
Security Analysis of Relationship-Based Access Control Policies

Amirreza Masoumzadeh
University at Albany – SUNY

Albany, NY
amasoumzadeh@albany.edu

ABSTRACT

Relationship-based access control (ReBAC) policies can ex-
press intricate protection requirements in terms of relation-
ships among users and resources (which can be modeled as
a graph). Such policies are useful in domains beyond online
social networks. However, given the updating graph of user
and resources in a system and expressive conditions in access
control policy rules, it can be very challenging for security
administrators to envision what can (or cannot) happen as
the protection system evolves.

In this paper, we introduce the security analysis problem
for this class of policies, where we seek to answer security
queries about future states of the system graph and autho-
rizations that are decided accordingly. Towards achieving this
goal, we propose a state-transition model of a ReBAC pro-
tection system, called RePM. We discuss about formulation
of security analysis queries in RePM and present our initial
results for a limited version of this model.

CCS CONCEPTS

• Security and privacy → Access control; Authoriza-
tion;

KEYWORDS

relationship-based access control; security analysis; safety

ACM Reference Format:

Amirreza Masoumzadeh. 2018. Security Analysis of Relationship-
Based Access Control Policies. In CODASPY ’18: Eighth ACM

Conference on Data and Application Security and Privacy, March

19–21, 2018, Tempe, AZ, USA. ACM, New York, NY, USA,
10 pages. https://doi.org/10.1145/3176258.3176323

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first page.
Copyrights for components of this work owned by others than the au-
thor(s) must be honored. Abstracting with credit is permitted. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee. Request permissions
from permissions@acm.org.

CODASPY ’18, March 19–21, 2018, Tempe, AZ, USA

© 2018 Copyright held by the owner/author(s). Publication rights
licensed to the Association for Computing Machinery.
ACM ISBN 978-1-4503-5632-9/18/03. . . $15.00
https://doi.org/10.1145/3176258.3176323

1 INTRODUCTION

Several relationship-based access control (ReBAC1) models
have been developed in recent years [5, 12, 13, 9, 7]. While
they were initially inspired by online social networks (OSNs)
and Web 2.0 applications, it has been also shown that their
expressive power is useful in other domains such as health-
care [25]. In ReBAC models, authorizations are specified
based on relationship patterns between users and resources
that are involved in an access control scenario. Such patterns
are typically captured as paths or topological constraints in
a graph structure of entities and relationships among them.
For example, access control policy options in an OSN, which
allows a user to share with “friends” or “friends of friends,”
are expressed as paths of different lengths in the OSN graph
based on friendship relationships between users.

ReBAC policies are very expressive (e.g., see various intri-
cate examples expressible in Fong’s ReBAC [13]). However,
such expressiveness also complicates understanding a ReBAC
policy. For example, consider this question: given a set of
actions that users can perform and policies that they can con-
figure in an OSN, can a certain leak of information happen?
(e.g., can a stalker obtain access to a victim’s information
after performing a series of actions?) There are several fac-
tors that makes answering such a question challenging in
ReBAC environments, such as interaction of rules, updates
to graph and policies, and distributed administration. A Re-
BAC policy is composed of individual rules, each authorizing
some action(s) according to relationship-based conditions in
a system. In any sizable ReBAC policy, it will be hard to
comprehend and ensure that protection requirements are met
as interactions between rules may lead to unknown situations
and some security gaps might be even left undetected. Even if
protection requirements are confirmed at one moment, future
updates to the policy may result in unexpected situations.
The problem is even more complicated since as the underly-
ing graph of relationships is updated it will also affect the
authorization decisions in a ReBAC environment. We need
to also consider that often times in modern systems, updates
happen in a distributed fashion (not by a central security ad-
ministrator). For example, each user is in charge of specifying
her own access control options (privacy settings) in an OSN,
and the policy of an OSN as a whole is a combination of such
policies (along with other rules set by the OSN provider).

In this paper, we investigate the security analysis prob-
lem [19] in the context of ReBAC models. The goal of security
analysis is to verify properties of a protection system as it

1 We use the term ReBAC to refer to the class of access control models
based on relationships. In order to avoid confusion, we refer to the
seminal work proposed in [12, 13] as Fong’s ReBAC.

https://doi.org/10.1145/3176258.3176323
https://doi.org/10.1145/3176258.3176323

may evolve: i.e., starting from a given secure state, and based
on a given set of state transitions (or constraints that con-
trol them), whether an (undesirable) state is reachable (i.e.,
existential query) or a (desirable) property is always held
(i.e., universal query). The existential flavor of this problem,
known as safety problem, has been studied whether leakage
of a specific right can happen in a discretionary access control
model [14, 28, 26]. It was then extended to include universal
questions as well, and thus, called security analysis [19] in the
context of trust management systems. The security analysis
problem has also been investigated in the context of admin-
istrative role-based access control [18, 29]. It is worthwhile
to note that security analysis is essentially a more complex
problem than verifying properties of a protection system at
a given state, e.g., whether certain undesirable authoriza-
tion exists. The latter problem can be referred to as policy
analysis [23, 21] or proof of compliance [19].

While there have been formal approaches to the speci-
fication/enforcement (e.g, [13, 9]), and more recently ad-
ministration [30, 8] of ReBAC policies, to the best of our
knowledge, this is the first work to study the security analysis
problem in this context. In particular we make the following
contributions in this paper:

• We propose a formal relationship-based protection
model, called RePM, that captures the essence of Re-
BAC policies as a state-transition system. The model
captures an underlying graph of entities, ReBAC policy
that controls authorizations on the graph, and admin-
istrative ReBAC policy that governs changes to the
ReBAC policy itself. In addition to providing a general-
izable model, RePM addresses a major gap in previous
formal ReBAC models [13, 9] by supporting authoriza-
tion policies for “viewing” edges in the system graph.

