
Preserving Structural Properties in
Edge-Perturbing Anonymization
Techniques for Social Networks

Amirreza Masoumzadeh, Student Member, IEEE, and James Joshi, Member, IEEE

Abstract—Social networks are attracting significant interest from researchers in different domains, especially with the advent of social

networking systems which enable large-scale collection of network information. However, as much as analysis of such social networks

can benefit researchers, it raises serious privacy concerns for the people involved in them. To address such privacy concerns, several

techniques, such as k-anonymity-based approaches, have been proposed in the literature to provide user anonymity in published

social networks. However, these methods usually introduce a large amount of distortion to the original social network graphs, thus,

raising serious questions about their utility for useful social network analysis. Consequently, these techniques may never be applied in

practice. We propose two methods to enhance edge-perturbing anonymization methods based on the concepts of structural roles and

edge betweenness in social network theory. We experimentally show significant improvements in preserving structural properties in an

anonymized social network achieved by our approach compared to the original algorithms over several data sets.

Index Terms—Privacy, social network, social network analysis, data anonymization, data perturbation

Ç

1 INTRODUCTION

THE study of social networks is growing fast as a scientific
area in different domains such as academia, business,

and even government. A social network is commonly
defined as a collection of agents and relationships among
them, which are modeled, respectively, as nodes and links
in a graph. The purpose of such a study is to investigate
different structural properties and patterns both at agent
level and network as a whole depending on the application
of interest. In many social network data sets, nodes
represent people. Thus, any information released in the
data set including node attributes and even relationships
between nodes may be subject to privacy implications for
the involved users. The advent of social networking systems
has raised even more concerns about privacy as large
network data sets collected by these systems may include
huge amounts of privacy-sensitive information about their
users. Therefore, it becomes critical to preserve privacy of
users while allowing benefits of analysis of such valuable
corpora of information. A prevalent approach for preser-
ving privacy of data sets is to anonymize them so that
people cannot be linked to their real-world identities (i.e.,
reidentified). A naive anonymization for social networks
may simply replace real node identifiers with random ones.
However, researchers have shown that such an approach is
not fool-proof to node reidentification if an adversary has
certain background knowledge about network structure of

a target victim [1], [2], [3]. In order to provide stronger
anonymization for social networks, researchers have mainly
taken two different approaches to structural anonymiza-
tion. In the graph generalization approach [4], [5], [6], a social
network is summarized in a higher level graph, hiding
details of the relationships among agents while providing
overall structural summaries of the graph. In the edge
perturbation approach [2], [7], [8], [9], [10], [11], the edge
structure of the social network is modified, i.e., some edges
are removed and some are added, in order to satisfy an
anonymity property (typically based on k-anonymity [12]).
For instance, a graph can be modified to have degree
k-anonymity where for each node there are at least k� 1
other nodes with the same degree. Therefore, an adversary,
that knows the degree of a victim node, will not be able to
reidentify her by a probability larger than 1=k.

An expected consequence of structural anonymization is
that running same analysis on a social network and its
anonymized version may lead to different results. In order
to use a social network anonymized by a generalization
method it needs to be reconstructed by randomly generat-
ing substructures in place of supernodes based on the
reported supernode properties. Modifying links in the
perturbation methods to fulfill the anonymization criteria
also severely affects the network structure. One may hope
that such differences are negligible, so that results are still
usable. But observations show that if a social network is
anonymized up to an acceptable degree, the resultant
network becomes highly distorted, thus, severely affecting
their utility for analysis purpose [3]. For instance, a node
with a low centrality value may become one with a high
centrality value because of the addition of many fake
adjacent links. Such a change can reduce the accuracy of
centrality analysis of the network nodes. The key issue is
that anonymization methods usually focus on achieving the
anonymization objectives and disregard the crucial need to
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preserve the original structural semantics of a social

network; hence, the outcome is a significant decrease in

the utility of the results.
In this paper, we investigate ways to preserve better

structural properties of social networks in edge-perturbation

anonymization schemes, based on our initial results [13]. We

propose two heuristic methods based on social network

theories and concepts [14], [15] that can be applied to a

typical edge perturbation algorithm to achieve better

preservation of the utility of its output. In the first method,

we leverage the notion of structural roles and positions in

social networks. We show that maintaining role structure of

a social network in an anonymization process can signifi-

cantly help in preserving its structural semantics. The second

method uses the notion of edge betweenness in a social

network in order to minimize changes in shortest paths in

the edge perturbation process, and consequently help

preserve better many social network analysis measures that

are related to shortest paths. We empirically show that our

proposed enhancement methods can preserve structural

properties of social networks significantly better compared

to what original edge perturbation algorithms offer. For this

purpose, we present results of experiments on three different

enhanced anonymization algorithms and multiple data sets,

analyzing social network analysis measures such as be-

tweenness centrality (BC), clustering coefficient (CCoef), etc.

Our contributions in this paper can be summarized as

follows:

. We formalize the notion of roles based on regular
equivalence in social networks, and propose an
algorithm to calculate role dissimilarity for undir-
ected social networks.

. We propose a method to enhance edge-perturbing
anonymization algorithms in order to preserve
structural properties of social networks by preser-
ving their role structures.

. We propose a method to enhance edge-perturbing
anonymization algorithms by minimizing changes in
shortest paths.

. We present extensive evaluation of the proposed
enhancements tested on different edge perturbation
algorithms using both real-world and synthetic
stylized social networks.

The rest of the paper is organized as follows: In Section 2,

we provide an abstract representation of the key existing

edge-perturbing anonymization algorithms. In Section 3, we

define the notions of structural roles in social networks and

role dissimilarity, and present an algorithm to calculate

them for undirected networks. We propose our approaches

to preserve structural properties by using concepts of roles

and edge betweenness in Sections 4 and 5, respectively. We

evaluate the proposed approaches using multiple data sets

and various evaluation metrics in Section 6. In Section 7, we

discuss privacy implications of our approach and a practical

way to select anonymization enhancement parameters. We

review the related literature in Section 8, and subsequently

conclude the paper in Section 9.

