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ABSTRACT
Using access control policy rules with deny effects (i.e., negative

authorization) can be preferred to using complemented conditions

in the rules as they are often easier to comprehend in the context

of large policies. However, the two constructs have different im-

pacts on the expressiveness of a rule-based access control model.

We investigate whether policies expressible using complemented

conditions can be expressed using deny rules instead. The answer

to this question is not always affirmative. In this paper, we propose

a practical approach to address this problem for a given policy. In

particular, we develop theoretical results that allow us to pose the

problem as a set of queries to an SAT solver. Our experimental

results using an off-the-shelf SAT solver demonstrate the feasibility

of our approach and offer insights into its performance based on

access control policies from multiple domains.
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1 INTRODUCTION
Rule-based access control policies determine authorizations on sys-

tem resources based on evaluating a set of rules each involving a

conditional expression. In attribute-based access control [1, 14, 31],

a form of rule-based policy model, the conditional expressions in

rules are based on testing subject and object attributes. For instance,

a rule in a university policy can authorize subjects who are faculty

members of the CS department to view objects that are transcripts

of CS students. A more restrictive version of such a rule may only

allow CS faculty members who are not currently on leave. Assum-

ing that “being on leave” can be tested using subject attributes (i.e.,

a condition), this rule can be expressed as a rule with a conjunctive

conditional expression that tests for the condition of “being a CS

faculty” and the complement of condition “being on leave” (i.e., a

complemented condition). Such a construction of rule-based poli-

cies is not universal. As shown in a previous work [29], depending

on the building blocks of a rule-based model, those models can

vary in their expressiveness power. Following the terminology in

that work, let the policy model that allows conditional expressions

with both complemented and uncomplemented conditions be called

Negation. An alternative model of policies, called DDDO (short for

deny-by-default and deny-overrides), does not support such com-

plemented conditions but instead allows deny rules in addition to

permit rules. This approach is also known as negative authorization.

For instance, a DDDO policy can address the example above using

two rules: a first rule that permits all CS professors to access the

transcripts, and a second rule that denies such access if on leave.

Here, the deny effect of the second rule overrides the permit effect

of the first rule whenever an on-leave CS professor requests access.

Using deny rules (with uncomplemented conditions) could be

preferred to using complemented conditions in rules as comple-

mented conditions may complicate the formulation and compre-

hension of larger policies. However, as shown previously [29] the

Negation model is more expressive than the DDDO model. There-

fore, a policy that is specified using the Negation model may or

may not be expressible in (or convertible to) DDDO. Hence, when
such a policy migration is considered it is important to test for the

convertibility of the policy. It can be shown that the convertibility

problem is computationally hard (see Appendix A). Our goal in this

paper is to approach this problem from a practical point of view: is

it feasible to determine the convertibility of real-world Negation
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policies to DDDO policies in a reasonable time (despite being a

computationally hard problem)?

We approach this problem by formulating queries about the

semantics of a Negation policy that can be answered using an SAT

solver. The goal of these queries is to verify a Boolean disjunctive

normal form (DNF) [13] expressible by the Negation model is of

convex shape (See Section 2 for background on policy semantics).

Since Sat solvers are highly efficient and widely used, this approach

is quite practical as we have found.

We summarize our contributions in this work as follows:

• We introduce the concepts of gap and separator that formally

capture the subsets of policy semantics which possibly could

lead to the semantics being not convex.

• We develop theories that allow us to use the gap/separator

concepts to formulate queries to a Sat solver that determine

the convertibility of a Negation policy to a DDDO policy.

In policy semantics terms, these establish how to formally

verify the convexity of a disjunctive normal form expression

semantics.

• We develop a prototype implementation of our convertibility

testing tool and extensively experiment with various sizes of

policies derived from real-world domains. Our results demon-

strate both the feasibility and scalability of this approach in

practice.