• We present, for the first time, the security analysis
problem for ReBAC policies, formulated in the context
of the proposed protection model. We propose two
versions of the problem which have different security
analysis query targets (graph and authorization).

• We study the safety problem in a limited version of
our model and prove its decidability.

The rest of the paper is organized as follows. In Section 2,
we briefly review the related work on ReBAC policies and
security analysis. We begin Section 3 with presentation of
a running example and the design considerations for our
protection model. We then propose a formal model of Re-
BAC protection system, called RePM. We formulate the
security analysis in the context of RePM in Section 4, and
finally illustrate decidability result for a simplified model in
Section 5.

2 RELATED WORK

Our work is closely related to two bodies of work, namely,
relationship-based access control and safety/security analysis.
Among them, we review the most relevant work to this paper
in the followings.

2.1 Relationship-Based Access Control

The early work on ReBAC models focused on specifying
simple path conditions based on relationships among users
in OSNs and other web applications [17] which may be also
composed with trust evaluation along such paths [4]. Other
models involved including more rich relational semantics avail-
able in Semantic Web [3, 22], conflict resolution on shared
resources by multiple parties [16, 15], and including objects
in addition to users in the network [6, 22]. Fong et al. [13, 12,
2] proposed a series of access control policy models (named
“ReBAC”) which are capable of expressing sophisticated topo-
logical relationships among users based on modal/hybrid
logics. While the models consider only positive authorization
rules, exceptions can be handled using negative conditions.
Inspired by the notion of principals in Unix and ReBAC, the
RPPM model [9, 10] proposed a two-step authorization pro-
cess for an access request. Access subjects are first matched
to the known principals in the policy based on path-based
conditions. Then, further path-based conditional rules de-
termine authorizations (after resolving conflicts if needed).
Finally, a recent work shows how conversion of Fong’s ReBAC
to Datalog programs [24] can help extending it to include
negative authorizations and temporal policies, and addition-
ally support simple policy analysis (in the same protection
state). Unlike the above mentioned models, the focus of our
work is to provide a clear formal model of a ReBAC protec-
tion system as a state transition machine which can be used
for security analysis. In other words, we are not seeking to
provide a better expressiveness power for ReBAC policies. In
fact, our goal is to keep the model compatible (to the extent
possible) with existing condition specification approaches.
In describing our model, we use path expressions similar to
RPPM [9].

Almost all of the work mentioned so far, consider only us-
ing topology-based conditions in policies without addressing
how such topology itself might evolve. The recent ReBAC ad-
ministrative models [30, 8] based on RPPM [9] have focused
on this missing aspect. While we also adopt ideas from these
recent models in formalizing our protection system, a clarifi-
cation is needed with regards to the use of terminology in our
model versus the previous work. While both RPPM2 [30] and
ARPPM [8] consider changes to graph of entities by users
as “administration,” we consider those as user-level changes.
We believe that only updates to ReBAC policy rules should
be considered as administrative actions, and provide a full
justification as we present our model in Section 3.

2.2 Safety and Security Analysis

The safety problem was first introduced in the context of the
access matrix protection system [14]. It was shown that for a
given access matrix (protection state) and set of commands
that make changes to the matrix (transition to new protection
states), it is generally undecidable whether a certain right will
be entered in the matrix in future (i.e., leaking). Here, leakage
of the right represents an undesirable situation that should
be avoided in a safe and secure system. Also, it was shown

while there are decidability results for restricted versions
of the problem, they are still hard problems (to solve in
polynomial time). Subsequently, other protection models
were developed with improved decidability results [28] and it
was shown that considering entity types in an access matrix
model will lead to decidable cases for safety [26]. The problem
was revisited later in the context of trust management (a
distributed approach to access control based on roles) by Li
and Winsborough [19]. They showed that universal queries
can be verified beyond existential queries such as “simple
safety” (e.g., is there a reachable state in which a user has
certain access?). For example one can query about “simple
availability” (e.g., can a certain access happen in all reachable
states?), or “containment” (e.g., will every principal having
certain access will have certain property in all reachable
states?) Therefore, the problem was renamed to “security
analysis” to include all such queries. They also showed that, in
the context of a simplified version of RT language [20], simple
safety, availability, and containment (only when language
contains simple delegations) are answerable in polynomial
time. In the context of RT, protection state is described by a
set of policy statements (membership to a role, delegation of a
role, etc.), and state transitions involve addition and removal
of such statements while the analysis prevents addition or
removal of statements about certain roles. Security analysis
has been also studied in the context of role-based access
control (RBAC) [18, 29]. Here, the protection state includes
the RBAC policy configuration (i.e., current assignments)
while transitions can be performed based on can assign and
can remove policies in administrative model, ARBAC [27].

3 RePM: RELATIONSHIP-BASED
PROTECTION MODEL

We propose a formal model of a ReBAC protection system,
which we call RePM. Following the construction of safety/se-
curity analysis problems in the literature [14, 19], our model
will be a state-transition system. Before discussing the model,
we present a running example and our design considerations
in order to facilitate discussions in the rest of the paper. Then,
we define the notion of protection state in RePM which cap-
tures the changing components of the system. And finally,
we show how the protection system model is formed together
with the non-changing parts.

3.1 Running Example

ReBAC policies are useful in many application domains. In
order to facilitate a focused discussion as we present the
model and discuss its analysis, we choose a simple running
example in a healthcare information environment. Suppose
Alice is being treated for cancer. She is receiving treatment
by her oncologist, Jane, at M-Hospital. Jane happens to be
Alice’s primary physician as well. Alice has specified Bob
and Carol as her contacts and has specifically designated
Bob as her emergency contact. Figure 1 portrays the entities
and relationships as a graph in such a scenario. We consider

Alice

Bob

Carol

treatment

M-Hospital

cancer

Jane

has-contact

has-emg-contact

has-contact

has-pcp

has-patient

has-provider

has-diagnosis

performed-at

Figure 1: Running Example – A Healthcare Scenario

the following access control policy statements applied in this
scenario:

(a) a doctor and a patient should know everything about
a treatment in which they’re involved

(b) a patient’s provider in a treatment case should know
about the patient’s primary care doctor

(c) a patient can add contacts
(d) a patient can designate contacts as emergency contact
(e) a facility at which a patient is being treated can in-

form a patient’s emergency contact about the patient’s
diagnosis when needed

The above rules may not capture all security requirements.
However, we note that the number of rules even for such a
simple scenario increases fast, which demonstrates the need
for policy and security analysis.