2 EDGE-PERTURBING ANONYMIZATION

An undirected social network is defined as a graph,GhV ;Ei,
where the set of vertices V represents the agents in the

network, and the set of undirected edges E � fðu; vÞju; v 2
V g represents the relationships between agents in V . Edge-

perturbing anonymization techniques modify edges of a

network to satisfy certain anonymization criteria. These

techniques typically follow a greedy iterative approach,

which can be abstractly expressed as in Algorithm 1.

Algorithm 1. Iterative Edge Perturbation

Input: GhV ;Ei
Output: Anonymized version of GhV ;Ei

1: repeat

2: if an edge should be added then

3: Choose non-existent edge ðu; vÞ to be added

4: E  E [ fðu; vÞg
5: if an edge should be removed then

6: Choose existing edge ðu; vÞ to be removed

7: E  Enfðu; vÞg
8: if anonymization criteria is not achievable then

9: return null

10: until anonymization criteria is achieved

11: return GhV ;Ei
In each iteration, Algorithm 1 selects an edge to be

added/removed using a heuristic which depends on the

specific technique. The iterations continue until the graph is

considered anonymized according to the anonymization

criteria. Different anonymization techniques have different

anonymization criteria. In the random perturbation technique

[2], the goal is to simply remove m edges randomly and

then add m random edges. In the k-anonymity-based

approaches (e.g., [8], [9], [10], [11]), the goal is, for instance,

to achieve a graph with k-anonymous vertex degrees (e.g.,

Supergraph [8]). The algorithm aborts if the anonymiza-

tion criteria cannot be achieved, which is also dependent on

the actual technique.
The Greedy-Swap algorithm proposed in [8] includes

an optimization phase to select a group of edge changes in

the graph in each iteration, which results in a slightly

different scheme (see Algorithm 2). The algorithm first

creates an anonymized random graph based on a k-

anonymous degree sequence of the original graph. In each

iteration, every pair of edges in a subset of existing edges is

examined for a swap. In a swap operation, a pair of edges are

replaced with another pair with the same end nodes. Two

swap options are considered for a pair of edges

fðu; vÞ; ðu0; v0Þg: either fðu; u0Þ; ðv; v0Þg, or fðu; v0Þ; ðu0; vÞg.
Such swaps do not change vertex degrees, thus, ensuring

the already-established degree k-anonymity. A gain value is

calculated for each swap option, and the swap with

maximum (positive) gain is selected. In [8], the authors

calculate the gain value as the increment of edge overlap

(intersection) between the interim and the original graph.

Performing the swap with maximum gain at each iteration

would greedily make the anonymized graph more structu-

rally similar to the original one.
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Algorithm 2. Greedy-Swap

Input: GhV ;Ei
Output: Anonymized version of GhV ;Ei

1: Create anonymized random social network G0hV ;E0i,
where jE0j ¼ jEj

2: repeat

3: Select randomly logðjE0jÞ edges from E0

4: for all pairs of selected edges ðu; vÞ and ðu0; v0Þ do

5: Calculate the gain value considering swapping of

the pair either with ðu; u0Þ and ðv; v0Þ, or ðu; v0Þ and

ðu0; vÞ
6: Perform the swap with maximum gain (if any)

7: until no edge swap is performed

8: return G0hV ;E0i

3 STRUCTURAL ROLES

There are three major approaches to classify agents in a

network based on relationships among them into their

social positions: structural, automorphic, and regular equiva-

lence [14], [16]. Two agents are structurally equivalent if they

have identical ties with the same other agents. In auto-

morphic equivalence, agents in the same position must have

identical ties with different sets of agents that play the same

role in relation to that position. Finally, two agents are

regularly equivalent if they have same kind of relationships

with agents that are also regularly equivalent. Fig. 1 shows

a small example of equivalency classes based on each of

these concepts. In this work, we rely on regular equivalence

as it captures the concept of roles very well, and is the least

restrictive among the three concepts.
In this section, we formally define the notion of roles in

the context of undirected social networks, adopting some

definitions from [17]. We also define the extent of regular

equivalence between roles and introduce an algorithm for

identifying roles and calculating such a measure.

3.1 Roles Based on Regular Equivalence

Definition 1 (Role Assignment). A role assignment for

network GhV ;Ei is a function � : V ! R, defined for every

member of V , where R is a set of roles.

A role assignment partitions agents into equivalency

classes. Two agents are considered equivalent (�� ) if they

are assigned the same role: 8u; v 2 V ;u �� v, �ðuÞ ¼ �ðvÞ.
In other words, a role assignment is a projection of an

equivalence relation. Of our particular interest is the regular

equivalence. The following definition captures the relation-

ships between agents.

Definition 2 (Neighbor Role Set). �� : V ! 2R is a function
that maps an agent in network GhV ;Ei to the roles of its
neighbors according to role assignment �, i.e., ��ðuÞ ¼
f�ðvÞjðu; vÞ 2 Eg.

We recall that regularly equivalent agents must have the
same kind of relationships with other regularly equivalent
agents. Therefore, we define a role assignment that projects
a regular equivalence relation as follows:

Definition 3 (Regular Equivalence Role Assignment). A
role assignment � : V ! R projects a regular equivalence for
agents in network GhV ;Ei iff

8u; v 2 V ;�ðuÞ ¼ �ðvÞ ) ��ðuÞ ¼ ��ðvÞ:

Two agents are regularly equivalent if and only if they
have neighbors with the same roles. We refer to this as RE-
role assignment in the paper.

3.2 Extent of Role Equivalence

In the case two agents are not regularly equivalent, it is
sometimes desirable to know to what extent they are playing
similar roles. That is particularly useful in our enhancement
approach, which relies highly on the existence of large classes
of equivalent agents. As per our experiments, algorithms
for computing regular equivalence usually result in low-
populated equivalency classes. Therefore, as we discuss in
later sections, agents playing similar roles can be considered
as alternatives to the nonexisting regularly equivalent agents.
We abstractly define a dissimilarity measure for roles as
follows:

Definition 4 (Regular Equivalence Role Dissimilarity).

�� : V � V ! ½0; 1� is a role dissimilarity function for agents
of network GhV ;Ei corresponding to role assignment �,
where, at the two extremes, ��ðu; vÞ ¼ 0 implies agents u and
v have the same role (�ðuÞ ¼ �ðvÞ), and ��ðu; vÞ ¼ 1 implies
agents u and v have completely dissimilar roles.

