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ABSTRACT
Recent access control models such as attribute-based access control

and relationship-based access control allow flexible expression of

authorization policies using the concepts of rules and conditional

expressions. The independent nature of policy rules from each

other and the amount of flexibility that they enjoy (e.g., the type of

conditional expressions they support and whether they can permit

or deny matching requests) make those policies quite expressive.

But how expressive are they? Do we need to enable all possible

flexibilities in a rule-based model to achieve the maximum possible

expressiveness? Answering such questions is essential in making

informed decisions when designing new models or choosing ex-

isting models for implementation. In this paper, we propose an

approach towards answering those questions by developing a novel

theory for capturing the semantics of rule-based policies depending

on their support of different constructs such as flexibility of con-

ditional expressions, rule modalities, and conflict resolution. Our

formal policy semantics model enjoys an intuitive design that can

capture the semantics of various rule-based policies. We show the

well-formedness properties of such semantics and how they can

be used to analyze the expressive power of a number of rule-based

models.
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• Security and privacy→ Formal securitymodels;Authoriza-
tion; Access control.

KEYWORDS
conditions, conditional expressions, expressiveness, policy analysis,

rule-based access control, semantics

ACM Reference Format:
Amirreza Masoumzadeh, Paliath Narendran, and Padmavathi Iyer. 2021.

Towards a Theory for Semantics and Expressiveness Analysis of Rule-Based

Access Control Models. In Proceedings of the 26th ACM Symposium on Access
Control Models and Technologies (SACMAT) (SACMAT ’21), June 16–18, 2021,
Virtual Event, Spain.. ACM, New York, NY, USA, 11 pages. https://doi.org/

10.1145/3450569.3463569

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

SACMAT ’21, June 16–18, 2021, Virtual Event, Spain.
© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-8365-3/21/06. . . $15.00

https://doi.org/10.1145/3450569.3463569

1 INTRODUCTION
Access control policies determine authorized operations in com-

puting systems. An access control policy is defined in the context

of an access control model which provides a blueprint of how the

policy must be designed and how it must be interpreted (i.e., what

its semantics is). A common theme for the design of modern access

control models is specifying policies in terms of a collection of rules.

Each rule typically has a conditional expression that can flexibly

determine the applicability of the rule to access requests and a

certain effect that directs the access control decision. We call such

models rule-based access control. For example, an attribute-based

access control (ABAC) model [10, 28, 27] is a rule-based model that

uses conditional expressions that test subject and object attributes.

A relationship-based access control model [12, 7] uses conditional

expressions that test paths on a graph of system entities (that can

be subjects or objects).

Regardless of the concrete conditional expression model used by

a rule-based access control model, we are interested in understand-

ing how factors such as rule composition affect the expressiveness

of the model. For instance, a model can allow rules to test for the

negation of a condition (i.e., the rule will be applicable when the

condition does not hold). Also, the effect of applicable rules may be

flexible to permit or deny matching access requests. In such cases,

there needs to be a conflict resolution strategy. Does allowing both

permit and deny rules add to the expressive power of a model? How

does the choice of conflict resolution strategy affect the expressive-

ness? Assume that we intend to develop a new rule-based model

or extend an existing one. How can we decide about including

features in the model? Similarly, security developers who intend to

implement rule-based access control models in their systems need

to decide about the support of various features.

To the best of our knowledge, there is currently no formal ap-

proach to answer the above (and other similar) questions about

the expressiveness of rule-based models. In order to address this

problem, we propose a novel theory for capturing the semantics

of rule-based access control policies. While formally capturing the

semantics of policies, the proposed approach enjoys a simple pre-

sentation and allows for intuitive characterization of policies. We

demonstrate how to characterize the expressive power of different

rule-based policy models in the context of this semantics model.

We make the following specific contributions in this work:

• We present a framework of rule-based access control policy

models that, depending on the choices of conditional expres-

sions, rule modality, conflict resolution strategy, and default

decision, leads to different rule-based models. We analyze

the expressiveness properties of six of those models in this
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paper. We have named those models as Negation, DDDO,

DPPO, DDPO, DPDO, and DDFA.

• We develop a theory for representing the semantics of rule-

based policies based on a set of conditional expression units,

which we call condition minterms. Such a semantics model

can be used to compare the semantics of policies (even when

they are expressed using different models), and the expres-

sive power of models. We show how the semantics of policies

in our specific rule-based models can be derived.

• One of the interesting aspects of the proposed semantics

model is that the semantics of rules and policies can be

characterized based on their well-formedness properties. We

show how such policy forms and policy shapes can be utilized
to provide a formal and intuitive understanding of policy

behavior and expressiveness.

• We formally prove and present our first set of expressiveness

results obtained based on the proposed policy semantics

model for the selected rule-based models in this paper. In

particular, we show that Negation and DDFA are the most

expressive models, while others can express proper subsets

of the policy semantics space.

The rest of the paper is organized as follows. We present a frame-

work of rule-based access control policy models in Section 2. We

introduce and formalize the semantics of rule-based policies in

terms of condition minterms in Section 3, and characterize their

well-formedness properties in Section 4. In Section 5, we provide

formal expressiveness analyses of a number of rule-based policy

models. In Section 6, we present a concrete use case scenario of rule-

based policies to demonstrate the implications of the expressive

power of models. We further discuss about our choices of policy

models and implications of our results in Section 7. Finally, we pro-

vide an overview of closely related work in Section 8, and discuss

our contributions and future work in Section 9.

2 FRAMEWORK OF RULE-BASED POLICY
MODELS

In this section, we present a general framework of rule-based policy

models. We consider an abstract notion of conditions that rules in
a rule-based policy evaluate in order to determine authorizations.

Each condition has certain system-dependent semantics and is

evaluated using some authorization information (usually about the

subject and object of access). For instance, an attribute-based access

control (ABAC) policy has a concrete condition model based on

subject and object attributes. A certain attribute-based condition in

a university system, for example, may test if the subject is a student.

As another example, a relationship-based access control (ReBAC)

policy has a concrete condition model that tests a relationship path

between the subject and the object on a relationship graph of system

entities. In this paper, we abstractly assume that the access control

policy is capable of testing set of conditions C.
Rule: The unit of decision making in a rule-based policy is a rule

denoted by ⟨𝜙,𝑑⟩ where 𝜙 is a conditional expression specifying to

which access requests the rule is applicable, and 𝑑 is the associated

decision when the rule is applicable. The format of those elements

is specified based on the specific conditional expression and rule

modality choice of the model.

Conditional Expression: The conditional expression is specified

based on a conjunction of supported conditions (C). A model can

choose to support only uncomplemented conditions in its expres-

sions. We denote such conditions by a concatenation of the involved

conditions. For example, conditional expression 𝑐1𝑐2 is satisfied

when both conditions 𝑐1 and 𝑐2 are satisfied. We also consider a

special uncomplemented conditional expression true, denoted by ⊤,
that is always satisfied. The true conditional expression can be

seen as containing no uncomplemented conditions, meaning that it

does not require any of the conditions to satisfy. A model can also

support complemented (negated) conditions in addition to uncomple-

mented conditions. We denote the complement of a condition using

a bar sign. For example, conditional expression 𝑐1𝑐2 is satisfied

when 𝑐1 is satisfied and 𝑐2 is unsatisfied.

