the
structure of a social network. Figure 1 shows an example
social network of managers in a small company in which
vertices represent managers and edges show direct contact
among them (adopted from [5]): manager a has direct contact

with managers b, c, and d, manager b has direct contact with
managers e and f, etc. We can intuitively identify three roles
in this social network: top manager (a), middle manager (b,
c, and d), and line manager (e, f, g, h, and i). Roles can
indicate many structural properties of social networks such as
centrality measures. In our example, the actors with the middle
manager role have a lower centrality than the actor with the
top manager role, and higher centrality than the actors with
the line manager role.

There are three major approaches to classify actors in a net-
work into their social positions based on the relations among
them. Each approach defines graph theoretic properties that
sets of actors must have in order to be considered equivalent
in terms of roles they play. The equivalence classes formed
this way represent positions [5][6]. Structural equivalence
is the simplest approach, which requires each two actors in
the same class to have identical ties with identical other
actors. For instance, in Figure 1, e and f are structurally
equivalent, so are h and i; no other pair of structurally
equivalent actors exists. The set of equivalency classes is
{{a}, {b}, {c}, {d}, {e, f}, {g}, {h, i}}. Automorphic equiva-
lence relaxes the structural equivalence requirement by requir-
ing actors in the same position to have identical ties with
different sets of actors that play the same role in relation to that
position. The set of automorphic equivalency classes in Figure
1 is {{a}, {b, d}, {c}, {e, f, h, i}, {g}}. Regular equivalence is
the least restrictive approach. Actors are regularly equivalent if
they have same kind of relations with actors that are also reg-
ularly equivalent. This results in {{a}, {b, c, d}, {e, f, g, h, i}}
as the set of equivalency classes of Figure 1.

The above three approaches were represented in decreasing
order of restrictiveness. The less restrictive the approach is, the
more populated the equivalency classes become. In this paper,
we use the regular equivalence, which is the least restrictive
concept. This makes the perturbation enhancement process that
we propose in this paper more flexible and effective.

B. Identifying Roles Using CATREGE

CATREGE [7] is a popular algorithm for computing regular
equivalence of categorical data that also provides an intuitive
role similarity measure. Although the key assumption in
categorical network data is the existence of different edge
types, CATREGE can also work perfectly for non-categorical
data (that is the concern of this paper). CATREGE requires
as input a multiplex adjacency matrix of the target network.
The values of such a matrix are categorical codes that index
each unique combination of input relations (and their inverses)
that connect each pair of nodes. For instance, for a single
directed relation R, the possible values are 1 (if iRj but not
jRi), 2 (if jRi but not iRj), 3 (if iRj and jRi), and 0 (if
not iRj and not jRi). Given a multiplex matrix, CATREGE
iteratively verifies that pairs of nodes that were equivalent
in the previous iteration have the same type of multiplex
relations with their neighbors. If not, they are marked as non-
equivalent. All actors are assumed equivalent prior to the first
iteration. The procedure is repeated until there is no change in
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(e) Iteration 4

v1 v2 v3 v4 v5 v6 v7 v8 v9 v10

v1 5 1 0 1 2 2 2 2 0 0
v2 1 5 0 3 1 1 1 1 0 0
v3 0 0 5 0 0 0 0 0 4 4
v4 1 3 0 5 1 1 1 1 0 0
v5 2 1 0 1 5 5 2 2 0 0
v6 2 1 0 1 5 5 2 2 0 0
v7 2 1 0 1 2 2 5 5 0 0
v8 2 1 0 1 2 2 5 5 0 0
v9 0 0 4 0 0 0 0 0 5 5
v10 0 0 4 0 0 0 0 0 5 5
(f) (Non-normalized) Similarity Matrix

Partition Color Codes: 1=Yellow, 2=Green, 3=Red, 4=Purple, 5=Pink, 6=White, 7=Orange.

Fig. 2: A Sample Execution of the Modified CATREGE Algorithm

equivalencies compared to the previous iteration. The extent
of regular equivalence between two actors can be obtained by
counting the number of iterations it takes them to split into
different partitions. This value can be normalized by dividing
it by the total number of iterations. The result is a similarity
measure in the range [0, 1].