The role dissimilarity measure is usually dependent on
the regular equivalence computation scheme in use. We
provide the details in Section 3.3.

Subsequently, we are interested in a dissimilarity
measure between two sets of roles, given the dissimilarity
measure for individual pairs of roles. The rationale behind
computing such a dissimilarity measure is to see how
similar a modified neighbor role set of an agent is to its
original one if some of its ties are changed. We define this
measure as follows:

Definition 5 (Regular Equivalence Role Set Dissimilarity).

Let S; S0 � R be two subsets of roles. The regular equivalence
dissimilarity between S and S0, written as �ðS; S0Þ, is equal to:

P
x2S

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiQ
y2S0 �ðx;yÞ

jS0 j
q

jSj þ
P

y2S0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiQ
x2S �ðx;yÞjSj

p
jS0 j

2
:

The above formula essentially calculates the (asymmetric)
dissimilarities of S to S0, and S0 to S, and then takes the
average to compute an overall (symmetric) dissimilarity
between S and S0. The dissimilarity of S to S0 (the first
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expression in the numerator) is calculated as follows: For
every role x in S, the product of its dissimilarities with all
roles in S0 is calculated, and its jS0jth root is taken. This
gives us an overall dissimilarity value between x and roles
in S0. If one of the roles in S0 is the same as x, the result
would be zero; otherwise, the dissimilarity values for each
will be effective in the result. The average of all such
dissimilarities for all the roles in S is considered as the
dissimilarity of S to S0. The dissimilarity of S0 to S is
calculated in a similar fashion.

3.3 An Algorithm to Identify Roles

REGE is a simple algorithm to partition agents based on
regular equivalence. However, as pointed out by Borgatti
[18], there are some inconsistencies with the algorithm in
recognizing regular equivalence partitions. Also, there are
issues related to the similarity measure it generates such as
being affected by the degree of nodes (which theoretically
should not occur because of the nature of regular
equivalence). CATREGE [18] is an alternative solution for
finding regular equivalence in categorical network data, i.e.,
networks with different types of edges. It also works for
noncategorical data that are the concern of this paper.
Moreover, the similarity measure computed by CATREGE
avoids the above-mentioned issues.

In this paper, we deal with noncategorical (single-type
edge), undirected social networks. Employing CATREGE
for such social networks results into an uninteresting
regular equivalence: all agents will be classified in a same
equivalency class. We modify the CATREGE algorithm to
tackle this issue, as shown in Algorithm 3. We initialize our
algorithm with two partitions of equivalent agents: agents
with minimum degree (degree one or larger, while
disregarding isolates) form one partition, and the rest of
the agents form the other partition. In each iteration, the
algorithm checks if pairs of nodes that were equivalent in
the previous iteration are connected to other agents that
were equivalent themselves. If not, they are marked as
nonequivalent. The procedure is repeated until there is no
change in the equivalencies compared to the previous
iteration. The extent of regular equivalence between two
agents can be obtained by counting the number of iterations
it takes them to split into different partitions. The algorithm
obtains a normalized dissimilarity by subtracting this value
from and dividing it by the total number of iterations. A
naive implementation of Algorithm 3 has time complexity
Oðdn3Þ, where n and d are node count and maximum node
degree of the input network. However, in practice, the
algorithm converges much sooner than the worst case
complexity indicates.

Algorithm 3. Calculate Agents’ Role Dissimilarities

1: p1  fu 2 V jdegreeðvÞ ¼Minðdegreeðvi 2 V ÞÞg
2: p2  V n p1

3: P  fp1; p2g
4: Initialize � according to partition set P :

8u 2 V ½u 2 pi ! �ðuÞ ¼ ri�
5: j 1

6: repeat

7: for each partition p 2 P do

8: Split p into independent partitions fpig such that

8u; v 2 p ½u; v 2 pi $ ��ðuÞ ¼ ��ðvÞ�

9: if ��ðuÞ 6¼ ��ðvÞ then

10: Similarityðu; vÞ  j

11: Substitute p in P with partitions fpig
12: Update � according to partition set P

13: j jþ 1

14: until no changes in partitions set P

15: for every pair of agents u and v do

16: ��ðu; vÞ  ðj� Similarityðu; vÞÞ=j
The above algorithm is different from the original

CATREGE in two aspects. First, it does not deal with
multiplex matrix required for categorical data. Second, it
begins with a specific initial partitioning, as opposed to all
agents being in the same partition in the original
CATREGE. Our initial partitioning essentially indicates
that peripheral agents in a network are more regularly
equivalent to each other, and less so with the other agents
that fall inside the network.

Fig. 2 illustrates the execution of Algorithm 3 on a small
network. In each iteration, nodes within a same partition are
marked with a same color (number). Note that partition
colors (numbers) only indicate equivalent agents in one
iteration and do not carry any other semantics. In the initial
state (Fig. 2a), vertices v3, v9, and v10 are colored yellow, and
all the others are colored green. Fig. 2b illustrates
the resultant partitions after the first iteration. Since in the
previous step, the yellow vertices were all connected to the
green vertices, they will not separate in this iteration.
However, the previously green vertices are divided into
two partitions: the ones that were only connected to greens,
and the ones that were connected to both yellows and
greens. If we continue the procedure, the final result is
obtained after iteration 4 (Fig. 2e); further iterations will not
change the partitions. Fig. 2f shows the (nonnormalized)
extent of regular equivalence between agents. For instance,
the similarity value between v1 and v2 is 1, because they
were separated after the first iteration. Analogously, the
similarity value between v5 and v7 is 2, because they were
separated after the second iteration. If two vertices even-
tually remain equivalent, their similarity value will be the
maximum number of steps (e.g., 5 for v5 and v6). These
values are converted to dissimilarity measure in the last
statement of Algorithm 3.

4 PRESERVING STRUCTURAL PROPERTIES USING

ROLES

Our intuition is that preserving the role structure of a social
network in the anonymization process would preserve to
some extent the network structural properties such as
centralities. Therefore, the anonymized network will be
more suitable to be used for typical network analysis. To
this end, we need to ensure that an RE-role assignment in
the original network is applicable to its edge-perturbed
version as well. In this section, we present our proposed
approach that preserves role structure, and apply it on the
edge perturbation algorithms presented in Section 2.