Rule Modality: Rule decisions can be either of two modalities,

PERMIT or DENY. We consider models that only support PERMIT
decisions (as customary to many access control systems), as well as

those that allow both PERMIT and DENY rules. DENY rules are also

known as negative authorizations in the literature.

Ruleset: The policy ruleset is defined as an ordered set of individ-

ual rules. Semantically, a ruleset can be viewed as a disjunction

of the individual rules. While the notion of a set is sufficient for

most models, as we will discuss below, certain conflict resolution

strategies may require a total ordering among rules. We denote a

ruleset as a sequence ⟨𝑟1, 𝑟2, . . . , 𝑟𝑛⟩ (where |𝑅 | = 𝑛). Here, 𝑟𝑖 has

higher rank than 𝑟 𝑗 (where 𝑖 < 𝑗 ).

Conflict Resolution:When amodel supports both rule modalities

(PERMIT and DENY), the conflict resolution strategy determines the

decision when multiple rules are applicable to a given request. We

consider three commonly-used strategies. The DENY-overrides and
PERMIT-overrides prioritize DENY and PERMIT decisions, respectively.
The first-applicable strategy prioritizes the decision of the first rule

that is applicable to a given request.

Default Decision: The default decision determines the authoriza-

tion decision when no rule is applicable to a given request. The

choices are DENY (restrictive and more common) or PERMIT (per-

missive).

Depending on the choice of the abovementioned factors of con-

ditional expressions, rule modality, conflict resolution (if needed),

and default decision, different rule-based models can be produced.

For example, perhaps the most basic model would allow only un-

complemented conditional expressions, PERMIT rules, and DENY as

default. In this paper, we focus on the following set of interest-

ing and commonly-used models based on this framework. Note

that due to to the number of factors affecting a model, we do not

use a universal naming convention for models produced by the

framework.

Negation Model supports conditional expressions with both com-

plemented and uncomplemented conditions, only PERMIT
rules, and DENY as default decision.

Additionally, we define the following models that allow both rule

modalities and conditional expressions containing only uncomple-

mented conditions. However, they use different default decision

and conflict resolution strategies:

DDDO Model default DENY (abbrv. DD) and DENY-overrides (abbrv.
DO).



DPPO Model default PERMIT (abbrv. DP) and PERMIT-overrides
(abbrv. PO).

DDPO Model default DENY and PERMIT-overrides.
DPDO Model default PERMIT and DENY-overrides.
DDFA Model default DENY and first-applicable (abbrv. FA).

It is worth noting that the above list of models is not exhaustive.

They are chosen either because they are commonly used and/or

have certain interesting theoretical characteristics which we are

concerned about in this paper.

We show two small sample policies based on the Negation and

DDDO models below.

Example 2.1 (Negation Policy). The following Negation policy

permits access only when 𝑐1 is satisfied and 𝑐3 is not satisfied, or

when 𝑐2 is satisfied and 𝑐3 is not satisfied. Access will be denied in

all other conditions:

⟨𝑐1𝑐3, PERMIT⟩
⟨𝑐2𝑐3, PERMIT⟩

Example 2.2 (DDDO Policy). The following DDDO policy permits

access when 𝑐1 or 𝑐2 is satisfied. However, it will deny access when

𝑐3 is satisfied irrespective of whether 𝑐1 or 𝑐2 is satisfied. Note the
conflict between the two cases and that DENY overrides. All other
accesses are denied as well:

⟨𝑐1, PERMIT⟩
⟨𝑐2, PERMIT⟩
⟨𝑐3, DENY⟩

3 POLICY SEMANTICS
We develop a theory for representing the semantics of rule-based

policies based on the semantics of conditional expressions in their

rules. We show that conditional expressions themselves can be de-

composed into conditional units, which we call condition minterms.
As the name might suggest, we have borrowed the concept of

minterms from digital logic design.

3.1 Condition Minterms
Definition 3.1 (Condition Minterm). Given the set of conditions C,

|C| = 𝑛, a condition minterm (minterm for short) is a boolean func-

tion constructed as conjunction of 𝑛 literals where each literal is

either a distinct 𝑐𝑖 ∈ C, or its complement 𝑐𝑖 . We denote the set of

all minterms based on conditions C byMC .

Since all conditions in C are present in a minterm, in either

their direct (uncomplemented) form or their complemented form,

there are 2
|C |

possible minterms. Let us consider condition set

C = {𝑐1, 𝑐2, 𝑐3}. Then,MC is

{𝑐1𝑐2𝑐3, 𝑐1𝑐2𝑐3, 𝑐1𝑐2𝑐3, 𝑐1𝑐2𝑐3, 𝑐1𝑐2𝑐3, 𝑐1𝑐2𝑐3, 𝑐1𝑐2𝑐3, 𝑐1𝑐2𝑐3}
In the rest of this paper, unless explicitly mentioned, we assume the

same set of conditions C in our examples. Each condition minterm

captures one possible combination of truth values for all tested

conditions. Therefore, the set of all minterms represents the com-

plete space of possible outcomes of condition evaluations. Given an

access request, at least one condition minterm (and possibly more)

will be evaluated as true.

We define a partial order relation (≤) on condition minterms

based on their uncomplemented conditions as follows:

𝑐1𝑐2𝑐3

𝑐1𝑐2𝑐3 𝑐1𝑐2𝑐3 𝑐1𝑐2𝑐3

𝑐1𝑐2𝑐3 𝑐1𝑐2𝑐3 𝑐1𝑐2𝑐3

𝑐1𝑐2𝑐3

Figure 1: Lattice of Condition Minterms for C = {𝑐1, 𝑐2, 𝑐3}

Definition 3.2 (Partial Ordering of Minterms). For a given pair of

minterms𝑚1,𝑚2 ∈ MC , let 𝑆1 and 𝑆2 be the set of uncomplemented

conditions in them, respectively.𝑚1 ≤ 𝑚2 if and only if 𝑆1 ⊆ 𝑆2.

For example, 𝑐1𝑐2𝑐3 ≤ 𝑐1𝑐2𝑐3 and 𝑐1𝑐2𝑐3 ≤ 𝑐1𝑐2𝑐3. However,

𝑐1𝑐2𝑐3 ̸≤ 𝑐1𝑐2𝑐3.

It is trivial to define a strict order relation (<) on minterms based

on the above definition as ≤ ∧ ≠. The notions of (immediate)

predecessor/successor are defined based on the strict ordering.

Definition 3.3 (Predecessor and Successor). Given minterms𝑚1 <

𝑚2,𝑚1 is called a predecessor of𝑚2, and𝑚2 is called a successor of
𝑚1. Furthermore, given 𝑆1 and 𝑆2 as defined in Definition 3.2,𝑚1

is said to be an immediate predecessor of𝑚2 (and𝑚2 an immediate
successor of𝑚1) if and only if |𝑆2 \ 𝑆1 | = 1 (i.e., they differ in only

one uncomplemented condition). We denote this as𝑚1 ⋖𝑚2.