In this paper, we deal with non-categorical (single-type
edge), undirected social networks in this paper. Employing
CATREGE for such social networks results into an uninterest-
ing regular equivalence: all the actors will be classified in the
same equivalency class. This is because only one bundle of
relations exists here, and therefore the multiplex matrix would
only constitute of zeros and ones. In order to tackle this issue,
instead of starting with the full partition that has all the actors
in the same equivalence class, we initialize the algorithm with
two partitions: nodes with only one neighbor are grouped into
one partition, separated from the rest of the nodes in the other
partition. In other words, we consider the perimeter nodes in
a network more regularly equivalent to each other, and less to
the others that fall inside the network. Note that each iteration
of the CATREGE algorithm will further classify the actors in
each of the two initial partitions.

Figure 2 illustrate the execution of our modified version
of CATREGE on a small network. In each iteration, vertices
within the same partition are marked with the same color

(number). Note that partition colors (numbers) are just to
indicate equivalent actors in one iteration and do not carry
any other semantics. In the initial state (Figure 2a), vertices v3,
v9, and v10 are colored yellow, and all the others are colored
green. Figure 2b illustrates the resultant partitions after the
first iteration of CATREGE. Since in the previous step, the
yellow vertices were all connected to the green vertices, they
will not separate in this iteration. However, the previously
green vertices become divided into two partitions: the ones
that were only connected to greens, and the ones that were
connected to both yellows and greens. If we continue the
procedure, the final result is obtained after iteration 4 (Figure
2e); further iterations will not change the partitions. Figure
2f shows the (non-normalized) extent of regular equivalence
between pairs of actors. For instance, the similarity value for
v1 and v2 is 1, because they were separated after the first
iteration. Analogously, the similarity value for v5 and v7 is
2, because they were separated after the second iteration. If
two vertices are eventually remain equivalent their similarity
will be maximum number of steps (e.g., 5 for v5 and v6). A
normalized version of this similarity matrix can be obtained
by dividing the elements by 5.

C. Overview of Perturbation Techniques
In this section, we provide an abstract overview of the

perturbation algorithms for social network anonymization.



Later in Section III, we present the details of the proposed
enhancements to these generalized algorithms towards pre-
serving structural semantics in the anonymized data. Pertur-
bation techniques output a graph with modified edge struc-
ture compared to the original one, which satisfies a specific
anonymization criteria. These techniques typically follow a
greedy iterative approach, which can be abstractly expressed
as in Algorithm 1. In each iteration, Algorithm 1 selects an

Algorithm 1 Iterative Edge Perturbation Algorithm

1: Start from the original graph
2: repeat
3: if an edge should be inserted then
4: Choose non-existent edge {u, v} to be inserted
5: Insert {u, v}
6: end if
7: if an edge should be deleted then
8: Choose existing edge {u, v} to be deleted
9: Delete {u, v}

10: end if
11: until anonymization criteria is achieved

edge to be inserted/deleted using a heuristic which depends on
the specific technique. The iterations continue until the graph
is considered anonymized according to the anonymization
criteria. The algorithm aborts if the anonymization criteria
cannot be achieved. Different anonymization techniques have
different anonymization criteria. In the random perturbation
technique [2], the goal is to simply delete m edges randomly
and then insert m random edges. In k-anonymity-based ap-
proaches (e.g., [8], [9], [10], [11]), the goal is, for instance,
to achieve a graph with k-anonymous vertex degrees (such as
Supergraph[8] or Union-Split[10]).

The Greedy Swap algorithm proposed in [8] includes an
optimization phase to select a group of edge changes in the
graph in each iteration, which results in a slightly different
algorithm scheme (see Algorithm 2). The algorithm first cre-

Algorithm 2 The Greedy Swap Algorithm

1: Create an anonymized random social network
2: repeat
3: Select log(|E|) of existing edges randomly
4: for all Pairs of selected edges {u, v} and {u′, v′} do
5: Calculate the gain value considering swapping the

pair either with {u, u′} and {v, v′}, or {u, v′} and
{u′, v}

6: end for
7: Perform the swap with maximum gain (if any)
8: until No edge swap is performed

ates a random anonymized graph based on the k-anonymous
degree sequence of the graph. In each iteration, every pair of
edges in a subset of existing edges is examined to be selected
for a swap. In a swap operation, a pair of edges are replaced
with another pair using the same end nodes. Two swap options

are considered for a pair of edges {{u, v}, {u′, v′}}: either
{{u, u′}, {v, v′}}, or {{u, v′}, {u′, v}}. Such swaps do not
change vertex degrees thus ensuring the already-established
degree k-anonymity. A gain value is calculated for each swap
option, and the swap with maximum (positive) gain is selected.
In [8], the authors calculate the gain value as the increment
of edge overlap (intersection) between the interim and the
original graph. Performing the swap with maximum gain at
each iteration would greedily make the anonymized graph
more structurally similar to the original one.