Preserving an RE-role assignment while perturbing a
social network is not straightforward. Because modifica-
tions to the edge structure of a network during perturbation
and changing neighborhoods of agents can easily invalidate
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an RE-role assignment for the edge-perturbed version of a

network. The following theorem captures a sufficient

condition to ensure that.

Theorem 1. Let G0hV ;E0i be an edge-perturbed version of

network GhV ;Ei. An RE-role assignment � for G is also an

RE-role assignment for G0 if

8u 2 V
�
�G

0

� ðuÞ ¼ �G�ðuÞ
�
:

Proof. The proof follows from the above condition and

Definition 3. Given � is an RE-role assignment for G,

for a pair of agents u and v where �ðuÞ ¼ �ðvÞ, by

Definition 3, we have �G�ðuÞ ¼ �G�ðvÞ. Now, if the

condition in the theorem is true, we also have �G
0

� ðuÞ ¼
�G�ðuÞ and �G

0

� ðvÞ ¼ �G�ðvÞ. Based on these three equal-

ities, we have �ðuÞ ¼ �ðvÞ ) �G
0

� ðuÞ ¼ �G
0

� ðvÞ, which is a

necessary and sufficient condition for � to be an RE-role

assignment for G0, according to Definition 3. tu

Theorem 1 states that keeping the neighbor role sets of

agents in a network intact in the anonymization process will

preserve an RE-role assignment. As an edge perturbation

algorithm involves a series of edge additions/removals, the

above condition can be further elaborated with regards to the

set of added or removed edges as in the following theorem.

Theorem 2. Let G0hV ;E0i be an edge-perturbed version of

network GhV ;Ei. An RE-role assignment � for G is also an

RE-role assignment for G0 if the following conditions are met:

8ðu; vÞ 2 Ei 9ðu; v0Þ 2 E ½�ðvÞ ¼ �ðv0Þ� ð1Þ

8ðu; vÞ 2 Ed 9ðu; v0Þ 2 E0 ½�ðvÞ ¼ �ðv0Þ�; ð2Þ

where sets Ei ¼ E0nE and Ed ¼ EnE0 represent added and

removed edges, respectively.

Proof. Since the same role assignment � is considered for

both G and G0, any difference between �G�ðuÞ and �G
0

� ðuÞ,
for any agent u, can only be the result of either addition

or removal of an edge adjacent to u. For an added edge

ðu; vÞ, by condition (1), we have 9ðu; v0Þ 2 E½�ðvÞ ¼ �ðv0Þ�
and therefore �ðvÞ ¼ �ðv0Þ 2 �G�ðuÞ, i.e., an added edge

would not affect the neighbor role set of an agent. For a

removed edge hu; vi, by condition (2), we have 9ðu; v0Þ 2
E0½�ðvÞ ¼ �ðv0Þ� and therefore, �ðvÞ ¼ �ðv0Þ 2 �G

0

� ðuÞ, i.e.,

a removed edge would not affect the neighbor role set of

an agent. These suggest

8u 2 V ½�G0� ðuÞ ¼ �G�ðuÞ�;

which is a sufficient condition for � to be an RE-role

assignment for G0, according to Theorem 1. tu

4.1 Role-Enhanced Iterative Edge Perturbation

Based on Theorem 2, we extend and enhance the iterative

edge perturbation techniques represented by Algorithm 1

as follows: After selecting an edge for addition, it is added

only if it conforms to condition (1). For this purpose, line 4

of the algorithm should be replaced with the following:
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if 9ðu; v0Þ; ðu0; vÞ 2 E ½�ðvÞ ¼ �ðv0Þ ^ �ðuÞ ¼ �ðu0Þ�
then

E  E [ fðu; vÞg
This checks if there exists vertex v0 in u’s neighborhood with
the same role as v’s, and if there exists vertex u0 in v’s
neighborhood with the same role as u’s. If either of the
checks fails the edge addition is discarded. Analogously, an
edge removal should be allowed only if it conforms to
condition (2). As per Theorem 2, such a modified version of
Algorithm 1 will preserve an RE-role assignment for the
graph in each iteration. Therefore, an RE-role assignment
for the original social network graph will be valid for its
final edge-perturbed version.

Although theoretically sound, the above-mentioned
strategy may not perform well in practice. Based on our
experiments on network data sets, algorithms such as the
one presented in Section 3.3 identify very small number of
agents with the same role. Therefore, when adding/
removing an edge, e.g., ðu; vÞ, the chance of finding an
agent with the same role as v’s in u’s neighborhood is very
low, and vice versa. The above-mentioned strategy is hard
to be applied in such a situation as it would reject changes
to the network, because of low population of equivalent
agents in every class. In order to overcome this limitation,
we use a relaxed version of the conditions in Theorem 2.
Instead of an exact role match as proposed in the
conditions, we propose a partial match by using a threshold
on RE-role dissimilarity between agents. Algorithm 4
provides the pseudocode for the enhanced version of the
iterative edge perturbation approach. As the input argu-
ments, it requires role dissimilarity values for agents (��)
and a threshold, � 2 ½0; 1�, which indicates the extent of
nonperfect role matching to be allowed. The time complex-
ity of Algorithm 4 is clearly dependent on the actual
iterative edge perturbation method. However, it will be
bounded by Oðn2Þ since in the worst case all the candidate
edges for addition would be tested.

Algorithm 4. Role-Enhanced Iterative Edge Perturbation

Input: GhV ;Ei, ��, and �

Output: Anonymized version of GhV ;Ei
1: repeat

2: if an edge should be added then

3: Choose non-existent edge ðu; vÞ to be added

4: if 9ðu; v0Þ; ðu0; vÞ 2 E ½��ðv; v0Þ < � ^��ðu; u0Þ < ��
then

5: E  E [ fðu; vÞg
6: if an edge should be removed then

7: Choose existing edge ðu; vÞ to be removed

8: E0  Enfðu; vÞg
9: if 9ðu; v0Þ; ðu0; vÞ 2 E0 ½��ðv; v0Þ < � ^��ðu; u0Þ < ��

then

10: E  E0

11: if anonymization criteria is not achievable then

12: return null

13: until anonymization criteria is achieved
14: return GhV ;Ei

The following example demonstrates how maintaining
the neighbor role set of an agent can help in preserving

structural properties of a network. In Fig. 2e, assume we
need to remove one of the adjacent edges to v4. Based on
our proposed scheme, an agent should exist in v4’s
neighborhood that has low role dissimilarity with the agent
that is removed from that neighborhood, and vice versa.
Note that we can instead consider high similarity values in
Fig. 2f. The following list shows the most similar agent in
v4’s neighborhood after removing each candidate from it.