The partial ordering among condition minterms forms a lattice:

there is a supremum and an infimum for every pair of minterms.

Figure 1 depicts the Hasse diagram of the condition minterms for

conditions C = {𝑐1, 𝑐2, 𝑐3}.

3.2 Semantics of Policies as Sets of Minterms
A rule-based access control policy uses rules (and other metadata

as discussed in Section 2) to establish the conditions under which

an access request is granted or denied. Therefore, the policy can be

viewed as partitioning the condition minterm space into authorized

and unauthorized minterms. This makes the condition minterms a

great choice to represent the semantics of policies.

Definition 3.4 (Policy-Minterms). Given a policy 𝑝 ∈ 𝑃 (𝑃 repre-

sents the space of all possible policies), the policy-minterms function
𝜇 : 𝑃 → 2

MC
represents the semantic of the policy in the form of

its set of permitted condition minterms.

Based on the above definition, 𝜇 (𝑝) characterizes the PERMIT
space of policy 𝑝 . Conversely, the DENY space of the policy can be

characterized byMC \ 𝜇 (𝑝).
We slightly abuse the above 𝜇 notation to also show theminterms

corresponding to the conditional expression of a rule. This allows

us to formally define the semantics of the policies based on the

semantics of their rules.

Definition 3.5 (Expression-Minterms). Given conditional expres-

sion𝜙 ∈ Φ (Φ represents the space of all possible conditional expres-

sions), the expression-minterms function 𝜇 : Φ→ 2
MC

is defined

as the set of minterms that are covered by 𝜙 .



The coverage of a conditional expression can be calculated by

enumerating both complemented and uncomplemented versions

of conditions that are not present in the expression. For instance,

𝜇 (𝑐1𝑐3) = {𝑐1𝑐2𝑐3, 𝑐1𝑐2𝑐3}. As another example, 𝜇 (𝑐1) = {𝑐1𝑐2𝑐3,
𝑐1𝑐2𝑐3, 𝑐1𝑐2𝑐3, 𝑐1𝑐2𝑐3}.

The policy-minterms for a given policy can be derived from

expression-minterms of its rules while considering the rule modali-

ties and other decision factors in its policy model. In Table 1, we

present how the semantics of the specific policy models presented

in Section 2 can be formulated. In the Negation model, it is sufficient

for an access request to satisfy one of the rules to be permitted.

Therefore, each rule effectively contributes a set of permitted con-

dition minterms to the policy. The union of those contributed sets

constitutes the policy-minterms for the Negation policy. In the case

of the DDDO model, the first term of the expression calculates the

union of permitted condition minterms (associated with PERMIT
rules). However, since a DDDO policy follows the DENY-overrides
conflict resolution strategy, condition minterms corresponding to

DENY rules need to be removed from the permitted minterms, and

will not be in the final set of policy-minterms. In the case of DPPO,

since everything is permitted by default, we start with the set of

all possible minterms and adjust that based on the rules. Since

PERMIT overrides, we first remove all denied minterms followed

by adding back those explicitly permitted minterms. The case of

DDPO is simpler. Since the model denies by default but lets the

PERMIT rules to override, the DENY rules do not impact the outcome

of the policy. Therefore, its semantics can be specified by the union

of expression-minterms of its PERMIT rules. Similarly, in the case

of DPDO, we start from the set of all minterms but we only need to

remove those condition minterms that are explicitly denied by DENY
rules. In other words, PERMIT rules have no effect on the semantics.

The case of DDFA is slightly more complex since the order of rules

in the policy needs to be considered. As shown in the pseudocode

in the table, we need to process rules in reverse order and con-

sider the impact of each PERMIT/DENY rule by adding/removing its

corresponding minterms. The reverse processing order allows the

semantics of rules with a lower index to take precedence over rules

with a higher index.

The underlying pattern that can be seen in all of the derived

formulas discussed above is to process components of a policy in

increasing order of their semantic priority. In particular, the default

policy has the lowest priority (compared to explicitly specified

rules), and the conflict resolution policy determines the order in

which the rules need to be processed.

3.3 Semantic Equivalence
The proposed representation of policy semantics in Section 3.2 can

be used to accurately reason about policy equivalence based on

policy-minterms even when policies are expressed using different

models. We define the semantic equivalence of policies .

Definition 3.6 (Semantic Equivalence of Policies). Policies 𝑝1 and
𝑝2 are considered semantically equivalent if and only if 𝜇 (𝑝1) =
𝜇 (𝑝2).

Example 3.7 (Policy Equivalence). We can use the formula in

Table 1 to show that the Negation policy 𝑝1 and the DDDO policy 𝑝2,

described in Examples 2.1 and 2.2, respectively, are semantically

equivalent:

𝜇 (𝑝1) = 𝜇 (𝑐1𝑐3) ∪ 𝜇 (𝑐2𝑐3)
= {𝑐1𝑐2𝑐3, 𝑐1𝑐2𝑐3} ∪ {𝑐1𝑐2𝑐3, 𝑐1𝑐2𝑐3}
= {𝑐1𝑐2𝑐3, 𝑐1𝑐2𝑐3, 𝑐1𝑐2𝑐3}

𝜇 (𝑝2) = 𝜇 (𝑐1) ∪ 𝜇 (𝑐2) \ 𝜇 (𝑐3)
= {𝑐1𝑐2𝑐3, 𝑐1𝑐2𝑐3, 𝑐1𝑐2𝑐3, 𝑐1𝑐2𝑐3}
∪ {𝑐1𝑐2𝑐3, 𝑐1𝑐2𝑐3, 𝑐1𝑐2𝑐3, , 𝑐1𝑐2𝑐3}
\ {𝑐1𝑐2𝑐3, 𝑐1𝑐2𝑐3, 𝑐1𝑐2𝑐3, 𝑐1𝑐2𝑐3}

= {𝑐1𝑐2𝑐3, 𝑐1𝑐2𝑐3, 𝑐1𝑐2𝑐3}

4 POLICY SHAPES
The sets of condition minterms, as shown in Section 3.2, can cap-

ture the semantics of policies. In this section, in order to facilitate

comparing semantics of policies and models, we further character-

ize such sets of condition minterms. In particular, we show that

we can derive theoretical properties about the composition of sets

of condition minterms that represent the semantics of conditional

expressions and rule-based policies. Such compositions can be vi-

sualized to enable more intuitive analysis, and hence, we call them

shapes.

4.1 Rules as Well-Formed Sets of Minterms
We recall that sets of minterms are partially ordered sets according

to Definition 3.2. We define two well-formedness properties for sets

of minterms: convexity and upward-closedness.

Definition 4.1 (Convex Set of Minterms). A set of minterms 𝑀

is convex if and only if for every pair of minterms𝑚1 ≤ 𝑚2 in 𝑀 :

{𝑚 |𝑚1 ≤ 𝑚 ≤ 𝑚2} ⊆ 𝑀 .

Definition 4.2 (Upward-Closed Set of Minterms). The upward clo-

sure of set of minterms𝑀 , denoted by𝑀↑, is {𝑢 | ∃𝑚 ∈ 𝑀 :𝑚 ≤ 𝑢}.
Set of minterms𝑀 is upward-closed if and only if𝑀↑ = 𝑀 .