In the rest of the paper we refer to the above scenario as
the running example and omit an explicit reference to this
section.

3.2 Design Considerations

Our main goal in the design of the RePM model is to for-
malize the necessary elements and structure in a ReBAC
environment that are important in reasoning about its se-
curity properties. Therefore, RePM is not supposed to be
yet another model to capture more expressive authorization
or administrative policies. It is rather designed to be a com-
prehensive model that can incorporate or be easily extended
based on various proposals in the literature. As a fundamen-
tal design principle, we intend to keep the proposed model as
simple as possible, mainly to avoid overcomplicated presenta-
tion and to facilitate compatibility with the existing ReBAC
models in the literature. For example, as we define policies,
we avoid using keywords such as “*” that may match with
any values. While such notions are useful for convenience
purpose, they are not necessary for analysis purpose as long
as policies can be equivalently expressed without them.

We also intend to maintain some separation between func-
tional and security aspects of a system. Since ReBAC policies
can benefit from a rich amount of information about entities
and their relationships in the system, typically, there will
be a significant overlap between information model from a
functional perspective (for providing application functions)
and information model from a security perspective (for decid-
ing about authorizations). However, we intentionally avoid
inclusion of any non-security requirement in our protection
model in order to keep the model simple. For example, some
data integrity requirements such as functional validity of a
specific type of relationship between two types of entities
may be accommodated by mechanisms other than access
control (e.g., in a database environment) and so they will be
excluded from our model. However, we acknowledge that any
restrictions enforced on evolution of a system may affect its
security analysis and we plan to address such considerations
as future work.

3.3 System Graph

A protection state in RePM needs to capture the current
state of user authorizations. Authorizations in ReBAC are
derived based on the authorization rules which test some
specified conditions about entity relationships in the system.
Entities include users as well other logical resources in the
application that need to be represented in the protection
state. Therefore, a protection state needs to capture entities,
relationships among them, and authorization policy.

A natural way to capture entities and their relationships
is a graph structure. For this purpose, we follow a similar
formulation as in RPPM [9, 10].

Definition 3.1 (System Graph). Given a set of relationship
labels LR, a system graph is a pair of vertices and edges
⟨V,E⟩, where V is the set of entities, and E ⊆ LR × V × V
is the set of labeled relationships between entities.

We previously illustrated the system graph for our running
example in Figure 1. We should note that in the rest of
the paper we use dot notation to refer to elements within
a concept. For instance, G.V refers to the set of vertices in
system graph G.

The system graph, as defined above, is limited to directed
and typed edges. We note that it can be extended by notions
such as symmetric relationships and typed vertices [10] among
other possibilities (e.g., see the variations explored in [1]).
However, for simplicity we limit our model as above. Also,
it is noteworthy that unlike RPPM [9] we do not consider a
system model alongside an instantiated system graph. From
a logics point of view, a model and its instantiated version
can be seen as TBox and ABox, respectively. The integrity
constraints that need to be enforced according to a TBox
(e.g., a has-pcp relationship is only meaningful between two
users and not between a user and a resource) will be trivial
to enforce and will be outside of the scope of our model.

One of the features of applications that benefit from Re-
BAC policies is the overlap between application and pro-
tection state. For instance, while the system graph for the

running example (Figure 1) is part of the protection state
it also captures data that will be utilized in the application
(e.g., in order to look up contacts of a patient). In RePM, we
assume the overlap is complete in the way that the applica-
tion resources that need to be protected have been already
represented in the system graph. This assumption has been
validated in application areas beyond online social networks
such as in an open-source medical record system [25].

Moreover, we consider edges (or relationships) as the main
protected resources. This allows RePM to be able to specify
authorizations for “viewing” edges; for instance, that Jane is
Alice’s PCP in the running example (i.e., seeing relationship
has-pcp between Alice and Jane). Existing formal ReBAC
models such as Fong’s ReBAC [12] and RPPM [9] consider
only vertices as access objects while specifying policies ac-
cording to relationship-based conditions. Such models are
not be able to model authorization policies for edges as men-
tioned in the above example. It should be noted that while
recent ReBAC administrative models such as RPPM2 [30]
and ARPPM [8] include update to edges as part of administra-
tion, the administrative actions naturally include “insertion”/
“removal” of edges and exclude “viewing” edges.

3.4 Authorization Policy

Since the system graph captures the protected resources, we
consider any access attempt to the graph (including modi-
fication to it) as an access request. Modification to system
graph has been termed as “administrative action” by recent
works such as RPPM2 [30] and ARPPM [8]. However, we
see it as modification of the application resources which also
happens to be part of the information used to decide about
authorization (known as ADI or access decision information
in standard access control frameworks [11]). We consider six
primitive operations that capture the basic modes of access
to the graph. They include viewing, inserting, or deleting a
vertex or an edge. In order to simplify presentation, following
the approach in ARPPM [8], we focus on the operations
on edges only (although ARPPM only considers them in
the context of “administrative actions”). We assume that a
vertex is inserted upon creation of its first edge and removed
when all of its edges have been removed. Furthermore, we
assume that viewing a vertex without its edges would not
reveal any sensitive information.