. v1: v5=v6 with similarity value 2.

. v2: v1=v5=v6 with similarity value 1.

. v3: No similar agent exists.

. v5: v6 with similarity value 5.

. v6: v5 with similarity value 5.

The following list shows the most similar agent in each
of the above candidate’s neighborhood that may replace
v4’s role.

. v1: v2 with similarity value 3.

. v2: v1 with similarity value 1.

. v3: No other neighbor agent exists.

. v5: v6=v7=v8 with similarity value 1.

. v6: v5=v7=v8 with similarity value 1.

As suggested by the above similarity values, edge ðv1; v4Þ
seems to be the best option to remove. Because v1ðv4Þ has an
agent in its neighborhood with moderate similarity to v4ðv1Þ.
To ensure this is indeed the best choice, we calculate two
network measures, i.e, mean betweenness and closeness
centralities, for the result of each case. The mean betweenness
(closeness) centrality for the original network is 5:1ð0:487Þ,
and updates as the following after removing each of the
candidates:

. v1 : 5:7 ð0:458Þ

. v2 : 6:9 ð0:411Þ

. v3 : 3:9 ð0:318Þ

. v5 : 5:7 ð0:456Þ

. v6 : 5:7 ð0:456Þ
The above centrality values confirm our choice of removing
ðv1; v4Þ, since the corresponding result network has closer
centrality values to the original network compared to the
other choices.

4.2 Role-Enhanced Greedy-Swap
As mentioned in Section 2, the Greedy-Swap algorithm
follows a different overall procedure than most of the other
perturbation approaches. Hence, we need a different
approach to enhance it for preserving role structure. We
do so by proposing a new gain function in Algorithm 2.
Recall that the Greedy-Swap technique [8] starts with an
anonymized version of the network but with randomized
edges, and performs edge swaps to make the anonymized
network as similar as possible to the original graph. To this
end, the authors define the gain measure as the increase in
the edge overlap between the original and the anonymized
networks. We propose to substitute the gain function in
Algorithm 2 with a role similarity gain measure which is
calculated based on regular equivalence role structure. The
role similarity gain function measures how much each of
the involved vertices in an edge swap gets closer (more
similar) to its corresponding original state in terms of the
role structure. Recall from Theorem 1 that the neighbor role
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set of an agent acts as an important factor in preserving its
role. Hence, we consider it as the main clue for calculating
such a role similarity gain.

Let u be an agent involved in an edge swap, and �G�ðuÞ
be its neighbor role set in the original network. Also, in
the ith iteration of Algorithm 2, let �Gi

� ðuÞ be its neighbor
role set in the interim network, and �Giþ1

� ðuÞ be its neighbor
role set in the next state of the interim network if the swap
is performed. The objective of optimization based on role
similarity gain is to obtain better similarity between �Giþ1

� ðuÞ
and �G�ðuÞ compared to �Gi

� ðuÞ and �G�ðuÞ. In other words,
using dissimilarity measures defined in Section 3.2, we
need to have

�
�
�G�ðuÞ;�

Gi

� ðuÞ
�
� �

�
�G�ðuÞ;�

Giþ1

� ðuÞ
�
:

Hence, the role similarity gain can be measured by the
decrease in dissimilarity between the neighbor role sets in the
original and interim networks. The bigger the gap between
the two sides of the above inequality, the larger the role
similarity gain will be. As there are four vertices involved in
a swap of a pair of edges ðu; vÞ and ðu0; v0Þ, we calculate the
total role similarity gain of a swap as follows:

P
x2fu;v;u0;v0g

�
�
�
�G�ðxÞ;�

Gi

� ðxÞ
�
� �

�
�G�ðxÞ;�

Giþ1

� ðxÞ
��

4
:

The time complexity is Oðlog2 nÞ for Algorithm 2, and
Oðd2Þ for the above gain function, where n and d are node
count and maximum degree of the input network, respec-
tively. Therefore, the time complexity for role-enhanced
Greedy-Swap is Oðd2 log2 nÞ.

5 PRESERVING STRUCTURAL PROPERTIES BASED

ON EDGE BETWEENNESS

Computing shortest paths between pairs of nodes in a
network is an underlying factor for social network analysis
measures, ranging from simple graph-level measures such
as characteristic path length (average path length (APL)
between node pairs) and diameter (maximum shortest path
in the network) to node level centrality measures such as
betweenness (proportion of shortest paths that pass
through a node) and closeness (average distance of a node
to all the other nodes). In this section, we propose an
algorithm to maintain structural properties in a perturbed
network by limiting the amount of changes to the shortest
paths in the network.

We leverage the notion of edge betweenness to control the
shortest paths, which was introduced in the Newman-
Girvan community detection algorithm [19]. Edge between-
ness is defined for an edge as the number of shortest paths
between any pair of nodes that pass through that edge. If
there are more than one shortest paths for a pair of nodes,
they are counted proportionally so that they sum up to
unity. Intuitively, based on the definition, if an edge has a
low edge betweenness centrality removing/adding it from/
to the network will have less effect on the shortest paths
compared to removing/adding an edge with higher
betweenness. A lesser number of shortest path changes in
the network due to such edge addition/removal would
help to have less change in SNA measures such as

closeness. However, note that although this strategy limits

the number of shortest path changes, it cannot control the

amount of change in the shortest paths. This observation is

central to our proposed approach to perturb a network with

limited changes to shortest paths.
Algorithm 5 provides the pseudocode for the enhanced

version of the iterative edge perturbation anonymization

using edge-betweenness. Here, function Normalized-Edge-

Betw calculates the betweenness of an edge and normalizes

it based on the maximum edge betweenness value of the

edges in the graph. � 2 ½0; 1� is an input argument that

limits the potential set of edges to be added/removed,

based on their normalized edge betweenness centrality

value. Edge-betweenness calculation has time complexity

OðneÞ, where n and e are node and edge count, respectively.