III. PRESERVING STRUCTURE IN PERTURBATION
TECHNIQUES

In this section, we formally define the notion of roles and
related concepts in the context of undirected social networks;
we adopt some definitions from [12]. Then, we present a
formal approach to preserve the role structure during graph
perturbation. Finally, we extend the algorithms outlined in Sec-
tion II-C, using the proposed structure-preserving approach.

A. Preliminaries

We define a social network as an undirected graph G〈V,E〉,
where the set of vertices V represents the actors in the
network, and the set of edges E ⊆ {{u, v}|u, v ∈ V } represent
the links between actors in V .

Definition 1 (Role Assignment): A role assignment for net-
work G〈V,E〉 is a surjective function Φ : V → R, defined for
every member of V , where R is a set of roles.

A role assignment partitions actors into equivalency classes.
Two actors are considered equivalent if they are assigned the
same role: ∀u, v ∈ V ;u ≡Φ v ⇔ Φ(u) = Φ(v). In other
words, a role assignment is a projection of an equivalence
relation. Of our particular interest is the regular equivalence.
The following definition captures the relations between actors.

Definition 2 (Neighbor Role Set): ΓΦ : V → 2R is a
function that maps an actor in network G〈V,E〉 to the
roles of its neighbors according to role assignment Φ, i.e.,
ΓG

Φ(u) = {Φ(v)|{u, v} ∈ E}.
Recall that regularly equivalent actors (actors that are as-

signed the same role) must have the same kind of relations
with other regularly equivalent actors. A role assignment that
projects a regular equivalence relation is defined as follows.

Definition 3 (Regular Equivalence Role Assignment): A
role assignment Φ : V → R projects a regular equivalence
for actors in G〈V,E〉 if and only if

∀u, v ∈ V,Φ(u) = Φ(v)⇒ ΓΦ(u) = ΓΦ(v).

We refer to this as RE-role assignment in the rest of the
paper. We observe that despite regular equivalence being the
least restrictive approach in identifying positions, synthetic
algorithms for computing it such as CATREGE (which use
no external semantics other than the network structure) result
in very low-populated equivalency classes. However, as we
discuss later, our perturbation enhancement approach relies
highly on the existence of alternatives same-role actors. We
tackle this issue by using the extent of the (dis)similarity



between actors. We abstractly define a dissimilarity measure
for roles as follows.

Definition 4 (Regular Equivalence Role Dissimilarity):
∆Φ : V × V → [0, 1] is a role dissimilarity function for
actors of network G〈V,E〉 corresponding to role assignment
Φ where ∆Φ(u, v) = 0 implies actors u and v have the same
role (Φ(u) = Φ(v)), and ∆Φ(u, v) = 1 implies actors u and
v have completely dissimilar roles.

The actual values of the function can depend on the role
identification scheme used. In this work we use the similarity
measure provided by the CATREGE algorithm (Section II-B),
and subtract it from 1 to obtain the dissimilarity values be-
tween roles. Subsequently, we are interested in a dissimilarity
measure between two sets of roles, based on the dissimilarity
measure we have for individual pairs of roles; we define it as
follows.

Definition 5 (Regular Equivalence Role Set Dissimilarity):
Let S ⊆ R and S′ ⊆ R be two sets of roles. The regular
equivalence dissimilarity between S and S′, written as
Λ(S, S′), is calculated as follows:

Λ(S, S′) =

∑
x∈S

|S′|
√∏

y∈S′ ∆(x,y)

|S| +
∑

y∈S′ |S|
√∏

x∈S ∆(x,y)

|S′|

2

The above formula essentially calculates the (asymmetric)
dissimilarities of S to S′, and S′ to S, and then takes
the average to compute an overall (symmetric) dissimilarity
between S and S′. The dissimilarity of S to S′ (the first
expression in the numerator) is calculated as follows. For every
role x in S, the product of its dissimilarities with all roles in
S′ is calculated, and its |S′|th root is taken. This gives us an
overall dissimilarity value between x and roles in S′. If one
of the roles in S′ is the same as x the result would be zero;
otherwise the dissimilarity values for each will be effective in
the result. The average of all such dissimilarities for all the
roles in S is considered as the dissimilarity of S to S′. The
dissimilarity of S′ to S is calculated in a similar fashion.