The rest of this paper is organized as follows. In Section 2, we

briefly discuss the necessary background on the semantics of rule-

based access control models [29] including some of our extended no-

tations. In Section 3, we introduce the concepts of gap and separator,
and establish how they can be utilized to reason about convertibility

of a Negation semantics to a DDDO semantics. Following those

theories, we discuss the corresponding algorithms in Section 4 and

present an experimental evaluation of our approach in Section 5

using policies from three domains. Section 6 reviews the closely

related work, and we provide concluding remarks in Section 7.

2 BACKGROUND AND PRELIMINARIES
In this section, we provide the necessary background, which is

inspired by a prior work [29], accompanied by additional notations

required in our paper.

A rule-based access control policy consists of a set of rules. Each

rule is a pair of a term (also known as a conditional expression) and

an effect. Each term is a conjunctive expression on the set of Boolean

variables𝑋 = {𝑥1, . . . , 𝑥𝑛}. Each 𝑥𝑖 corresponds to a condition that
can be tested in the authorization process. A literal based on 𝑥𝑖 may

be present in a term in uncomplemented (𝑥𝑖 ) or complemented (𝑥𝑖 )

form. For a term 𝑡 , we denote the variables and literals that appear

in it by 𝑉𝑎𝑟 (𝑡) and 𝐿𝑖𝑡 (𝑡), respectively. Furthermore, we use 𝑡 |𝑉 ,
restriction of 𝑡 to variables 𝑉 , to indicate the term resulting from

omitting any literal in 𝑡 that is not in 𝑉 .

We consider two policy models in this paper. In the Negation
model, terms may include complemented variables. However, the

only acceptable rule effect is PERMIT. In the DDDO model, terms

may only include uncomplemented variables. But each rule effect

may be either PERMIT or DENY. Potential conflicts as the result of
multiple rules being applicable for an access request are resolved

using a deny-overrides strategy. In the case of both models, a deny-
by-default strategy is applied to a request with no applicable rule.

The concept of minterm defined below can be used to capture

the semantics of expressions and policies.

Definition 1 (Minterm [29]). A minterm over Boolean vari-
ables 𝑋 is defined as the conjunction of all 𝑥𝑖 ∈ 𝑋 either in comple-
mented (𝑥𝑖 ) or uncomplemented (𝑥𝑖 ) form.

The set of all minterms over variables𝑋 is denoted byMX . A par-

tial ordering on minterms (denoted by “≥”) can be formed such that

𝑚1 ≥ 𝑚2 if and only if the positive literals of𝑚1 include the positive

literals of𝑚2. For example,𝑚1 ≥ 𝑚2 given 𝑋 = {𝑥1, 𝑥2, 𝑥3, 𝑥4},
𝑚1 = 𝑥1𝑥2𝑥3𝑥4, and 𝑚2 = 𝑥1 𝑥2𝑥3𝑥4. The ordering is strict

(𝑚1 > 𝑚2) if they are distinct minterms. We can also define the no-

tion of partial ordering for terms that have the same set of variables.

For example, 𝑡1 ≥ 𝑚1 |𝑉𝑎𝑟 (𝑡1 ) where 𝑡1 = 𝑥1𝑥2.

The semantics of a term 𝑡 , denoted by 𝜇 (𝑡) is the set of all

minterms that are implicants of 𝑡 . For example, assuming 𝑋 =

{𝑥1, 𝑥2, 𝑥3}, 𝜇 (𝑥1𝑥3) = {𝑥1𝑥2𝑥3, 𝑥1𝑥2 𝑥3}. The semantics of a pol-

icy, also denoted by 𝜇 (), is the set of all minterms that the policy

permits. Since the Negation model only supports permit rules, any

Negation policy can be viewed as a single boolean expression in

disjunctive normal form (DNF). Throughout this paper, we use Φ to

refer to such a DNF expression. Furthermore, as its rule terms sup-

port both complemented and uncomplemented variables it can be

shown that the Negation model can express any set of minterms (or

any DNF) [29]. In contrast, the DDDOmodel is capable of capturing

all and only convex sets of minterms as defined below.

Definition 2 (Convex Set ofMinterms [29]). A set ofminterms
𝑀 is convex iff for every pair of minterms𝑚1 ≤ 𝑚2 in𝑀 : {𝑚 |𝑚1 ≤
𝑚 ≤ 𝑚2} ⊆ 𝑀 .