Therefore, a naive implementation of the algorithm will

have time complexity Oðn3eÞ.

Algorithm 5. Edge-Betweenness-Enhanced Iterative Edge

Perturbation

Input: GhV ;Ei and �

Output: Anonymized version of GhV ;Ei
1: repeat

2: if an edge should be added then

3: Choose non-existent edge ðu; vÞ to be added

4: E0  E [ fðu; vÞg
5: if Normalized�Edge�BetwhV ;E0iððu; vÞÞ < � then

6: E  E0

7: if an edge should be removed then

8: Choose existing edge ðu; vÞ to be removed
9: if Normalized�Edge�BetwhV ;Eiððu; vÞÞ < � then

10: E  Enfðu; vÞg
11: if anonymization criteria is not achievable then

12: return null

13: until anonymization criteria is achieved

6 EXPERIMENTAL RESULTS

We conducted experiments to evaluate the performance of

our proposed enhancement methods by extending three

major edge-perturbing anonymization algorithms and test-

ing them on five different social network data sets.

6.1 Data Sets

Since our approach relies on structural properties of the

input network, we expected it to perform differently for

different data sets. Therefore, we chose two real-world

social networks, and generated three synthetic networks

with different topologies, as follows:

. PolBooks: A network of books about US politics
sold by Amazon.com around the 2004 presidential
election (compiled by V. Krebs, www.orgnet.com).
Edges between books represent their frequent
purchase by the same buyers.

. Jazz: A collaboration network of jazz musicians
[20], where nodes represent bands and edges
indicate that the corresponding bands share a
common musician.
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. ER: A synthetic random network based on Erdos-
Renyi model.

. BA: A synthetic scale-free network based on Bar-
abasi’s model.

. SW: A synthetic small-world network.

Table 1 lists some of their structural properties.

6.2 Evaluation Measures

In order to evaluate the effectiveness of the proposed
approaches, we calculate a number of social network
analysis measures on the outputs of both original anon-
ymization algorithms and their enhanced versions, and
compare them with the corresponding measurements on
the original network. An anonymized output that provides
closer measurements to those of the original network is
intuitively more useful for analysis. We have considered the
following measures: Average path length is the average
distance of all the node pairs in the network. Clustering
Coefficient measures the tendency of nodes in a network to
cluster together, by counting the ratio of closed triplets to
connected triplets in the network. Betweenness Centrality is
the number of times a node falls on the shortest paths
between node pairs in the network. Closeness Centrality (CC)
is the average distance of a node to all the nodes in the
network. We note that it is important in social network
analysis to identify the most central nodes in a network.
Therefore, in addition to the mean centrality values we
investigate the accuracy of preserving of individual nodes’
centrality rankings. For this purpose, we consider the
function of an anonymization algorithm as a classifier that
should classify the top-k central nodes in the original
network as the most central nodes. We evaluate the
performance of such a classifier by measuring the area
under the ROC curve (AUC). The accuracy measures
Top3AUC and Top10pAUC, respectively, indicate such
performance metric for classifying the top three and the
top decile of central nodes in the original network as the
most central in the anonymized network. Finally, R2

measures the square of Pearson correlation between
centralities of nodes in the original and perturbed networks,
as an alternative metric.

6.3 Implemented Algorithms

We implemented the original, role-enhanced, and edge-
betweenness-enhanced versions of random perturbation [2],
Supergraph [8], and Greedy-Swap [8]. The first two
algorithms are variations of the iterative edge perturbation
approach, as described in Section 2. The random perturba-
tion algorithm first removes m edges from a network and
then adds m other edges at random to the network. In our
experiments, we set m equal to 10 percent of the number of

edges in each network to provide adequate anonymization,
as suggested by Hay et al. [2]. Also, for the role-enhanced
version, we vary the role equivalence threshold (�) between
0.3 and 1, and average the measurements over 500 runs.

Both the Greedy-Swap and Supergraph algorithms
ensure degree k-anonymity for network nodes. They begin
by constructing a k-anonymous degree sequence. The Super-
graph algorithm adds edges to the network until the
network meets the anonymized degree sequence. The
Greedy-Swap algorithm builds an anonymized random
graph based on the degree sequence and swaps its edges to
obtain a network close to the original network. More details
on these algorithms can be found in Section 8. In our
experiments, we vary anonymization value k between 2 and
10 for role-enhanced Greedy-Swap, and evaluate edge-
betweenness-enhanced Supergraph for k ¼ 10 and by
varying threshold � between 0.1 and 1. The reported
measures are averaged based on 50 runs. Since our
implementation of Supergraph only considers adding
edges to the graph, i.e., increasing node degrees, it will not
perform well for networks which have very few nodes with
very high degrees, such as scale-free networks. Therefore,
we do not perform the experiments on the Jazz and BA

data sets in the case of the edge-betweenness-enhanced
Supergraph algorithm.

We found the above-mentioned number of runs good
enough to represent performance results while accounting for
existing randomness in the algorithms. Our efforts to include
other edge-perturbation algorithms and asses our proposed
scheme on them were not successful, because of either
possible flaws with the techniques (e.g., clustering-based
methods proposed in [9] as described in Section 8), or lack of
available algorithmic details to implement them (e.g., [10]).

6.4 Results

Figs. 3, 4, and 5, respectively, demonstrate the performance
of role-enhanced random perturbation, role-enhanced
Greedy-Swap, and edge-betweenness-enhanced Seuper-

graph algorithms, in terms of preserving structural proper-
ties of original networks using the measures described in
Section 6.2.