Definition 3.2 (Access Request). An access request is a
triple ⟨s, ⟨rl, vs, vd⟩, op⟩, where subject s ∈ V is requesting
to perform operation op (view/insert/remove) on an edge
expressed as a tuple of type rl ∈ LR between vs, vd ∈ V .

A sample access request in the running example is as
follows.

⟨M-Hospital, ⟨has-emg-contact, Alice, Bob⟩, view⟩
We clarify that an access request is not directly formulated by
a subject in the system, but rather by the reference monitor
that authorizes the request. The mention of Bob in the
above request does not mean that M-Hospital already knows
about Alice’s emergency contact; the reference monitor has

formulated the request to authorize revealing the relationship
to M-Hospital.

An access request needs to be evaluated against an autho-
rization policy comprising of authorization rules. Authoriza-
tion rules in ReBAC test relationship-based conditions based
on an incoming access request.

Definition 3.3 (Authorization Rule). An authorization rule
is a tuple ⟨ϕ, rl, op, d⟩, where ϕ is a matching condition based
on an access request, rl is the relationship label, op is a
primitive operation on system graph (view/insert/remove),
and d is an authorization decision (grant/deny).

Relationship label rl and primitive operation op in an au-
thorization rule are matched against their counterparts in an
incoming access request in order to determine the applicabil-
ity of the rule. Various proposals exist in the literature for
expressing the matching condition ϕ stated above, including
modal/hybrid logic approach of Fong’s ReBAC [12, 2] and
path expressions in ARPPM [8]. While we envision RePM to
be neutral in the choice of matching conditions, the choice
of language is important in determining the complexity of
its security analysis. In this paper, we will adopt a slightly
simplified version of path expressions of ARPPM [8] in order
to formulate our examples and discuss results further below.

Definition 3.4 (Path Condition). A path is constructed
using the following syntax:

π ::= ⊤ | ⋄ | rl | rl;π | π

where rl ∈ LR is a relationship label. A path condition is a
a logical conjunction of one or more expressions of format
u.π.v where given a system graph G, an access request q,
u, v ∈ G.V we have:

• G, q |= ⊤;
• G, q |= u. ⋄ .v iff u = v;
• G, q |= u.rl.v iff ⟨rl, u, v⟩ ∈ G.E;
• G, q |= u.rl;π.v iff there exists w ∈ G.V such that
G, q |= u.rl.w and G, q |= w.π.v;

• G, q |= u.π.v iff G, q |= v.π.u.

Informally, the expressions above, respectively model the
always-true condition, test for same vertices, a relationship,
concatenation of a relationship and a path, and the inverse
of a path.

In the above definition, u and v can either represent spe-
cific vertices (e.g., Alice) or vertex elements of access re-
quest tuple q (i.e., s, vs, and vd). For instance, the following
captures the authorization rule corresponding to the policy
statement (c) in the running example. Here, s. ⋄ .vs means
that subject s is the same as the source vertex for the edge:

⟨s. ⋄ .vs, has-contact, insert, grant⟩

Given a set of authorization rules, an authorization policy
is defined as follows.

Definition 3.5 (Authorization Policy). An authorization
policy is a pair ⟨R, σ⟩, where R is a set of authorization rules
and σ is a conflict resolution strategy.

When multiple rules within set R with conflicting decisions
become applicable to an access request, we use strategy σ to
resolve the conflict. For example, deny-takes-precedence is a
well-known access control conflict resolution approach that
adheres to the principle of fail-safe defaults in security.

3.5 Protection State

We formally define a protection state based on system graph
and authorization policy as follows.

Definition 3.6 (Protection State). A protection state is a
pair ⟨G,P ⟩, where G is the system graph capturing entities
and relationships among them, and P is an authorization
policy which controls operations on G.

Note that the protection state as defined above encom-
passes both authorization decision information (system graph)
and authorization policy. The authorization policy needs to
be enforced when changes to the system graph are requested.
Furthermore, the authorization policy may be updated over
time by performing administrative operations.

3.6 Administrative Policy

The RePM protection system comprises of the protection
state and an administrative policy that allows modifications
to the authorization policy (a component in the protection
state). In terms of modifications to authorization policy,
we define two primitive administrative operations: namely,
insertion and removal of an authorization rule. We assume
the administration is distributed and performed by entities
represented in the system graph.

Definition 3.7 (Admin Request). An admin (access) re-
quest is a triple ⟨s, pr, op⟩, where subject s ∈ V is requesting
to perform primitive administrative operation op (insert/
remove) on authorization rule pr, which is specified as a tuple
as in Definition 3.3.

We define the administrative authorization rules and policy
analogous to their non-administrative counterparts.

Definition 3.8 (Administrative Rule). An administrative
rule is a tuple ⟨ϕ, ϕpr, rlpr, oppr, dpr, op, d⟩, where ϕ is a
matching condition based on an admin request, op is a prim-
itive administrative operation (insert/remove), and d is an
administrative decision (grant/deny). The elements with pr
subscript indicate matching component in the authorization
rule pr provided in the administrative request.

Based on an incoming administrative request ⟨s, pr, op⟩,
four sets of checks need to be completed in order to determine
applicability of an administrative rule to the request. First,
the primitive operation of an administrative rule should be
the same as in the request. Second, condition ϕ is tested
which may include tests on relationships about subject s
in the admin request. Third, components rlpr, oppr, and
dpr are checked for equivalence against their counterparts
within the requested pr rule in the request. Finally, ϕpr is
tested to establish if it is less than or equally specific to its
counterpart in the request’s pr. Here, the idea is that an

administrative request is allowed as long as it is more specific
than what an administrative rule authorizes. In other words,
ϕpr specifies the most generic authorization rule (based on
relationship-based conditions) that can be inserted/removed
from the policy by the specified administrators. This captures
the strictness order proposed in RPPM2 [30].