3 CHARACTERIZING CONVERTIBILITY TO
DDDO

As presented in Section 2, the DDDO model can only express con-

vex semantics while the Negation model can express any semantics.

Therefore, the decision problem of convertibility of Negation pol-

icy 𝑃𝑁 to DDDO policy 𝑃𝐷 can be viewed as testing the convexity

of the set of minterms 𝜇 (𝑃𝑁 ).
In this section, we define the notion of gaps between terms (rules)

in a policy that could lead to non-convexity of policy minterms. We

characterize such gaps using the concept of seperator, and establish

theoretical results on how such separators can be used to decide

about the convexity of the policy minterms.

3.1 Gap Between Two Terms
Definition 3 (Gap between Terms). Given two terms 𝑡1 and 𝑡2,

we say there is a gap between 𝑡2 and 𝑡1 if and only if there exist
minterms𝑚1 > 𝑚 > 𝑚2 such that

(1) 𝑚1 ∈ 𝜇 (𝑡1),
(2) 𝑚2 ∈ 𝜇 (𝑡2), and
(3) 𝑚 ∉ 𝜇 (𝑡1) ∪ 𝜇 (𝑡2).

This is illustrated in Figure 1.

Our aim is to develop a syntactic criterion (that can be easily

checked) for the existence of a gap between two terms 𝑡2 and 𝑡1.
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Figure 1: A Gap Between Terms 𝑡1 and 𝑡2, Identified by
Minterm𝑚 Where𝑚1 > 𝑚 > 𝑚2,𝑚1 ∈ 𝜇 (𝑡1), and𝑚2 ∈ 𝜇 (𝑡2)

Table 1: Term Comparison Functions

Function Definition

Ω(𝑡1, 𝑡2)
Consists of literals that are common to both terms

(i.e., their common factor).

ℵ(𝑡1, 𝑡2)
Consists of variables that appear uncomplemented in

𝑡1 and complemented in 𝑡2.

B
1
(𝑡1, 𝑡2)

Consists of positive literals that appear in 𝑡1 whose

variables do not appear in 𝑡2.

B
2
(𝑡1, 𝑡2)

Consists of positive literals that appear in 𝑡2 whose

variables do not appear in 𝑡1.

Γ
1
(𝑡1, 𝑡2)

Consists of negative literals that appear in 𝑡1 whose

variables do not appear in 𝑡2.

Γ
2
(𝑡1, 𝑡2)

Consists of negative literals that appear in 𝑡2 whose

variables do not appear in 𝑡1.

As a first step, it will be useful to carefully express the possible

differences between the two terms in terms of the literals they do

and do not share. There can be no gap between 𝑡2 and 𝑡1 if there is

a variable that appears complemented in 𝑡1 and uncomplemented

in 𝑡2. Thus that case can be immediately ruled out. For the rest of the

analysis we only consider terms 𝑡1 and 𝑡2 in which no complemented
variable in 𝑡1 appears uncomplemented in 𝑡2. Formally, let 𝑡1 and 𝑡2
be two distinct product terms. We say that 𝑡1 is potentially higher
than 𝑡2, denoted as

𝑡1 ⊐ 𝑡2

if and only if there is no variable that appears uncomplemented

in 𝑡2 and complemented in 𝑡1. Note that this is equivalent to saying

∃𝑚1 ∈ 𝜇 (𝑡1) ∃𝑚2 ∈ 𝜇 (𝑡2) : 𝑚1 > 𝑚2

Let 𝑡1 and 𝑡2 be two distinct product terms. We define a set of

functions for comparing the two terms (from 𝑡1’s point of view) in

Table 1. Note that B
1
(𝑡1, 𝑡2) = B

2
(𝑡2, 𝑡1) and Γ

1
(𝑡1, 𝑡2) = Γ

2
(𝑡2, 𝑡1).

Furthermore, 𝑡1 ⊐ 𝑡2 if and only if |ℵ(𝑡2, 𝑡1) | = 0.