In other words, the above definitions state that a convex set of

minterms must include every minterm in between any pair of its

elements. Also, in an upward-closed set of minterms all successors

of a member must also belong to the set.

Interestingly, the sets of minterms capturing the semantics of

rules in a rule-based policy are well-formed. In the following two

lemmas, we show that conditional expressions that only use un-

complemented conditions are upward-closed, while those that use

both complemented and uncomplemented conditions are convex.

Recall that we use the 𝜇 () notation to represent the semantics of

both conditional expressions and policies.

Lemma 4.3. For a conditional expression 𝜙 that only uses uncom-
plemented conditions, 𝜇 (𝜙) is upward-closed.

Proof. 𝜇 (𝜙) is the upward closure of minterm 𝜙𝜔 ′ where 𝜔 ′ is
the product (and) of the complements of all the conditions that are

not present in 𝜙 . □

For instance, if 𝜙 = 𝑐1𝑐2, then 𝜇 (𝜙) is the upward closure of the
minterm 𝑐1𝑐2𝑐3 . . . 𝑐𝑛 .

Lemma 4.4. For a conditional expression 𝜙 that uses both comple-
mented and uncomplemented conditions, 𝜇 (𝜙) is convex.



Table 1: Policy Model Semantics Calculated Based on Rule Semantics

Model of Policy 𝒑 Semantics of 𝒑: 𝝁(𝒑)
Negation

⋃
𝑟 ∈𝑝 𝜇 (𝑟 .𝜙)

DDDO

⋃
𝑟 ∈𝑝 ∧ 𝑟 .𝑑=PERMIT 𝜇 (𝑟 .𝜙) \

⋃
𝑟 ∈𝑝 ∧ 𝑟 .𝑑=DENY 𝜇 (𝑟 .𝜙)

DPPO MC \
⋃

𝑟 ∈𝑝 ∧ 𝑟 .𝑑=DENY 𝜇 (𝑟 .𝜙) ∪
⋃

𝑟 ∈𝑝 ∧ 𝑟 .𝑑=PERMIT 𝜇 (𝑟 .𝜙)
DDPO

⋃
𝑟 ∈𝑝 ∧ 𝑟 .𝑑=PERMIT 𝜇 (𝑟 .𝜙)

DPDO MC \
⋃

𝑟 ∈𝑝 ∧ 𝑟 .𝑑=DENY 𝜇 (𝑟 .𝜙)

DDFA

𝑀 ← ∅
for 𝑖 = 𝑛 to 1 do

if 𝑟𝑖 .𝑑 = PERMIT then
𝑀 ← 𝑀 ∪ 𝜇 (𝑟𝑖 .𝜙)

else if 𝑟𝑖 .𝑑 = DENY then
𝑀 ← 𝑀 \ 𝜇 (𝑟𝑖 .𝜙)

𝜇 (𝑝) ← 𝑀

𝑈

𝑋

(a) PERMITRules in a Default-DENY
Space

𝑈

𝑋

(b) DENYRules in aDefault-PERMIT
Space

Figure 2: Illustrating Rules as Well-Formed Sets of
Minterms. 𝑈 is an Upward-Closed Set (Triangle-Shaped)
and 𝑋 is a Convex Set (Diamond-Shaped). Filled (Blue)
Area Represents Permitted Condition Minterms. Unfilled
(White) Area Represents Denied Condition Minterms

Proof. Let 𝜙 = 𝑐1 . . . 𝑐𝑖 𝑐𝑖+1 . . . 𝑐 𝑗 . Every minterm in 𝜇 (𝜙) has
𝜙 as a subterm, and conversely every minterm that contains 𝜙 as a

subterm is in 𝜇 (𝜙). Suppose𝑚1 < 𝑚 < 𝑚2 where both𝑚1 and𝑚2

belong to 𝜇 (𝜙) and𝑚 does not. But since 𝜙 is a subterm of𝑚1 and

𝑚2, it must be a subterm of𝑚 as well. □

For the specific policy models discussed in Section 2, conditional

expressions in the Negation model can use both complemented

and uncomplemented conditions. Therefore, each Negation rule is

convex. In contrast, the rest of the models that we considered (i.e.,

DDDO, DPPO, DDPO, DPDO, and DDFA) only allow uncomple-

mented conditions. Therefore, each of their rules is upward-closed.

Note that for policies that support both rule modalities, DENY rules

are effectively specifying an upward-closed set of minterms with

the intention of denying them.

In order to provide a more intuitive approach to think about

the behavior of rules and policies, we use a pictorial approach for

well-formed sets of minterms by borrowing ideas from Venn dia-

grams and Hasse diagrams. Note that, unlike Venn diagrams that

are useful for analyzing unordered sets, here, we are dealing with

partially ordered sets. Therefore, the y-axis in our diagrams intends

to mimic the hierarchical relation captured in Hasse diagrams. Fig-

ure 2 shows two example minterm spaces. The rectangle represents

the whole set of possible minterms,MC . An upward-closed subset

of minterms is drawn as an upside down triangle (since it includes

all higher elements). That corresponds to a rule that has a condi-

tional expression with only uncomplemented conditions. A convex

subset of minterms is drawn as a diamond. That corresponds to a

rule that has a conditional expression with both complemented and

uncomplemented conditions. The filled area indicates the permitted

condition minterms (policy-minterms). In Figure 2a, upward-closed

set 𝑈 and convex 𝑋 represent PERMIT rules, while the default de-
cision is assumed to be DENY. In contrast, in Figure 2b, 𝑈 and 𝑋

represent DENY rules, while the default decision is PERMIT.
We will see in the next section how such semantics can be used

to characterize the form/shape of policies as a whole.

4.2 Operations on Well-Formed Sets of
Minterms

In order to characterize policy semantics based on the characteris-

tics of their underlying rules, we establish a set of properties for

combining well-formed sets of minterms.

Lemma 4.5. Given upward-closed sets of minterms𝑈1 and𝑈2, and
convex sets of minterms 𝑋1 and 𝑋2, the following properties hold:

(1) 𝑈1 is convex.
(2) 𝑈1 ∪𝑈2 is upward-closed.
(3) 𝑈1 \𝑈2 is convex, but not necessarily upward-closed.
(4) 𝑋1 ∪ 𝑋2 is not necessarily convex.
(5) 𝑋1 \ 𝑋2 is not necessarily convex.
(6) 𝑋1 ∪𝑈2 is not necessarily convex.
(7) 𝑈1 \𝐶1 is not necessarily convex.
(8) 𝑋1 \𝑈1 is convex.

Figure 3 illustrates examples of the above operations on well-

formed sets of minterms. The example diagrams help visual inspec-

tion of the properties. We also provide a proof for the property

in Lemma 4.5(3) as an example. The rest of the properties can be

similarly proven.