The policy statement (e) in the running example is an
administrative policy which updates the authorization policy
by allowing emergency contact of a patient to see the diag-
nosis. For instance, when needed, M-Hospital needs to add
the following authorization rule to the policy so that Alice’s
emergency contact, Bob, can view her diagnosis:

⟨Alice.has-emg-contact.s ∧ vs.has-patient.Alice,

has-diagnosis, view, grant⟩
Note that the above rule is an authorization rule according

to Definition 3.3 which ensures that subject s is Alice’s
emergency contact, and the starting vertex vs of the protected
resource (has-diagnosis edge) is Alice’s treatment. Now, an
administration rule that authorizes addition of the above rule
to the authorization policy is as follows.

⟨s.performed-at; has-patient.$x,
$x.has-emg-contact.s ∧ vs.has-patient.$x,

has-diagnosis, view, grant, insert, grant⟩

Note that we consider free variables such as $x in the
syntax for administrative rules in order to support flexible
administrative policies. It should be clear that when $x in
the above administrative rule is bound to Alice, M-Hospital
will be able to insert the previous authorization rule.

Finally, given a set of administrative rules, an administra-
tive policy is defined as follows.

Definition 3.9 (Administrative Policy). An administrative
authorization policy is a pair ⟨AR, σ⟩, where AR is a set of
administrative rules and σ is a conflict resolution strategy.

3.7 Protection System

We now formally define a RePM protection system as follows.

Definition 3.10 (Protection System). A RePM protection
system is defined by a pair ⟨PS,AP ⟩, where PS represents
the possible protection states and AP is an administrative
policy. AP authorizes administrative operations applicable
to the authorization policy at a state ps, i.e., ps.P .

In each state of the system ps, exercise of an operation on
system graph ps.G is authorized by ps.P , and if allowed, will
result in transition to a new protection state (with an updated
ps.G). At the same time, each exercise of an administrative
action authorized by AP will also result in transition to a
new protection state (with an updated ps.P).

4 SECURITY ANALYSIS IN RePM

In this section, we formulate security analysis problem in
the context of RePM. In order to facilitate discussions about
security analysis, we first provide an illustration of a the

RePM protection model. Figure 2 depicts a fairly complex
state-transition system of RePM using a small synthetic ex-
ample. In the figure, each node (ellipse shape) represents a
protection state, which includes both system graph G and au-
thorization policy P . Each solid arrow indicates possibility of
transition from one state to another. The dashed circles show
logical groupings of states based on same authorization policy
pi. The transitions in the protection system are controlled by
the enforced policies. While transitions within a logical group
are restricted by authorization policy pi, transitions across
logical groups are restricted by administrative policy AP .
Note that administrative policy AP is considered constant
(or only updated by trusted users). However, authorization
policy can be updated according to AP , and for that reason,
it is considered constant only within each logical circle in the
figure.

4.1 Factors Affecting Analysis

In this section, we informally discuss about the security
analysis problem in the context of RePM and contributing
factors to its expressiveness and complexity.

Query target A security analysis query should be about
properties of protection states. In RePM, given the
structure of a protection state γ = ⟨G,P ⟩ the query
can be about system graph G, or valid authorizations
based on authorization policy P . We call them graph
queries and authorization queries, respectively. In the
context of the running example, “whether a person
can be a patient’s PCP and her emergency contact
at the same time” is a graph query. An example of
authorization query is that whether a regular contact
will be able to learn about a patient’s illness.

Query formulation One of the strengths of ReBAC is its
ability to specify powerful conditions based on system
graph. This feature can be utilized in security analysis
queries to precisely characterize an entity (group of
entities) of interest based on its (their) relationships
at the desired level of specificity. For example, one can
ask if at any point any doctor will have more access
to treatment information than the involved patients.
While this enables much more flexible queries compared
to the existing security analysis approaches (for exam-
ple in case of ARBAC [18]), it adds to the complexity
of answering such queries.

Existential vs. universal query We expect both existen-
tial and universal queries to be useful. Such quantifiers
are applicable both to system states and queries.

Policy syntax The richness of both authorization and ad-
ministrative policies in RePM will affect the complexity
of security analysis. That includes support for expres-
sions based on system graph in the conditions, and
whether rules will be positive-only or a mixture of
positive and negative rules accompanied by a conflict
resolution strategy.

G1, P1

G2, P1

G3, P1

G1, P2

G2, P2

G3, P2

P1

P1

P1

P2

P2

AP

AP

AP

.

Figure 2: RePM State Transition System

Authorization policy update RePM supports modifica-
tion of the authorization policy using the administra-
tive policy, which is assumed to be constant itself (or
modified only by trusted users). This is natural in
ReBAC environments. For example, OSN users may
specify their own authorization policies for their data
(privacy settings). At the same time, they only have
a fixed amount of administrative power on specifying
such policies. We also envision ReBAC systems which
may not need such administrative capability. We there-
fore, consider and analyze a class of systems with no
administrative policy as well.

4.2 Security Analysis Problem

In order to formulate the security analysis problem in the
context of RePM, we adopt the following two definitions
of access control scheme and security analysis, originally
presented in the context of RBAC [19].

Definition 4.1 (Access Control Scheme [19]). An access
control scheme is a state-transition ⟨Γ, Q,⊢,Ψ⟩, where Γ is
set of states, Q is set of queries, ⊢ is an entailment relation
⊢: Γ×Q→ {true, false} that determines whether a query
is true or not in a given state, and Ψ is the set of the possible
schemes for state transitions.

In the above definition, ψ ∈ Ψ is a state-change rule, i.e.,

a policy. We write γ
∗7−→ψ γ1 if starting from state γ we reach

state γ1 after zero or more transitions allowed by ψ.