For the sake of brevity and clarity, we use the following abbrevi-

ations when the two terms under consideration are 𝑡1 and 𝑡2:

(1) 𝜔 = Ω(𝑡1, 𝑡2),
(2) 𝛼 = ℵ(𝑡1, 𝑡2),
(3) 𝛽

1
= B

1
(𝑡1, 𝑡2),

(4) 𝛽
2
= B

2
(𝑡1, 𝑡2),

(5) 𝛾
1
= Γ

1
(𝑡1, 𝑡2), and

(6) 𝛾
2
= Γ

2
(𝑡1, 𝑡2).

We can then symbolically express the two terms as follows:

𝑡1 = 𝜔 𝛼 𝛽1 𝛾1

𝑡2 = 𝜔 𝛼 𝛽
2
𝛾2

A better depiction of this would be:

𝑡1 = 𝜔 𝛼 𝛽1 𝛾1

𝑡2 = 𝜔 𝛼 𝛽
2
𝛾2

where the blanks are for positive and negative literals that do

exist in one term but not the other. Also, note that 𝛼 is the product

term resulting from complementing all the variables in 𝛼 .

Example 1. Let𝑉 = {𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6} be a set of Boolean vari-
ables and 𝑡1 and 𝑡2 terms. To show the asymmetry (non-commutativity)
of the functions 𝛼, 𝛽1, etc., we evaluate the functions in both directions.

𝑡1 = 𝑥1𝑥2𝑥3𝑥6

𝑡2 = 𝑥1𝑥4𝑥5 𝑥6

Observe that

Ω(𝑡1, 𝑡2) = {𝑥1} , ℵ(𝑡1, 𝑡2) = {𝑥6} , B1 (𝑡1, 𝑡2) = {𝑥3}
Ω(𝑡2, 𝑡1) = {𝑥1} , ℵ(𝑡2, 𝑡1) = { } , B1 (𝑡2, 𝑡1) = {𝑥4}
B2 (𝑡1, 𝑡2) = {𝑥4} , Γ1 (𝑡1, 𝑡2) = {𝑥2} , Γ2 (𝑡1, 𝑡2) = {𝑥5}
B2 (𝑡2, 𝑡1) = {𝑥3} , Γ1 (𝑡2, 𝑡1) = {𝑥5} , Γ2 (𝑡2, 𝑡1) = {𝑥2}

Note that Ω is commutative since it returns the common factor of
the two terms.

Definition 4. A term 𝑡 dominates a minterm𝑚 if and only if
there is a minterm𝑚′ ∈ 𝜇 (𝑡) such that𝑚 < 𝑚′.

Lemma 1. Let 𝑡 be a term and𝑚 be a minterm such that𝑚 ∉ 𝜇 (𝑡).
Then 𝑡 dominates𝑚 if and only if 𝑡 > 𝑚 |

𝑉𝑎𝑟 (𝑡 ) .

Proof. First of all, note that 𝑡 is a subterm of every minterm

in 𝜇 (𝑡). So if 𝑡 = 𝑚 |
𝑉𝑎𝑟 (𝑡 ) , then𝑚 ∈ 𝜇 (𝑡). Furthermore, if there

is a variable 𝑥 such that 𝑥 appears (uncomplemented) in 𝑚 and

𝑥 appears in 𝑡 , then no term in 𝜇 (𝑡) can be higher than𝑚.

If 𝑡 > 𝑚 |
𝑉𝑎𝑟 (𝑡 ) , then let𝑚′′ = 𝑚

𝑚 |
𝑉𝑎𝑟 (𝑡 )

, i.e., write𝑚 as𝑚′𝑚′′

where

𝑚′ = 𝑚 |
𝑉𝑎𝑟 (𝑡 ) ,

𝑚′′ = 𝑚 |
𝑋∖𝑉𝑎𝑟 (𝑡 ) ,

and horizontal bar stands for algebraic division. Then 𝑡𝑚′′ > 𝑚. □

Definition 5. A minterm𝑚 leads a term 𝑡 if and only if there is
a minterm𝑚′ ∈ 𝜇 (𝑡) such that𝑚 > 𝑚′.