B. Formalizing Role Structure Preservation

Our intuition is that preserving the role structure in a net-
work in the anonymization process would essentially preserve
the network structural properties that a social network analyzer
may be looking for in the anonymized network. To be more
specific, our goal is to ensure that an RE-role assignment
in the original network is applicable to its edge-perturbed
version as well. However, modifications to the edge structure
of a network during perturbation can easily thwart this goal.
The following theorem captures a sufficient condition for
preserving an RE-role assignment in the edge perturbation
process.

Theorem 1: Let G′〈V,E′〉 be an edge-perturbed version of
network G〈V,E〉. An RE-role assignment Φ for G is also an
RE-role assignment for G′ if

∀u ∈ V [ΓG′

Φ (u) = ΓG
Φ(u)] (1)

Proof: The proof is straightforwardly implied from Def-
inition 3 and condition (1). For every u and v where Φ(u) =

Φ(v), by Definition 3 we have ΓG
Φ(u) = ΓG

Φ(v). Considering
condition (1) we have ΓG′

Φ (u) = ΓG
Φ(u) = ΓG

Φ(v) = ΓG′

Φ (v),
and hence ΓG′

Φ (u) = ΓG′

Φ (v). This is essentially the sufficient
condition for Φ to be an RE-role assignment for G′.

The above theorem simply states that keeping the neighbor
role sets of actors in a network intact in the anonymization
process will preserve an RE-role assignment. As an edge
perturbation algorithm involves a series of edge insertions/
deletions, the above condition can be further captured with
regards to the set of inserted or deleted edges as in the
following theorem.

Theorem 2: Let G′〈V,E′〉 be an edge-perturbed version of
network G〈V,E〉. An RE-role assignment Φ for G is also an
RE-role assignment for G′ if the following conditions are met

∀{u, v} ∈ Ei ∃{u, v′} ∈ E [Φ(v) = Φ(v′)] (2)
∀{u, v} ∈ Ed ∃{u, v′} ∈ E′ [Φ(v) = Φ(v′)] (3)

where sets Ei = E′\E and Ed = E\E′ represent inserted
and deleted edges, respectively.

Proof: Since the same role assignment Φ is considered
for both G and G′, any difference between ΓG

Φ(u) and ΓG′

Φ (u),
for any actor u, can only be the result of either insertion or
deletion of an edge adjacent to u. For an inserted edge {u, v},
by condition (2) we have ∃{u, v′} ∈ E[Φ(v) = Φ(v′)] and
therefore Φ(v) = Φ(v′) ∈ ΓG

Φ(u), i.e., an inserted edge would
not affect the neighbor role set of an actor. For a deleted edge
〈u, v〉, by condition (3) we have ∃{u, v′} ∈ E′[Φ(v) = Φ(v′)]
and therefore Φ(v) = Φ(v′) ∈ ΓG′

Φ (u), i.e., a deleted edge
would not affect the neighbor role set of an actor. These
suggest

∀u ∈ V [ΓG′

Φ (u) = ΓG
Φ(u)]

which is sufficient condition for Φ to be an RE-role assignment
for G′ according to Theorem 1.

C. Preserving Structure in Iterative Edge Perturbation Algo-
rithms

We use Theorem 2 to extend and enhance the iterative
edge perturbation techniques represented by Algorithm 1 as
follows. After selecting an edge for insertion, the insertion
is performed only if it conforms to condition (2). For this
purpose, line 5 of the algorithm should be replaced with the
following.

if ∃{u, v′} ∈ E [Φ(v) = Φ(v′)] ∧ ∃{u′, v} ∈ E [Φ(u) =
Φ(u′)] then

Insert {u, v}
end if

This checks if there exists vertex v′ in u’s neighborhood with
the same role as v’s, and that there exists vertex u′ in v’s
neighborhood with the same role as u’s. If the checks fail the
insertion decision is ignored. Analogously, a deletion should
be allowed if it conforms to condition (3). As per Theorem
(2), such a modified version of Algorithm 1 will preserve an
RE-role assignment for the graph in each iteration. Therefore,
an RE-role assignment for the original social network graph
will be valid for its final edge-perturbed version.