Definition 4.2 (Security Analysis [19]). Given an access
control scheme ⟨Γ, Q,⊢,Ψ⟩ a security analysis instance takes
the form ⟨γ, q, ψ,Π⟩, where γ ∈ Γ is a starting state, q ∈ Q
is a query, ψ ∈ Ψ is a state-change rule, and Π ∈ {∃, ∀} is a
quantifier. An instance ⟨γ, q, ψ,∃⟩ asks whether there exists

γ1 where γ
∗7−→ψ γ1 and γ1 ⊢ q. An instance ⟨γ, q, ψ, ∀⟩ asks

whether for every γ1 such that γ
∗7−→ψ γ1 and γ1 ⊢ q.

As discussed in Section 4.1, there are many contributing
factors to security analysis problem for ReBAC policies which

can lead different formulations of the problem. In the follow-
ings, we introduce RePM-specific security analysis problems
by specifying elements of an access control scheme (Defi-
nition 4.1). In particular, we define two classes of security
analysis problems in the context of RePM based on different
query targets. The first class uses graph queries as targets.

Definition 4.3 (RePM Security Analysis with Graph Query
Target). A RePM security analysis based on a graph query
is defined according to the following access control scheme:

states A state γ is a pair ⟨G,P ⟩ of a system graph and an
authorization policy.

state-transition rules A state transition ψ includes both
authorization policy P and administrative policy AP .

queries A graph query is a tuple qg = ⟨ϕ, rl,Π′⟩, where ϕ
is a matching condition based on Definition 3.4, rl is a
relationship label, and Π′ ∈ {∃, ∀} is a quantifier. Vari-
ables vs and vd can be used in ϕ to express beginning
and ending vertices of an edge with label rl.

entailment An existential graph query (where Π′ = ∃) en-
tails true if and only if there exists an edge ⟨rl, vs, vd⟩
in the system graph that satisfies matching condition
ϕ. A universal graph query (where Π′ = ∀) entails true
if and only if all edges ⟨rl, vs, vd⟩ in the system graph
satisfy matching condition ϕ.

Note the distinction between quantifiers Π and Π′ in Defi-
nitions 4.2 and 4.3, respectively. While the former quantifies
future states, the latter quantifies edges in the system graph
at a given state. The combination of the two quantifiers leads
to four different types of analysis.

As an example of an existential security analysis (Π = ∃),
based on an existential graph query (Π′ = ∃), we may ask:
“Would it be possible that some patient’s PCP be her emer-
gency contact as well?” Such an analysis can be formulated
as follows.

⟨γ, ⟨vs.has-emg-contact.vd, has-pcp, ∃⟩, ψ, ∃⟩
The other variations of the above analysis that can be for-
mulated are as follows. For brevity, we avoid repeating the
analysis expressions.

• (Π = ∀; Π′ = ∃) Is it always the case that some patient’s
PCP is her emergency contact as well?

• (Π = ∃; Π′ = ∀) Would it be possible that every pa-
tient’s PCP be their emergency contacts as well?

• (Π = ∀; Π′ = ∀) Is it always the case that every pa-
tient’s PCP are their emergency contacts as well?

We present our second RePM-specific security analysis
problem based on authorization queries.

Definition 4.4 (RePM Security Analysis with Authorization
Query Target). A RePM security analysis based on an au-
thorization query is defined according to the following access
control scheme:

states A state γ is a pair ⟨G,P ⟩ of a system graph and an
authorization policy.

state-transition rules A state transition ψ includes both
authorization policy P and administrative policy AP .

queries An authorization query is a tuple qa = ⟨ϕ, rl, op, d,Π′⟩,
where ϕ, rl, op, and d are same as in an authorization
rule (Definition 3.3), and Π′ ∈ {∃, ∀} is a quantifier.

entailment An existential authorization query qa entails
true if and only if γ1.P (authorization policy in state
γ1) and corresponding authorization elements in qa
result in consistent authorization decision for an appli-
cable access request. A universal authorization query
qa entails true if and only if γ1.P and qa result in
consistent authorization decisions for every applicable
access request.
Consistent decisions for a policy and qa means that ei-
ther both grant or both deny the applicable access(es).

As an example of a universal analysis, based on a universal
authorization query, we may ask: “Will patients always be
able to see their diagnosis?” The analysis will be formulated
as follows.

⟨γ, ⟨vs.has-patient.s, has-diagnosis, view, grant, ∀⟩, ψ, ∀⟩

5 SAFETY ANALYSIS IN RePMG

As a sample security analysis problem for ReBAC policies, we
study a safety problem in a limited version of RePM, which
we call RePMG. In RePMG, there is no administrative policy,
i.e., AP = ∅. This means that authorization policy is never
updated or only updated by trusted administrators. Actions
taken by trusted administrators are excluded from security
analysis as they are assumed to avoid any breach of security.

The safety problem in RePMG that we consider in this
section is a graph query that asks whether at any future
state a certain edge will exist in the system graph. We de-
fine the problem as follows, as a subclass of the problem in
Definition 4.3.

Definition 5.1 (Edge Safety Problem in RePMG). Edge
safety problem in RePMG is a simplified version of RePM
security analysis problem with graph query target according
to the following access control scheme:

states A state γ is modeled as system graph G.

state-transition rules A state transition ψ is modeled us-
ing authorization policy P .

queries The edge safety query qg can be formulated as the
following graph query: ⟨⊤, rl, ∃⟩

Theorem 5.2. The edge safety problem in RePMG is de-
cidable.

We can prove the above theorem by reducing the safety
problem in RePMG to the safety in the mono-operational case
of the HRU model [14]. A sketch of the proof is as follows.