Proof of Lemma 4.5(3). First, we prove that 𝑈1 \𝑈2 is convex

by contradiction. Assume that 𝑈1 \𝑈2 is not a convex. Therefore,

∃𝑚1 ≤ 𝑚2 ≤ 𝑚3 where𝑚1,𝑚3 ∈ 𝑈1 \𝑈2, but𝑚2 ∉ 𝑈1 \𝑈2. Those,

respectively, require that𝑚3 ∉ 𝑈2 and𝑚2 ∈ 𝑈2. This results in a



𝑈1

𝑈2

(a)𝑈1 ∪𝑈2 is upward-closed

𝑈1

𝑈2

(b) 𝑈1 \ 𝑈2 is convex, but not
upward-closed

𝑋1

𝑋2

(c) 𝑋1 ∪𝑋2 is not convex

𝑋1

𝑋2

(d) 𝑋1 \𝑋2 is not convex

𝑈1

𝑋1

(e)𝑈1 \𝑋1 is not convex

𝑋1

𝑈1

(f) 𝑋1 \𝑈1 is convex

Figure 3: Examples of Operations on Well-Formed Sets of
Minterms.𝑈𝑖 is Upward-Closed and 𝑋 𝑗 is Convex

contradiction because upward-closedness of 𝑈2 requires𝑚3 ∈ 𝑈2

(recall𝑚2 ≤ 𝑚3).

Next, we show that𝑈1 \𝑈2 may not be upward-closed. Consider

minterms𝑚1,𝑚2 ∈ 𝑈1 where𝑚1 ≤ 𝑚2. Now consider the case that

𝑚1 ∉ 𝑈2 while𝑚2 ∈ 𝑈2. In such a case𝑈1 \𝑈2 will clearly include

𝑚1, but not𝑚2. Therefore, it will not be upward-closed. □

4.3 Shapes of Rule-Based Policies
We use the policy semantics discussed in Section 3.2 and the opera-

tion properties that were discussed in Section 4.2 to reason about

the shape of policies in each model. It should be noted that the

following is applicable in general to every policy that follows a

particular policy model. We recall that rules in Negation policies

are convex while rules in other models that we are interested are

upward-closed.

Theorem 4.6 (Shapes of Policy Models). Given the detailed
semantics shown in Table 1 and operation properties discussed in
Lemma 4.5, the following statements are correct about the shape of
the policies categorized by their model:

(1) DDDO policies are convex.

Proof Sketch. Each union of PERMIT rules and DENY rules are
separately upward-closed. The subtraction of the two upward-
closed sets of minterms produces a convex set of minterms
(according to Lemma 4.5(2)).

(2) DDPO policies are upward-closed.

Proof Sketch. The union of PERMIT rules will be upward-closed
(according to Lemma 4.5(2)).

(3) DPDO policies are convex.

Proof Sketch. The set of all minterms is upward-closed. The
union of DENY rules is upward-closed as well. Therefore, sub-
tracting latter from the former will be convex (according to
Lemma 4.5(3)).

(4) DPPO policies are not necessarily convex, but their complement
semantics (the set of denied minterms) are convex.

Proof Sketch. The first two parts in the semantics of DPPO
policies are similar to DPDO policies (convex). The last part
(i.e, the union of PERMIT rules) is upward-closed. However, the
subtraction of an upward-closed set from a convex set does not
need to be convex (according to Lemma 4.5(8)). The complement
semantics of DPPO policies can be derived by subtracting the
union of PERMIT rules from the union of DENY rules. Similar
to DDDO policies, such a set of minterms is convex.

(5) DDFA policies are not necessarily convex.

Proof Sketch. In the pseudocode (in Table 1) describing the
semantics of a DDFA policy, the set of minterms𝑀 is initially
empty, which is upward-closed. In each iteration of the loop,
if the current set𝑀 is upward-closed, it can remain upward-
closed when visiting a PERMIT rule (according to Lemma 4.5(2))
or can become non-convex when visiting a DENY rule (accord-
ing to Lemma 4.5(7)). Once𝑀 is not convex anymore, future
iterations will not necessarily make𝑀 convex either.

(6) Negation policies are not necessarily convex.

Proof Sketch. Each rule in a Negation policy is convex, but
not necessarily upward-closed. Therefore, their union is not
necessarily convex (according to Lemma 4.5(4)).

5 ANALYZING EXPRESSIVENESS OF MODELS
5.1 Expressiveness of Models: Case of Negation
The expressive power of policy models refers to their ability to

represent a diverse range of policies. The proposed model of se-

mantics for policies in Section 3 provides the needed framework in

which the expressive power of models can be compared. Our first

expressiveness result is about the Negation model.

Theorem 5.1. The Negation model can express any possible se-
mantics.

Proof. In the most granular form, each Negation policy rule

can express a single permitted condition minterm. This is when

the conditional expression includes all conditions in their either

complemented or uncomplemented form. Since the semantics of a

Negation policy is the union of the semantics of its rules (refer to

Table 1), one can express any set of minterms by using one rule per

minterm. □

Are the other models presented in this paper as expressive as

Negation? How do they compare against each other? We may al-

ready have some guesses or partial answers to those questions,

for example, based on Theorem 4.6. However, a deeper analysis is

needed to address those questions. In the rest of this section, we

present a few such interesting results.



5.2 Representing Convex Sets of Minterms as
DDDO Policies

In Theorem 4.6(1), we showed that DDDO policies are convex sets

of minterms. In order to fully characterize the expressiveness power

of DDDO, we need to investigate whether an arbitrary convex set

of minterms can be represented using a DDDO policy. We first

show that a set of DDDO rules can express an upward-closed set

of minterms.

Lemma 5.2. Every upward-closed set of minterms can be repre-
sented using a set of rules with uncomplemented conditions.

Proof. Let 𝑀 be an upward-closed set of minterms. Let 𝑀min

be the minimal minterms in 𝑀 (i.e., 𝑀min = {𝑚𝑖 | �𝑚 𝑗 ∈ 𝑀,𝑚 𝑗 <

𝑚𝑖 }). Then, 𝑀 is equal to 𝑀
↑
min

(upward closure of 𝑀min). The

upward-closure can be represented by the set of PERMIT rules each

corresponding to a minimal minterm in𝑀 . The condition for such

a rule is the product of all the positive literals of the corresponding

minterm. □

Next, we prove that any convex set of minterms can be formu-

lated as the set difference of two upward-closed sets of minterms.

Lemma 5.3. For every convex set of minterms 𝑋 , there are upward-
closed sets𝑈1 and𝑈2 such that 𝑋 = 𝑈1 \𝑈2.

Proof. If𝑋 is upward-closed, the property holds by considering

𝑈1 = 𝑋 and𝑈2 = ∅. Otherwise, let
𝐷 = {𝑦 | ∀𝑥 ∈ 𝑋 : 𝑦 ̸≤ 𝑥}

We note that 𝐷 is upward-closed since by definition there does not

exist any minterm higher than 𝐷’s elements. We now show that

𝑋 = 𝑋 ↑ \ 𝐷 . Suppose 𝑥 ∈ 𝑋 . Then, clearly 𝑥 ∈ 𝑋 ↑. But, 𝑥 ∉ 𝐷

based on 𝐷’s definition. On the other hand, suppose 𝑦 ∈ 𝑋 ↑ \ 𝐷
but 𝑦 ∉ 𝑋 . Then, 𝑦 ∈ 𝑋 ↑ \𝑋 . This means that ∀𝑥 ∈ 𝑋,𝑦 ̸≤ 𝑥 , which

subsequently means 𝑦 ∈ 𝐷 . This is a contradiction since if 𝑦 ∈ 𝐷 ,
then 𝑦 ∉ 𝑋 ↑ \ 𝐷 .