Although theoretically sound, the above-mentioned condi-
tions may not perform well in practice. The key issue, as
briefly mentioned in Section III-A, is that algorithms such as
CATREGE identify very small number of actors with the same
role. Therefore, when inserting/deleting edge {u, v} there is
a low probability of finding an actor with same role as v’s
in u’s neighborhood and vice versa, which is required by
the above conditions. In order to overcome this limitation,
we use a relaxed version of the conditions in Theorem (2),
by using a threshold on RE-role dissimilarity between roles
instead of checking the exact role match. Algorithm 3 provides
pseudocode for the enhanced version of the iterative edge
perturbation approach. Here, δ ∈ [0, 1] is a constant that
specifies the allowed extent of non-perfect role matching.

Algorithm 3 RE-Enhanced Iterative Edge Perturbation Algo-
rithm

1: Start from the original graph
2: repeat
3: if an edge should be inserted then
4: Choose non-existent edge {u, v} to be inserted
5: Let G〈V,E〉 be the current graph
6: if ∃{u, v′} ∈ E [∆Φ(v, v′) < δ] ∧ ∃{u′, v} ∈

E [∆Φ(u, u′) < δ] then
7: Insert {u, v}
8: end if
9: end if

10: if an edge should be deleted then
11: Choose existing edge {u, v} to be deleted
12: Let G′〈V,E′〉 be the graph after deleting edge {u, v}
13: if ∃{u, v′} ∈ E′ [∆Φ(v, v′) < δ] ∧ ∃{u′, v} ∈

E′ [∆Φ(u, u′) < δ] then
14: Delete {u, v}
15: end if
16: end if
17: until anonymization criteria is achieved

D. Preserving Structure in Greedy Swap Algorithm

As mentioned in Section II-C, the greedy swap algorithm
follows a different overall procedure than most of the other
perturbation approaches. Hence, we need a different approach
to enhance it for preserving role structure. We propose to
substitute the gain function in Algorithm 2 with a new similar-
ity gain measure. Note that in Algorithm 2 the gain measure
captures increase in edge overlap. The new gain function is
intended to measure how much each of the involved vertices
in an edge swap is closer (more similar) to their corresponding
original states in terms of role structure. Recall from Theorem
1 that the neighbor role set of an actor acts as an important
factor in preserving its role. Hence, we consider it as the main
clue for calculating such a similarity gain measurement.

There are four vertices involved in a swap of a pair of
edges {u, v}and{u′, v′}. For vertex u, in the ith iteration
in Algorithm 2, let ΓG

Φ(u) be its neighbor role set in the
original network, ΓGi

Φ (u) be its neighbor role set in the interim

network, and Γ
Gi+1

Φ (u) be its neighbor role set in the next
state of the interim network if the swap is performed. The
objective of optimizing based on role similarity gain is to make
Γ
Gi+1

Φ (u) more similar than ΓGi

Φ (u) to ΓG
Φ(u). We calculate

such a gain by measuring the decrease in dissimilarity between
the neighbor role set in the original and interim networks. Thus
the total role similarity gain of a swap is calculated as follows.∑

x∈{u,v,u′,v′}[Λ(ΓG
Φ(x),ΓGi

Φ (x))− Λ(ΓG
Φ(x),Γ

Gi+1

Φ (x))]

4

IV. EXPERIMENTAL RESULT

A. Setup

We use the following undirected network dataset:
• jazz: a social network of jazz musicians1 (|V | = 198 and
|E| = 5484)

We have implemented the original and the RE-enhanced
versions of the random perturbation and the greedy swap
techniques in Java. We used our version of CATREGE ac-
cording to the descriptions in Section II-B to generate regular
equivalency classes and the corresponding dissimilarity matrix.
These served as extra inputs to the enhanced algorithms. The
algorithms were run for 10 rounds and the average of the
measurements are reported. We measure the following graph
and social network theoretic parameters:
• Edge overlap: the proportion of edges in the anonymized

network that overlap with the original network.
• Diameter: the longest shortest path between any pair of

vertices in the graph.
• (Average) Clustering Coefficient: the proportion of links

between the vertices within one vertex’s neighborhood
to the number of links that could possibly exist between
them.