Proof Sketch. Given an instance of safety problem in
RePMG, we build an HRU protection system by convert-
ing system graph G to an access control matrix and each
authorization rule with insert/remove primitive operations
to a command in the context of HRU model. We note that
an authorization rule with a view primitive operation does
not result in changing the protection state. It is sufficient
to represent system graph G as its adjacency matrix in or-
der to convert it to its access matrix equivalent. The result
will be a square matrix M , where l ∈ M [x, y] if and only
if ⟨l, x, y⟩ ∈ G.E. Note that in terms of access matrix this
means subject x will have right l on object y. Given the struc-
ture of an access request ⟨s, ⟨rl, vs, vd⟩, op⟩, an authorization
rule pr = ⟨ϕ, rl, op, grant⟩ ∈ P is converted to the following
command:

command auth_cmd_pr(s, rl, vs, vd, w1, . . . , wt)

{

if Φ then

OP(rl, vs, vd)

}

In the above, primitive operation OP will correspond to op
in the authorization rule. The condition Φ will translate path
condition ϕ in the authorization rule into a series of tests
for presence of rights in the access matrix as follows. Let
ϕi = ui.πi.vi be the ith operand of the conjunction in ϕ.
According to Definition 3.4, ϕi has format u.l1; l2; . . . ; lk.v,
which can be unfolded into a conjunction

u.l1.w1 ∧ w1.l2.w2 . . . ∧ wk−1.lk.v

We create a conjunctive expression consisting of tests on
access matrix corresponding to each operand x.li.y as follows:

• x = y if li = ⋄;
• li ∈M [x, y] if li ∈ LR;

• li ∈M [y, x] if li = l′i and l
′
i ∈ LR.

This will capture ϕi in terms of access matrix. Finally, we
consider Φ to be the conjunctive statement containing all
such corresponding ϕis. Arguments w1 . . . wt in the command
correspond to placeholder vertices that are used in the con-
struction of individual tests described above. The count of
them will depend on the length of the paths tested in the
path condition. Now, test Φ on access matrix is equivalent
to matching condition ϕ in RePMG.

In this setting, leaking a right in the context of the con-
structed HRU model is equivalent to insertion of the equiva-
lent edge in system graph G. The constructed HRU model

is a mono-operational HRU protection system, therefore the
same process that can decide about it [14] can decide about
safety in RePMG. □

Note that, in the above proof sketch, we have slightly
deviated from the syntax of commands in the HRU model.
The HRU commands do not consider tests for equivalency of
arguments. However, including such tests will not compromise
the original proof of decidability presented in [14]. We recall
that the main argument of the original proof is that by
considering the creation of only one new subject instead of
many possible creations, the leak can be still achieved (if
possible at all). If we substitute the newly created subject s1
in place of any other subject that might have been potentially
created, say s2: as long as tests for an equivalency test x = s2
is replaced with x = s1, if x = s2 was able to a leak a right,
x = s1 will lead to a leak too.

6 CONCLUSION

It is critical to formally analyze safety and security of an
access control policy system in order to ensure that it provides
the expected security. Reasoning about security of complex
ReBAC policy systems as they evolve can mitigate many
challenges with which such systems are already facing. For
example, it can potentially resolve uncertainties that both
users and provider of an online social network may have about
future security and privacy behaviors in the system. In this
work, we presented a first formulation of security analysis
problem in the context of ReBAC systems by formalizing
a ReBAC protection system, RePM. We also showed the
decidability of edge safety problem in a limited version of
RePM.

There are many exciting challenges to be addressed as
future work including improving generalizability of the RePM
model, investigating various subclasses of the security analysis
problem in this context, and studying application of such
analysis on real-world systems.

ACKNOWLEDGMENTS

We would like to thank the anonymous reviewers for their
valuable comments and helpful suggestions that guided us in
improving the final manuscript.

REFERENCES

[1] T. Ahmed, R. Sandhu, and J. Park. Classifying and
Comparing Attribute-Based and Relationship-Based
Access Control. In Proceedings of the Seventh ACM
on Conference on Data and Application Security and
Privacy, CODASPY ’17, pages 59–70, New York, NY,
USA. ACM, 2017.

[2] G. Bruns, P. Fong, I. Siahaan, and M. Huth. Relationship-
based Access Control: Its Expression and Enforcement
Through Hybrid Logic. In Proceedings of the Second
ACM Conference on Data and Application Security and
Privacy, CODASPY ’12, pages 117–124, New York, NY,
USA. ACM, 2012.

[3] B. Carminati, E. Ferrari, R. Heatherly, M. Kantar-
cioglu, and B. Thuraisingham. A semantic web based
framework for social network access control. In Proc.
14th ACM Symposium on Access Control Models and
Technologies, pages 177–186. ACM, 2009.

[4] B. Carminati, E. Ferrari, and A. Perego. Enforcing
access control in Web-based social networks. ACM
Trans. Inf. Syst. Secur., 13(1):1–38, Nov. 2009. issn:
1094-9224.

[5] B. Carminati, E. Ferrari, and A. Perego. Rule-Based
Access Control for Social Networks. In R. Meersman, Z.
Tari, and P. Herrero, editors, Proc. OTM 2006 Work-
shops (On the Move to Meaningful Internet Systems),
volume 4278 of LNCS, pages 1734–1744. Springer, Oct.
2006.

[6] Y. Cheng, J. Park, and R. Sandhu. Relationship-Based
Access Control for Online Social Networks: Beyond
User-to-User Relationships. In Proc. 2012 International
Conference on Privacy, Security, Risk and Trust and
2012 International Confernece on Social Computing,
pages 646–655, Sept. 2012.

[7] M. Cramer, J. Pang, and Y. Zhang. A Logical Approach
to Restricting Access in Online Social Networks. In Pro-
ceedings of the 20th ACM Symposium on Access Control
Models and Technologies, SACMAT ’15, pages 75–86,
New York, NY, USA. ACM, 2015.

[8] J. Crampton and J. Sellwood. ARPPM: Administra-
tion in the RPPM Model. In Proceedings of the Sixth
ACM Conference on Data and Application Security and
Privacy, CODASPY ’16, pages 219–230, New York, NY,
USA. ACM, 2016.