In all the figures, lines with symbols represent measure-
ments corresponding to the enhanced algorithms while
lines without symbols represent results of the correspond-
ing original algorithms. The measurements are normalized
based on the original networks’ measurements. For
instance, in the APL plots, we divide measurements for
the PolBooks network by 3.079 which is the APL of the
original network. Given that the measurements are normal-
ized, the closer a measurement is to unity, the better the
network structural properties has been preserved. Improve-
ments over the original anonymization algorithms can be
easily evaluated by subtracting the corresponding measure-
ment differences to unity. For instance, if for a specific
measure the original algorithm achieves 0.7 and the
enhanced algorithm achieves 1.1, the improvement is
calculated as j1� 0:7j � j1� 1:1j ¼ 0:2. Due to space limita-
tions, we only provide accuracy measurements for be-
tweenness centrality. Closeness centrality results were very
similar in nature to those of betweenness.
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Our findings based on the evaluation measurements
reported in Figs. 3, 4, and 5 are as follows:

Dependency on data set: As expected, the amount of
distortion to the measures and effectiveness of our
enhancement approach is not the same for different data
sets. While the enhanced algorithms show better perfor-
mances than their original counterparts in most cases, there
are also cases with neutral and negligible negative effects.
The role-enhanced random perturbation (Fig. 3) has almost
no effect on the random and scale-free data sets, while it has
significant improvement for the other three networks, i.e.,
PolBooks, Jazz, and SW. The improvement can be
attributed to their similar topological characteristics as in
small-world networks. In the case of role-enhanced Gree-

dy-Swap (Fig. 4), results show moderate improvements on
all measures, with the exceptions of scale-fee data set for the
first three measures and small-world data set for the
accuracy measures. The edge-betweenness-enhanced
Supergraph (Fig. 5) also results in better performance in
almost all the measures.

It is worth mentioning that the random graph (ER) is in
fact very structurally robust to all the perturbation algo-
rithms. Since the edges are randomly distributed in such a

topology anyway, their replacements would not have much

impact on the structural properties.
Effects of parameter variations: Improvements in the role-

enhanced random perturbation (Fig. 3) are negatively

correlated with threshold �. That is expected since increas-

ing � allows for less perfect role matching, and subsequently

less structural preservation. Interestingly, improvements on

structural preservation is almost independent of anonymization

parameter k. This is suggested by the almost parallel lines in

Fig. 4 that correspond to the enhanced and original

algorithms for each data set. As for �, the edge-betweenness

enhancement parameter, it does not show monotonic

improvement as seen for �. Unexpectedly, the lower range

values of � perform worse than middle-range values in

preserving the measures.
Measure correlations: We notice that the APL and mean

BC plots follow similar overall pattern for the same

networks, for all the experiments. Also, the mean CC plots

follow the same pattern in a vertically mirrored fashion,

which are omitted due to space limitations. However, note

that the pattern similarity is not always perfect and the

improvements are in different scales. Nevertheless, this
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observation suggests that APL, mean BC, and mean CC
measures are highly correlated, independent of the change
in anonymization parameters and enhancement thresholds.
Such correlation can significantly help in choosing an
appropriate anonymization enhancement method for a data
set since there will be less number of measures to be
analyzed for preservation.

7 DISCUSSIONS

7.1 Privacy Analysis

In this section, we analyze if the proposed enhancement
approaches have any negative effect on the anonymity of
the edge-perturbation schemes.

7.1.1 Effect on Anonymity Property

In the k-anonymity-based schemes, such as Greedy-Swap
and Supergraph, our enhanced algorithms still fulfill the
anonymity property. Therefore, there is no degradation in
provision of the original anonymity property. For instance,
using role-enhanced Greedy-Swap, for any node in the
perturbed graph, there will be at least k� 1 other nodes
with the same degree. So an adversary cannot reidentify

nodes based on their degree. In the case of random
perturbation, our approach slightly reduces the random
space based on the chosen threshold parameter, compared
to the original algorithm. We believe that choosing a
combination of large enough number of edge additions/
removals and not-too-small threshold parameter can pro-
vide an acceptable anonymity. We plan to approach this
issue more formally as a future work.

7.1.2 Role Structure as Background Knowledge

One plausible attack against role-enhanced perturbation
could be to use role structure in the original and perturbed
networks to reidentify nodes. Assume an adversary knows,
for a target node t, role dissimilarities with every other node
in the original network. We show them as a dissimilarity
vector dt of size n ¼ jV j. The adversary can calculate role
dissimilarities on the perturbed network, and then calculate
correlation of dt with that of every node, in the perturbed
network, say d0x. The nodes that have a high correlation in
terms of role dissimilarities can be a potential match.
However, such an attack is not computationally feasible.
Since the attacker does not know the node identifiers,
simply correlating the two vectors dt and d0x is not
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meaningful: a dissimilarity value at a certain index in dt
may not correspond to the dissimilarity value at the same
index in d0x. In fact, dt should be correlated against all
permutations of values in d0x. So the computation itself is of
complexity Oððnþ 1Þ!Þ. Even if the attacker can perform all
the computations, due to nonperfect role matching in our
enhanced algorithm and high sensitivity of role dissim-
ilarity calculation algorithm to small changes in the network
structure, there is no guarantee that high correlation in role
dissimilarities can help in node reidentification.

7.1.3 Preserved Measures as Background Knowledge

One may argue that if certain node measures such as
betweenness centrality are preserved better using our
enhancement approaches, they might be misused by an
attacker for node reidentification. For instance, if an
enhanced algorithm provides perfect Top1AUC BC accu-
racy, an attacker that knows about the most central node
will be able to easily reidentify that node in the perturbed
network. Although it seems infeasible as a practical attack,
one can adjust anonymization parameters so as to introduce
more distortion of the centrality measures for the anon-
ymized network (e.g., choosing a larger � value in the case

of role-enhanced random perturbation). Note that assuming
such information as attacker’s background knowledge
contradicts the goal of the enhanced algorithms, i.e.,
preserving the measures.

7.2 Selecting Appropriate Thresholds

As expected and also suggested by the experimental results
in Section 6, the improvement provided by our enhanced
algorithms for iterative edge perturbation can be tuned
based on threshold parameters. The role-enhanced and
edge-betweenness-enhanced algorithms rely, respectively,
on �, the role dissimilarity threshold of considering nodes
semiequivalent, and �, the edge betweenness threshold to
consider an edge for addition/removal. Intuitively, we
should use a threshold that results in the best preservation
of structural properties of a social network. We can evaluate
such preservation using different measures as suggested in
our experiments. Based on our experiments, the amount of
preservation depends on both the social network data set
and the threshold, and does not always follow a monotonic
growth/decrease with threshold values. For instance, in the
role-enhanced random perturbation results, lower � values
dominantly show better performances. However, choosing
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� ¼ 0:5 over � ¼ 0:7 for the PolBooks network provides less
Top1 BC centrality accuracy while the other BC accuracies
are almost the same. Considering no significant improve-
ment in the first case in other measures as well, one may
prefer � ¼ 0:7 over � ¼ 0:5. This simple example shows that
selecting a proper threshold value is probably not possible
before actually performing enhanced anonymization on the
input network for different threshold values. Note that the
anonymization is an offline process before publishing a
social network data set, and it seems feasible to invest some
computation by trying out different thresholds to fine-tune
anonymization which both guarantees anonymity criteria
and provides usable output for analysis purpose.