• (Average) Betweenness Centrality: the proportion of all
shortest paths between that pass through a vertex.

• (Average) Closeness Centrality: the mean shortest path
between a vertex and all other vertices reachable from it.

The closer a perturbed network’s measurements are to the
original network’s, the more preserved its structure becomes,
and hence better is the utility of such an anonymized network.

B. Evaluating Enhancement of The Random Perturbation
Technique

We evaluate the proposed enhancement method for edge
perturbation presented in Section III-C by running the ran-
dom perturbation algorithm [2][13] against its RE-enhanced
version. As suggested in [2], in order to achieve sufficient
anonymization, we have choosen to delete randomly 10%
of the original edges and insert back randomly the same
number of edges. Figure 3 illustrates the results for the jazz
network, tested over different values of δ (the dissimilarity
threshold of considering items to be regularly equivalent).
As seen in Figure 3a, for δ = 0.1 and δ = 0.2, the
resulting RE version fully overlap with the original graph.

1Available at http://deim.urv.cat/∼aarenas/data/welcome.htm
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Fig. 3: Effects of Random Perturbation and Its RE-Enhanced Variation on Structural Properties of Jazz Network (0.1 ≤ δ ≤ 0.6)

This means that the strict thresholding on the enhancement
in fact has allowed only those original edges which were
randomly removed to be added back, which effectively defeats
the anonymization purpose. However, results for δ ≥ 0.3 seem
to indicate that sufficient anonymization has been performed,
i.e., the edge overlap is approximately the same as in the non-
enhanced version. The results show significant improvement in
the network measurements, where our RE-enhanced approach
almost outperforms the original algorithm for all δ values
(Figure 3b-3e). Increasing the value of δ intuitively reduces
the effectiveness of the enhancement procedure, as more non-
perfect perturbations (with regard to role structure) are al-
lowed. Therefore, identifying a suitable threshold that balances
the utility enhancement while keeping the anonymization
property (here, the randomness of inserted edges, which is
measured by edge overlap) is necessary. A value of δ = 0.3
seems to provide such a desirable tradeoff for the jazz dataset.

C. Evaluating Enhancement of The Greedy Swap Technique

We evaluate the performance of our proposed enhancement
for the greedy swap method in Section III-D, as the mea-
surement results of the jazz network for different k values
(the k parameter in k-anonymity) are illustrated in Figure 4.
The edge overlap (Figure 4a) is constantly improved to about
0.8 in the RE-enhanced algorithm compared to 0.6 in the
original algorithm. Note that unlike the random perturbation,

here the anonymization quality is not reflected by the edge
overlap. The other four measured properties (Figure 4b-4e)
are also often considerably closer to the original graph in the
RE-enhanced results than the original greedy swap algorithm
results, regardless of the value of k. Note that the increasing
values of k in these figures is not supposed to correlate with
increase or decrease in property measurements, as different
values of k may impose different structural changes, depending
on the original network structure.

V. RELATED WORK

A. Privacy Risks

Naive anonymization of social networks, i.e., replacing true
node identifiers with random ones has been shown to be inef-
fective, similar to observations on anonymization techniques
in relational database literature [4]. While in the case of
relational data a subset of an entity’s attributes may help with
unique identification (quasi-identifier), in the case of social
networks the connectivity of an entity and its surrounding
entities in the network can be revealing without a need for
explicit data attributes (as in relational data). Backstrom et al.
discovered a family of active/passive attacks that work based
on uniqueness of some small random subgraphs embedded
in a network [1]. In active attacks, an adversary chooses
a target set of users, creates small number of new users,
and then creates a pattern of links among the newly created
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Fig. 4: Effects of Greedy Swap and Its RE-Enhanced Variation on Structural Properties of Jazz Network (5 ≤ k ≤ 25)

users, in the way that it stands out in the naively anonymized
version of the network. In passive attacks, existing users of a
network collude to re-identify certain nodes connected to them,
based on the fact that such a small coalition of friends can
uniquely identify the subgraph of their coalition by exchanging
structural information.