Therefore, we can choose𝑈1 = 𝑋 ↑ and𝑈2 = 𝐷 . □

We are finally ready to present the main result of this section:

Theorem 5.4. Every convex set of minterms can be represented
using a DDDO policy.

The above theorem is a direct result of the Lemmas 5.2 and

5.3. This becomes more clear if you refer to the DDDO semantics

presented in Table 1. One can first capture a given convex set as

the set difference of two upward-closed sets (Lemma 5.3). Then,

according to Lemma 5.2, the first upward-closed set can be captured

using a set of PERMIT rules, while the second upward-closed set

can be captured using a set of DENY rules.
Theorem 5.4 along with Theorem 4.6(1) precisely capture the

expressive power of DDDO policy model, which is equivalent to

all convex sets of minterms in our semantics model.

5.3 Expressive Power of DDFA
We showed in Theorem 4.6 that both Negation and DDFA poli-

cies are not necessarily convex. As also shown earlier, Negation

can express any authorization semantics. In this section, we ex-

plore whether DDFA enjoys similar expressiveness. This question

Algorithm 1 Representing a Set of Minterms using DDFA

1: functionMintermSetToDDFA(𝑀) ⊲ 𝑀 : Set of Minterms

2: 𝑝 ← ⟨⟩
3: for all minterms𝑚 ∈ MC in reverse topological order do
4: 𝜙 ← conjunction of uncomplemented conditions in𝑚

5: if 𝑚 ∈ 𝑀 then
6: Append rule ⟨𝜙, PERMIT⟩ to 𝑝
7: else
8: Append rule ⟨𝜙, DENY⟩ to 𝑝

return 𝑝

is especially interesting since DDFA supports simpler rule expres-

sions compared to Negation, but in contrast, supports both rule

modalities and comes with an order-sensitive conflict resolution

strategy.

Theorem 5.5. The DDFA model can express any policy semantics.

Proof. The theorem can be proven by showing that any set of

minterms can be captured using a DDFA policy. Rather than proving

the existence of such a DDFA policy, we propose a naive algorithm

to produce the corresponding DDFA policy, and subsequently prove

its correctness. Algorithm 1 loops through all possible minterms

in their reverse topological order. This means if𝑚𝑖 < 𝑚 𝑗 ,𝑚 𝑗 will

be ahead of𝑚𝑖 in the new order. For example, minterm 𝑐1𝑐2𝑐3 is

processed before minterm 𝑐1𝑐2𝑐3; but minterms 𝑐1𝑐2𝑐3 and 𝑐1𝑐2𝑐3
can be processed in arbitrary relative order. If the minterm at hand

is part of the desired minterm set𝑀 a corresponding PERMIT rule is
added. Otherwise, a corresponding DENY rule is added. The proposed
algorithm is correct if and only if 𝜇 (𝑝) = 𝑀 . We first show that

given 𝑚 ∈ 𝑀 , 𝑚 ∈ 𝜇 (𝑝). In the loop iteration corresponding to

𝑚, clearly𝑚 ∈ 𝜇 (𝜙), and a corresponding rule 𝑟 = ⟨𝜙, PERMIT⟩ is
added to the policy. Now, observe the DDFA semantics shown in

the pseudocode in Table 1. Rule 𝑟 will clearly contribute𝑚 to 𝜇 (𝑝).
We will have𝑚 ∉ 𝜇 (𝑝) at the end of processing policy semantics

only if a later processed rule 𝑟 ′ = ⟨𝜙 ′, DENY⟩ removes 𝑚. In that

case:

𝑚 ∈ 𝜇 (𝜙 ′) (1)

Let𝑚′ be the denied minterm for which 𝑟 ′ was added. Since the
loop in Table 1 processes rules in reverse order, Algorithm 1 must

have appended 𝑟 ′ earlier than 𝑟 . Therefore, we must have𝑚′ ≮ 𝑚

due to the reverse topological order. Let 𝑆 and 𝑆 ′ be the set of un-
complemented conditions in𝑚 and𝑚′, respectively. Since𝑚′ ≮ 𝑚,

we have:

𝑆 ′ ⊄ 𝑆 (2)

Equation 2 contradicts Equation 1 which itself requires 𝑆 ′ ⊆ 𝑚 by

definition. Therefore, DENY rule 𝑟 ′ cannot exist, and hence,𝑚 ∈ 𝜇 (𝑝).
We can similarly show that if𝑚 ∈ 𝜇 (𝑝) then𝑚 ∈ 𝑀 . □

5.4 Expressiveness Hierarchy of Models
Figure 4 summarizes our key findings regarding the expressiveness

of the rule-based models as a Venn diagram. The name of each

model is shown inside its set area. Note that DDPO is drawn as

a shaded area at the intersection of DDDO and DPPO. We have

formally proven some of those findings earlier in this paper and
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Figure 4: Expressiveness Hierarchy of Rule-Based Policy
Models Presented in This Paper

informally argue about the others in this section. Further formal

analysis will be of our future work.

As shown in Sections 5.1 and 5.3, Negation and DDFA can ex-

press any intended semantics. We also showed in Section 5.2 that

DDDO is capable of expressing any semantics in the shape of a

convex set of minterms, which will be the subset of possible seman-

tics. DPDO policies were shown to be convex too (Theorem 4.6(3)).

However, they are not as expressive as DDDO policies (i.e., they

cannot express every possible convex set). Consider convex set of

minterms𝑀 = {𝑐1𝑐2𝑐3, 𝑐1𝑐2𝑐3}. It can be shown that no DPDO pol-

icy can represent𝑀 . In general, DPDO policies can only include the

minimum minterm (𝑐1𝑐2𝑐3) by using rule ⟨⊤, DENY⟩. But including
such a rule will result in the minimum minterm being the only

permitted minterm (since DENY overrides).

In Theorem 4.6(4), we showed that the DPPO policies are not

necessarily convex themselves. Still, DPPO intersects with DDDO

(and DPDO) because particular DPPO policies can be convex. We

also mentioned that the complement of a DPPO policy is convex.

Therefore, the DPPO model is not general enough to represent an

arbitrary policy. This makes DPPO a proper subset of Negation and

DDFA.

DDPO policies are upward-closed (Theorem 4.6(2)), and any

upward-closed set of minterms is convex (Lemma 4.5(1)). This

makes DDPO a proper subset of DDDO. DDPO is also a proper

subset of DPPO since adding rule ⟨⊤, DENY⟩ to a DPPO policy can

simulate the default-DENY behavior of DDPO. One can also show

that there are policies expressible at the intersection of DDPO and

DPDO.

6 USE CASE OF EXPRESSIVENESS RESULTS
In this section, we provide a use case scenario based on a realistic

policy to demonstrate our concept of policy shape. Specifically, we

illustrate how to utilize this concept to determine whether a given

Negation policy can be represented in the DDDO model.