8 RELATED WORK

Backstrom et al. present a family of active/passive attacks
that work based on uniqueness of some small random
subgraphs embedded in a network [1]. Hay et al. study the
extent of node reidentification based on structural informa-
tion [2], [4]. They experiment using three types of structural
queries as adversary background knowledge on real,
naively anonymized social networks and show significantly
low k-anonymity for such background knowledge queries.
Narayanan and Shmatikov propose a different attack
approach that relies on input of an auxiliary, overlapping,
probably publicly available social network without any
assumption about structural background knowledge of an
adversary [3]. Empirical evaluation of their approach shows
that a third of users who have accounts both on Twitter and
Flickr can be reidentified in the anonymous Twitter graph
with a low error rate. The nonnaive social network
anonymization approaches in the literature can be categor-
ized into two groups: graph generalization and graph
perturbation.

In generalization techniques, the network is first parti-
tioned into subgraphs. Then, each subgraph is replaced by a
supernode, and only some structural properties of the
subgraph alongside linkage between clusters are reported.
Hay et al. propose a k-anonymity-based generalization
approach, where supernodes contain at least k nodes, which
optimizes fitness to the original network via a maximum
likelihood approach [4]. Zheleva and Getoor propose a
generalization approach to avoid disclosure of exact non-
sensitive edge structure, which could be used for predicting
sensitive edges [5]. Campan and Truta also follow a similar
approach [6] but propose a greedy optimization solution
that can be tuned to control information loss. In order to use
a generalized social network for analysis purpose, one
should sample a random graph in accordance with the
reported generalized properties. Although such a network
may maintain some local structural properties of the original
network, much of high-level graph structure is lost [9],
which impacts negatively the utility of results.

In perturbation techniques, the network is modified to
meet desired privacy requirements. This is usually carried
out by adding and/or removing graph edges. Although,
theoretically, perturbation can be introduced to graph nodes
as well, it is not considered plausible because of adverse
effects on the data set.

Hay et al. propose a random perturbation approach, in
which a sequence of m edge removals followed by m edge

additions [2]. Assuming an adversary needs to consider the
set of possible worlds implied by m removals/additions,
the authors reason that it could be intractable for an attacker
to achieve exact identification. However, this cannot
guarantee that the adversary will not succeed in (suffi-
ciently accurate) identification of selected individuals. Ying
et al. formulate the confidence of an adversary in identify-
ing a node in a randomly perturbed network based on the
degree of the target as background knowledge [7].

Liu and Terzi propose an edge perturbation approach
that provides k-anonymity for vertices based on their
degrees [8]. Initially, a k-anonymous degree sequence for
the graph is constructed, in which there exist at least k nodes
of each degree and the total degree difference between the
anonymized and the original degree sequence is minimum.
Then, the problem reduces to realizing a graph with the
anonymized degree sequence from the original graph. They
propose two different algorithms to solve it. The Super-

graph algorithm greedily perturbs the original graph until
it reaches the target anonymized degree sequence. Since
such a greedy algorithm cannot guarantee an answer, a
probing scheme is proposed by the authors that retries the
procedure with slight modification of the degree sequence,
until an anonymized graph is realized. The Greedy-Swap
algorithm starts by constructing a random graph based on
the anonymized degree sequence. It then modifies the graph
to maximize its overlap with the original graph, while
preserving the anonymized degree sequence.

Thompson and Yao propose a k-anonymity-based two-
phase clustering and perturbation approach [9]. Vertices are
first clustered into groups of size of at least k, and then edges
are greedily added/removed so that each vertex is anon-
ymous to the vertices in its cluster. Anonymity is either
based on the vertex degree or the vertex and its neighbor
degrees, which is also used as similarity measure for forming
clusters. They propose two alternative clustering algorithms
for this purpose: Bounded t-Means, and Union-Split.
Although their clustering approach seems promising, the
proposed greedy perturbation algorithm based on clusters
does not guarantee an answer. An approach such as probing
in [8], that takes into account realizability of the graph based
on formed clusters, seems necessary.

Zhou and Pei propose a scheme to k-anonymize vertex
neighborhoods [10], by constructing isomorphic neighbor-
hoods. The method seems to be inefficient and highly
distorting, since it requires recurring anonymization of node
neighborhoods. He et al. propose a different neighborhood
anonymization scheme [11], by making isomorphic groups
of k-graph partitions. Furthermore, we believe that making
every k-grouped partitions isomorphic and adding back
interpartition edges in an isomorphic-preserving manner as
adopted in [11] will create a very symmetric structure;
considering the need for addition of about k2 edges per
original interpartition edge, the result does not seem to
maintain well its original structural properties in general.

We take a generic enhancement approach in this paper,
rather than offering alternatives to the perturbation algo-
rithms in the literature. Applied to such algorithms, our
approach can significantly improve the utility of their
results, as shown in our experiments in Section 6.
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9 CONCLUSION

Distortion introduced to structure of social networks by

network anonymization schemes can significantly reduce

the utility of their outputs. In this paper, we proposed two

heuristic approaches to improve preserving utility of results

in the edge-perturbing anonymization algorithms. These

methods help preserving structural properties of social

networks by either maintaining roles based on the notion of

regular equivalence in a social network, or limiting changes

in the shortest paths based on the notion of edge between-

ness. Our empirical results show very promising improve-

ments in utility, without sacrificing privacy. As a future

work, we plan to investigate theoretically the relation

between structural roles and social network measures such

as centralities. Moreover, we plan to investigate a nongreedy

optimization approach for employing our second heuristic

method.
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