Hay et al. study the extent of node re-identification based
on structural information [2][14]. They define k-candidate
anonymity for a structural query based on the notion of k-
anonymity [4]. Three types of structural queries are considered
as adversary background knowledge. Vertex refinement queries
are iteratively defined and capture degrees of different distant
levels of neighbors around a target. Subgraph queries capture
a less complete structure surrounding a target than vertex
refinement based on known edges to the adversary. Hub
fingerprints express a target’s distance from certain hubs in
the network. Their experiments on real, naively anonymized
social networks show significantly low k-candidate anonymity
for such background knowledge queries.

Narayanan et al. propose a different attack approach that
relies on input of an auxiliary, overlapping, probably publicly
available social network without any assumption about struc-
tural background knowledge of an adversary [3]. Empirical
evaluation of their approach shows that a third of users who
have accounts both on Twitter and Flickr can be re-identified
in the anonymous Twitter graph with a low error rate.

B. Anonymization by Generalization
The non-naive social network anonymization approaches

in the literature can be categorized into two groups: graph
generalization and graph perturbation. In graph generaliza-
tion techniques, the network graph is first partitioned into
subgraphs. Then each subgraph is replaced by a supernode,
and only some structural properties of the subgraph alongside
linkage between clusters are reported.

Hay et al. propose a generalization approach in which
actors are partitioned into groups of size at least k (a k-
anonymity approach), and edge densities within and between
partitions are reported [14]. Their algorithm optimizes fitness
to the original network via a maximum likelihood approach.
Zheleva et al. study re-identification of sensitive links in a
network that may disclose node attributes and nonsensitive
links [15]. Accurate probabilistic model of predicting sensitive
edges based on observing nonsensitive edges is assumed as
adversary background knowledge. The authors consider differ-
ent anonymization approaches including combination of node
attribute anonymization and partial edge removal, and graph
generalization which avoid disclosure of exact nonsensitive
edge structure. Campan et al. also follow a graph generaliza-
tion approach similar to, but more detailed than the approach
in [15]. They provide formal information loss measurement
due to attribute generalization and structural generalization,
and use them to greedily optimize their proposed clustering



anonymization.
In order to use a generalized social network for analysis

purpose, one should sample a random graph in accordance
with the reported generalized properties. Although such a
network may maintain some local structural properties of the
original network, much of high-level graph structure is lost
[10], which impacts negatively the utility of results.

C. Anonymization by Perturbation

In graph perturbation techniques, the network graph is
(slightly) modified to meet desired privacy requirements. This
is usually carried out by inserting and/or deleting graph edges.
Although, theoretically, perturbation can be introduced to
graph nodes (i.e., network actors) as well, it is not considered
plausible because of adverse effects on the dataset.

Hay et al. propose a random perturbation approach, in
which a sequence of m edge deletions followed by m edge
insertions[2]. Assuming an adversary needs to consider the
set of possible worlds implied by m deletions/insertions, the
authors reason that it could be intractable for an attacker to
achieve exact identification. However, this cannot guarantee
that the adversary will not succeed in (sufficiently accurate)
identification of selected individuals. Ying et al. analyze the
privacy protection provided by the random perturbation ap-
proach [13]. They formulate the confidence of an adversary in
identifying a node in the anonymized network based on the
degree of the target as background knowledge.

Liu et al. propose an edge perturbation approach that pro-
vides k-anonymity for vertices based on their degrees. Initially
a k-anonymized degree sequence for the graph is constructed,
in which there exist at least k nodes of each degree and the
total degree difference between the anonymized and the orig-
inal degree sequence is minimum. Then the problem reduces
to realizing a graph with the anonymized degree sequence
from the original graph. They propose two different algorithms
to solve it. The Supergraph algorithm greedily perturbs the
original graph until it reaches to the target anonymized degree
sequence. Since such a greedy algorithm cannot guarantee an
answer, a probing scheme is proposed by the authors that
retries the procedure with slight modification of the degree
sequence, until an anonymized graph is realized. The Edge
Swap algorithm starts by constructing a random graph based
on the anonymized degree sequence. It then modifies the
graph to maximize its overlap with the original graph, while
preserving the anonymized degree sequence.