We consider a simple policy in the ABAC model for an online

university application. In addition, suppose the subjects involve

students and the objects involve the coursework (e.g. assignments,

exams, etc.) for a course. The authorizations are specified in terms of

attributes of subjects and objects, and determine if a given student

can access particular coursework.

In the following, we initially represent a sample ABAC policy in

the Negation model, and then demonstrate that the specified Nega-

tion policy is not representable in the DDDO model. Particularly,

we show that the semantics of the policy is a set of minterms that

is not convex (and therefore not representable in DDDO according

to Theorem 4.6(1)).

Before discussing the policy, we first specify the attributes and

the corresponding conditions on subjects and objects in the given

university application. Suppose the university application consists

of the following attributes about its entities (students and course-

works):

• Subject attributes:

– coursesCurrentlyEnrolled (set value)
– coursesPreviouslyTaken (set value)
• Object attributes:

– partOfCourse (single value)
– restrictedToCurrentStudents (Boolean value).

Based on the attributes enumerated above, suppose the imple-

mented access control system consists of the following conditions:

• 𝑐1: res.partOfCourse ∈ usr.coursesPreviouslyTaken
(Whether the student has already taken the course to which

the coursework belongs.)

• 𝑐2: res.partOfCourse ∈ usr.coursesCurrentlyEnrolled
(Whether the student is currently enrolled in the course ro

which the coursework belongs.)

• 𝑐3: res.restrictedToCurrentStudents
(Whether the coursework is restricted to only the currently

enrolled students.)

Finally, suppose the policy enforced by the access control system

consist of the following rules, represented in the Negation model:

• ⟨𝑐2, PERMIT⟩ (students can access the coursework for a course
they are currently enrolled in)

• ⟨𝑐1𝑐3, PERMIT⟩ (students can only access the unrestricted

coursework for a course that they have previously taken)

Note that since we are representing the above policy in the

Negation model, the rule modality is only PERMIT. However, both
complemented and uncomplemented conditions are supported in

the rules. The coverage of conditional expressions used in the rules

are as follows:

• 𝜇 (𝑐2) = {𝑐1𝑐2𝑐3, 𝑐1𝑐2𝑐3, 𝑐1𝑐2𝑐3, 𝑐1𝑐2𝑐3}
• 𝜇 (𝑐1𝑐3) = {𝑐1𝑐2𝑐3, 𝑐1𝑐2𝑐3}

Therefore, based on the expression-minterms of the rules, the

semantics of the given Negation policy can be formulated as:

𝜇 (𝑐2) ∪ 𝜇 (𝑐1𝑐3) =
{𝑐1𝑐2𝑐3, 𝑐1𝑐2𝑐3, 𝑐1𝑐2𝑐3, 𝑐1𝑐2𝑐3, 𝑐1𝑐2𝑐3}

Now, consider the following set of ordered minterms along with

their authorizations indicated in the respective brackets:

𝑐1𝑐2𝑐3 (PERMIT) < 𝑐1𝑐2𝑐3 (DENY) < 𝑐1𝑐2𝑐3 (PERMIT)



Observe that the conditionminterm 𝑐1𝑐2𝑐3 is not permitted. Thus,

the set of minterms indicated above is non-convex. Hence, based

on Theorem 4.6(1), the given ABAC policy cannot be represented

in the DDDO model.

7 DISCUSSIONS
7.1 Supporting Disjunction Operator in

Conditional Expressions
In order to provide a concise framework of rule-based models (Sec-

tion 2), we consider the semantics of a ruleset as a disjunction of

rules and only consider the conjunction operator in the conditional

expressions. This is common practice in the access control litera-

ture [13, 7, 8]. Even though some rule-based models support the

disjunction operator in rule expressions [12, 15, 3, 28], we note

that they implicitly or explicitly derive the semantics of disjunction

based on the conjunction and negation operators, and furthermore,

do not support negative authorization. Here, we informally show

that even in the presence of negative authorization and various

conflict resolution strategies, adding the disjunction operator to

conditional expressions does not result in additional expressiveness.

Without loss of generality, assume that a conditional expression

that supports the disjunction operator is expressed in the disjunc-

tive normal form (DNF). Consider rule 𝑥 with a DNF expression.

Replace it with a set of rules 𝑌 each with one of 𝑥 ’s conjunctive

sub-expressions and the same modality as rule 𝑥 . In the case of

the PERMIT-overrides or DENY-overrides conflict resolution strate-

gies, set of rules 𝑌 will result in the same set of permitted/denied

minterms as would 𝑥 . In the case of the first-applicable strategy,

we need to ensure that all rules in 𝑌 are ordered consecutively as

those rules replace 𝑥 in the sequence of rules in the policy. This will

ensure that set of rules𝑌 will permit/deny the same set of minterms

as would 𝑥 .

7.2 Impact of Model Features on
Expressiveness

Here, we briefly discuss how the proposed semantics model and

expressiveness analysis approach in this paper addresses the ques-

tions that we initially posed in the introduction.

Uncomplemented and Complemented Conditions. We showed that

the flexibility of supporting both complemented and uncomple-

mented conditions in rule expressions (as is enjoyed by the Nega-

tion model) creates the maximum expressive power. It is trivial to

see that further extensions to the Negation model (e.g., support of

DENY rules) would not have resulted in a change in its expressive-

ness. For this reason, the rest of the models that are explored in this

paper only support uncomplemented conditions and vary in other

aspects such as rule modality and conflict resolution. As shown in

Section 5.4, all of those models except DDFA are less expressive

than Negation. Therefore, we can infer that adding support for

complemented conditions often increases the expressive power of

a model. However, we note that all features of a model need to

be considered holistically to establish its accurate expressiveness.

For example, we showed that DDFA is as expressive as Negation

despite not supporting complemented conditions.

PERMIT and DENY Rules. Even though we did not explicitly con-

sider a rule-based model that only supports uncomplemented condi-

tions and PERMIT rules, we note that the DDPO model is equivalent

to such a model. Removing DENY rules from a DDPO policy would

not affect its semantics as evidenced by its semantics shown in

Table 1. Comparing the expressiveness of DDPO against other mod-

els with negative authorizations (see Figure 4), we can infer that

support DDPO is less expressive than most of them. The only ex-

ception is DPDO which cannot express certain policies expressible

in DDPO (which again shows the importance of a formal, holistic

semantics model for expressiveness comparison).

Choice of Default Decision and Conflict Resolution. The expres-
siveness hierarchy established in Section 5.4 provides a comprehen-

sive comparison of how different choices of default decision and

conflict resolution strategy impact the expressiveness of rule-based

models. One of the most surprising results for us was the expres-

sive power of DDFA despite its seemingly simple conflict resolution

strategy.

8 RELATEDWORK
In this section, we review the closely relatedwork. First, we examine

the characteristics of policy models in the literature based on factors

such as complemented/uncomplemented conditions, rule modality,

and conflict resolution (which we utilized in Section 2 to categorize

different rule-based models). Second, we examine the works that

have focused on analyzing and providing theoretical results on the

expressiveness of various access control models in the literature.