[9] J. Crampton and J. Sellwood. Path Conditions and
Principal Matching: A New Approach to Access Con-
trol. In Proceedings of the 19th ACM Symposium on
Access Control Models and Technologies, SACMAT ’14,
pages 187–198, New York, NY, USA. ACM, 2014.

[10] J. Crampton and J. Sellwood. Relationships, Paths
and Principal Matching: A New Approach to Access
Control. arXiv:1505.07945 [cs], May 29, 2015. arXiv:
1505.07945;.

[11] eXtensible Access Control Markup Language (XACML)
Version 3.0, OASIS, 2013.

[12] P. W. Fong. Relationship-based access control: protec-
tion model and policy language. In Proc. CODASPY
’11, pages 191–202, San Antonio, TX, USA. ACM, 2011.

[13] P. W. Fong and I. Siahaan. Relationship-based access
control policies and their policy languages. In Proc.
16th ACM Symposium on Access Control Models and
Technologies, SACMAT ’11, pages 51–60, Innsbruck,
Austria. ACM, 2011.

[14] M. A. Harrison, W. L. Ruzzo, and J. D. Ullman. Protec-
tion in operating systems. Commun. ACM, 19(8):461–
471, Aug. 1976. issn: 0001-0782.

[15] H. Hu, G. J. Ahn, and K. Kulkarni. Discovery and
Resolution of Anomalies in Web Access Control Poli-
cies. IEEE Transactions on Dependable and Secure
Computing, 10(6):341–354, Nov. 2013. issn: 1545-5971.

http://arxiv.org/abs/1505.07945;

[16] H. Hu and G.-j. Ahn. Multiparty Authorization Frame-
work for Data Sharing in Online Social Networks. In
Y. Li, editor, Proceedings of the 25th Annual IFIP WG
11.3 Conference on Data and Applications Security and
Privacy, volume 6818 of Lecture Notes in Computer
Science, pages 29–43. Springer Berlin / Heidelberg,
2011.

[17] S. R. Kruk. FOAF-Realm: control your friends access
to the resource. In Workshop on Friend of a Friend,
Social Networking and the Semantic Web, 2004.

[18] N. Li and M. V. Tripunitara. Security Analysis in Role-
based Access Control. In Proceedings of the Ninth ACM
Symposium on Access Control Models and Technologies,
SACMAT ’04, pages 126–135, New York, NY, USA.
ACM, 2004.

[19] N. Li andW. H. Winsborough. Beyond proof-of-compliance:
safety and availability analysis in trust management.
In Proceedings of the 2003 Symposium on Security and
Privacy, pages 123–139, May 2003.

[20] N. Li, W. H. Winsborough, and J. C. Mitchell. Dis-
tributed credential chain discovery in trust manage-
ment. Journal of Computer Security, 11(1):35–86, Jan. 1,
2003. issn: 0926-227X.

[21] D. Lin, P. Rao, E. Bertino, N. Li, and J. Lobo. EXAM:
a comprehensive environment for the analysis of access
control policies. International Journal of Information
Security, 9(4):253–273, Aug. 2010. issn: 1615-5262.

[22] A. Masoumzadeh and J. Joshi. OSNAC: An Ontology-
based Access Control Model for Social Networking
Systems. In Proc. 2nd IEEE Int’l Conference on In-
formation Privacy, Security, Risk and Trust (PASSAT
2010), pages 751–759, Minneapolis, MN, USA, Aug.
2010.

[23] T. Nelson, D. J. Dougherty, C. Barratt, and K. Fisler.
The Margrave Tool for Firewall Analysis. In Proceed-
ings of the 24th USENIX Large Installation System
Administration Conference (LISA 2010), 2010.

[24] E. Pasarella and J. Lobo. A Datalog Framework for
Modeling Relationship-based Access Control Policies.
In Proceedings of the 22Nd ACM on Symposium on
Access Control Models and Technologies, pages 91–102,
New York, NY, USA. ACM, 2017.

[25] S. Z. R. Rizvi, P. W. Fong, J. Crampton, and J. Sell-
wood. Relationship-Based Access Control for an Open-
Source Medical Records System. In Proceedings of the
20th ACM Symposium on Access Control Models and
Technologies, SACMAT ’15, pages 113–124, New York,
NY, USA. ACM, 2015.

[26] R. S. Sandhu. The typed access matrix model. In Pro-
ceedings 1992 IEEE Computer Society Symposium on
Research in Security and Privacy, pages 122–136, May
1992.

[27] R. S. Sandhu, V. Bhamidipati, and Q. Munawer. The
ARBAC97 Model for Role-Based Administration of
Roles. ACM Transactions on Information and Systems
Security, 2(1):105–135, 1999.

[28] R. S. Sandhu. The Schematic Protection Model: Its Def-
inition and Analysis for Acyclic Attenuating Schemes.
J. ACM, 35(2):404–432, Apr. 1988. issn: 0004-5411.

[29] A. Sasturkar, P. Yang, S. D. Stoller, and C. R. Ramakr-
ishnan. Policy analysis for administrative role based
access control. In Proceedings of the 19th IEEE Com-
puter Security Foundations Workshop (CSFW’06), 13
pp.–138, 2006.

[30] S. D. Stoller. An Administrative Model for Relationship-
Based Access Control. In SpringerLink. IFIP Annual
Conference on Data and Applications Security and
Privacy, pages 53–68. Springer, Cham, July 13, 2015.

	Abstract
	1 Introduction
	2 Related Work
	2.1 Relationship-Based Access Control
	2.2 Safety and Security Analysis

	3 []: Relationship-Based Protection Model
	3.1 Running Example
	3.2 Design Considerations
	3.3 System Graph
	3.4 Authorization Policy
	3.5 Protection State
	3.6 Administrative Policy
	3.7 Protection System

	4 Security Analysis in []
	4.1 Factors Affecting Analysis
	4.2 Security Analysis Problem

	5 Safety Analysis in [G]
	6 Conclusion
	Acknowledgments