Thompson et al. propose a k-anonymity-based two phase
clustering and perturbing approach [10]. Vertices are clustered
first into groups of size of at least k, and then edges are
greedily inserted/deleted so that each vertex is anonymous
to the vertices in its corresponding cluster. As the adversary
background knowledge criteria, they consider an approach
similar to vertex refinement queries for zero and one-level
neighborhoods [2]. As the parameter for clustering, the vertex
degree, and a linear combination of a vertex and its neighbors’
degree are used for zero and one-level neighborhood, respec-
tively. They propose two alternative clustering algorithms for

this purpose. Bounded t-Means is a constrained version of
traditional k-means algorithm that limits the number of nodes
in a cluster to k. Union-Split is an alternative agglomerative
clustering algorithm. It starts from each node as a cluster and
in each step joins two nearest clusters. If the joint cluster size
is more than 2k it is split into two cohesive clusters, each of
size at least k. The iteration continues until all clusters have
k or more members. Although the clustering approach seems
promising, unfortunately their proposed greedy perturbation
algorithm based on clusters does not guarantee an answer,
despite the authors’ claim.

Zhou et al. propose a scheme to k-anonymize one-level
neighborhood of every vertex in a graph that vertices carry
labels as attributes. The neighborhood of each vertex is made
isomorphic with at least k − 1 other neighborhoods. The iso-
morphic perturbation process greedily minimizes information
loss in generalizing labels and inserting edges during per-
turbation. In this approach, since every node’s neighborhood
considered independently in the k-anonymization process, per-
turbation of one neighborhood can easily invalidate the k-
anonymity of an already anonymized node that falls inside
the neighborhood. This results into recurring anonymization
of such nodes, and therefore, an inefficient process with high
graph distortion. He et al. propose a different neighborhood
anonymization scheme [11]. They first partition the graph into
local structures, and ignore the inter-partition edges. Then the
neighborhoods are formed in the groups of size at least k
and the neighborhoods in each group are made isomorphic
to each other using edge perturbation. In the last step the
previously ignored inter-partition edges are put back in the way
that it does not violate the isomorphisms. The authors leverage
existing graph algorithms for local structure partitioning and
grouping purpose. Although acceptable performance regarding
preserving structural properties have been reported in the
work, it is not clear if the results are generalizable as no
comparison is provided with the related approaches in the lit-
erature. Furthermore, we believe that making every k-grouped
partitions isomorphic and inserting back inter-partition edges
in an isomorphic-preserving manner as adopted in [11] will
create a very symmetric structure; considering the need for
insertion of about k2 edges per original inter-partition edge,
the result does not seem to maintain well its original structural
properties in general.

We take an enhancement approach in this paper, rather
than offering alternatives to the perturbation algorithms in
the literature. We believe that our approach is applicable to
most of the perturbation techniques, and empirically show
improvements over the original versions of some perturbation
algorithms.

VI. CONCLUSIONS AND FUTURE WORK

Privacy is a huge concern when sharing social network
datasets. Existing social network anonymization techniques
usually do not perform well in terms of maintaining the utility
of the final outcome; the distortions on the original datasets
have drastic effects on their analysis. In this paper, we propose



the first approach to preserve structural properties of social
networks in an anonymization process, using the concept of
roles in a network. We have presented generalized enhanced
algorithms for social network perturbation. Our experimental
results show significant improvement in preserving structural
semantics of networks using our approach compared to the
original techniques in the literature.

There is a plausible vulnerability with our enhancement
approach if an attacker can leverage the role structure of
the network as background knowledge. Ideally the attacker
can link the actors with the same role in the original and
the anonymized network, and therefore potentially defeat the
anonymization scheme. We believe that this is a reasonable
concern when using perfect role structure preservation, for
instance, as suggested by Theorem 2. However, as mentioned
later in Section III, we need to use dissimilarity measures
for role matching instead of perfect role match. We believe
that this will introduce enough noise to the structure that will
help preventing such an attack strategy. Note that even few
imperfect changes in the network structure would result in
completely different role structure identified by Algorithms
such as CATREGE. We will investigate more formally such
attacks as a future work. Moreover, we plan to conduct
experiments on a more diverse set of datasets and techniques.
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