8.1 Policy Models
Contemporary access control models utilize the notion of conditions

to enforce authorizations. In a rule-based policy model, different

conditions are combined (using conjunction) to form different au-

thorization rules. Each rule then specifies which users can access

what resources depending on the satisfaction of the rule’s condi-

tions. Two of the more recent and widely studied rule-based models

are attribute-based access control (ABAC) and relationship-based

access control (ReBAC). ABAC Policies [29, 27, 28, 15, 10] enforce

conditions on the attributes of subjects and objects to specify autho-

rizations. On the other hand, ReBAC policies [11, 12, 7, 8, 6] utilize

the concept of relationships, a path-based pattern of edge labels

between subjects and objects that are checked against a graph of

system entities. Previous literature on ABAC and ReBAC models

have employed either uncomplemented conditions only [18, 7, 2, 23,

14] or both of complemented and uncomplemented conditions [29,

15, 11, 1, 4, 5, 10, 8, 24]. In this paper, we consider both comple-

mented and uncomplemented conditional expressions during the

categorization of policy models. Besides, we also take into account

a special conditional expression denoted as ⊤ that always evaluates

to true and thus satisfied by every access request.

When a rule is applicable to an access request, the access decision

associated with the rule becomes effective. In general, the decision

can be either PERMIT (positive authorization) or DENY (negative

authorization). Most policy models allow rules with only PERMIT
decisions and regard everything else to be denied according to the

deny-by-default strategy [29, 11, 12, 1, 4, 3]. However, there are

also access control systems that support both positive and negative



authorization rules [10, 7, 8, 24, 14, 2, 23, 6, 30, 5]. Therefore, in this

paper, we consider both of those rule modalities.

In models that allow both rule modalities, a conflict resolution

strategy is employed to determine the final access decision when

multiple rules with different decisions are applicable to the same

access request. The policy models in the literature that support

both positive and negative authorization rules mostly employ the

DENY-overrides and PERMIT-overrides strategies to prioritize the

DENY decision and the PERMIT decision, respectively [8, 24]. The

eXtensible Access Control Markup Language (XACML) [10], an

OASIS standard for specifying attribute-based policies, consists of

rule-combining algorithms which correspond to the conflict resolu-

tion strategy component in our rule-based policy model. Standard

combining algorithms in XACML include first-applicable and only-

one-applicable, along with PERMIT-overrides and DENY-overrides.
In this paper, in order to cover a wide range of conflict resolu-

tion strategies from the literature, we consider the DENY-overrides,
PERMIT-overrides, and first-applicable strategies.

8.2 Analysis of Policies and Policy Models
We can roughly categorize the literature on policy analysis into

two categories: those analyzing policies in the context of a given

access control model, and those focusing on analyzing models as a

whole such as expressiveness analysis. The work presented in this

paper is closer to the latter category as it enables us to analyze the

expressive power of access control models. However, note that the

proposed semantics model in this paper can be used for individual

policy analysis as well.

The former category involves either analysis of static policies

(e.g., the problem of combining policies [25] or verifying policy

properties [22, 32]) or verification of dynamic properties of poli-

cies. For example, the well-studied safety problem [13] determines

whether an access control system can reach an unsafe state in which

a presumably untrusted subject has access to a certain object. More

recent works have considered the problem of security analysis [19,
21, 20, 26] which is a generalization of safety analysis and consid-

ers, along with safety analysis, other analysis problems such as

availability, bounded safety, containment, etc.

The latter category (i.e., policy model analysis) is closer to the

proposed work in this paper. In this category, some work show

that policies expressed in older models in the literature can be

expressed in the newly proposed model in order to demonstrate

the general applicability of the proposed model. For example, Jin

et al. [15] show that their proposed attribute-based access con-

trol model, ABAC𝛼 , can sufficiently express discretionary access

control, mandatory access control, and role-based access control

policies. Unlike such a targeted approach, in this paper, we present

a general framework that allows comparison of semantics and ex-

pressiveness among a wide range of policy models. Our work is also

distinguishable from those that target very specific expressiveness

problems within a particular model. For example, Joshi et al. [16]

analyze the expressiveness of the temporal constraints proposed

for the generalized temporal role-based access control model [17]

and conclude that there is a minimal set of those constraints that

can sufficiently express all. As a general framework for comparing

the expressive power of access control models, Tripunitara and

Li [31] propose a theory that when one scheme can represent all

types of policies that another can, then the former is deemed to

be at least as expressive as the latter. Their concept is based on

two notions of simulations, namely reductions and state-matching

reductions, which preserve security properties such as availabil-

ity, mutual exclusion, and bounded safety. In fact, they consider a

more dynamic version of expressiveness comparison. While in this

work, we are concerned about expressive power in terms of static

policies, Tripunitara and Li look into how access control schemes,

considering their administrative policies, can simulate and preserve

security properties from one model to another. Therefore, we are

targeting a different research question. We should also note that

their approach requires an extensive formulation of mappings and

reduction proofs in order to establish expressiveness comparison

between a pair of models. Relying on a unified semantics model, our

approach has an advantage in formulating expressiveness questions

and conciseness of proofs.

Crampton and Williams [9] formally analyze how decisions are

combined in rule and policy combining schemes of XACML. They

conclude that those schemes suffer from redundancies (as well as

incompleteness). We note that our current framework of rule-based

models does not support the hierarchical composition of XACML

policies. Therefore, their results are not directly applicable in our

context.

9 CONCLUSION
As shown in this paper, rule-based access control models can pro-

vide flexible policy constructs such as conditional expressions and

choice of rule modality. A major reason for utilizing those con-

structs is to enable expressive policies that can adequately capture

the authorization semantics of the target applications. However,

as we showed in this paper different combinations of policy con-

structs can produce different expressiveness results. In this paper,

we proposed a formal policy semantics model and associated the-

ory that capture semantics of policies as sets of condition minterms.
In addition to being useful for comparing individual policies, the

proposed approach can be used for reasoning about the expres-

siveness of a policy model as a whole. We studied six particular

rule-based models that represented the various combinations of

model constructs in the context of our theory. We showed that

the Negation model (allowing complemented conditions, but only

PERMIT rules), as well as DDFA (allowing only uncomplemented

conditions, both PERMIT and DENY rules, with the first-applicable

conflict resolution strategy) were both capable of expressing any

policy semantics. Other models such as DDDO (similar to DDFA

but with DENY-overrides conflict resolution) have less expressive
power. In particular, DDDO can express all and only policies that

are semantically characterized by convex-shaped sets of condition

minterms.

We are excited about several directions of future work. A re-

search question that we have started studying is whether a given

policy instance of a more expressive model is expressible in a less ex-

pressive model. Answering that question is important, for example,

when considering migrating to a new environment and wondering

if the target policy model is sufficiently expressive for a given policy

instance. We note that a policy instance may not necessarily use



the full expressive power of a model. Therefore, such migrations

could be practical without sacrificing the semantics of the given

policy. In the future, we will also explore policy constructs that are

not currently supported by the framework in this paper such as

hierarchical policies.
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