Thus a minterm𝑚 is in the gap between 𝑡2 and 𝑡1 if and only if

𝑚 ∉ 𝜇 (𝑡1) ∪ 𝜇 (𝑡2), 𝑡1 dominates𝑚, and𝑚 leads 𝑡2.
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Lemma 2. Let 𝑡 be a term and𝑚 be a minterm such that𝑚 ∉ 𝜇 (𝑡).
Then𝑚 leads 𝑡 if and only if 𝑚 |

𝑉𝑎𝑟 (𝑡 ) > 𝑡 .

Proof. Note that 𝑡 is a subterm of every term of 𝜇 (𝑡). If 𝑡 =

𝑚 |
𝑉𝑎𝑟 (𝑡 ) , then𝑚 ∈ 𝜇 (𝑡). Additionally, if there is a variable 𝑥 such

that 𝑥 appears complemented in𝑚 but uncomplemented in 𝑡 , then

𝑚 cannot be higher than any minterm in 𝜇 (𝑡).
If 𝑚 |

𝑉𝑎𝑟 (𝑡 ) > 𝑡 , then let𝑚′′ = 𝑚
𝑚 |

𝑉𝑎𝑟 (𝑡 )
, i.e., write𝑚 as𝑚′𝑚′′

where

𝑚′ = 𝑚 |
𝑉𝑎𝑟 (𝑡 )

𝑚′′ = 𝑚 |
𝑋∖𝑉𝑎𝑟 (𝑡 )

Then𝑚 > 𝑡𝑚′′
. □

Lemma 3. Let 𝑡1, 𝑡2 be terms and let𝑚 be a minterm such that 𝑡1
dominates𝑚 and𝑚 leads 𝑡2. Then 𝜔𝛽2𝛾1 must be a subterm of𝑚.

Proof. We split the proof into 3 cases, comparing𝑚 with 𝜔 , 𝛽2
and 𝛾1.

Case (a): Consider 𝑡1, 𝑡2 and𝑚 restricted to variables of 𝜔 , namely

𝑡1 |𝑉𝑎𝑟 (𝜔 ) , 𝑚 |𝑉𝑎𝑟 (𝜔 ) , and 𝑡2 |𝑉𝑎𝑟 (𝜔 ) . First of all, we know
that 𝑡1 |𝑉𝑎𝑟 (𝜔 ) = 𝑡2 |𝑉𝑎𝑟 (𝜔 ) = 𝜔 . Note that given that 𝑡1
dominates 𝑚 there cannot be a variable 𝑥 complemented

in 𝑡1 |𝑉𝑎𝑟 (𝜔 ) but uncomplemented in 𝑚 |𝑉𝑎𝑟 (𝜔 ) . Similarly,

given𝑚 leads 𝑡2 then there cannot be a complemented vari-

able in𝑚 |𝑉𝑎𝑟 (𝜔 ) that appears uncomplemented in 𝑡2 |𝑉𝑎𝑟 (𝜔 ) .
Thus it must be that

𝜔 ≥ 𝑚 |𝑉𝑎𝑟 (𝜔 ) ≥ 𝜔

which implies that

𝜔 =𝑚 |𝑉𝑎𝑟 (𝜔 ) .

Case (b): Consider 𝑡1, 𝑡2 and𝑚 restricted to variables of 𝛽2, i.e.,

𝑡1 |𝑉𝑎𝑟 (𝛽2 ) = 𝜀, 𝑡2 |𝑉𝑎𝑟 (𝛽2 ) = 𝛽2

If𝑚 leads 𝑡2 then there cannot be a complemented variable

in𝑚 |𝑉𝑎𝑟 (𝛽2 ) which appears uncomplemented in 𝑡2 |𝑉𝑎𝑟 (𝛽2 ) .
Besides, there are no complemented variables in 𝛽2. Thus

we have that

𝛽2 =𝑚 |𝑉𝑎𝑟 (𝛽2 ) .

Case (c): Consider 𝑡1, 𝑡2 and𝑚 restricted to variables of 𝛾1. Similar

to the previous case,

𝑡1 |𝑉𝑎𝑟 (𝛾1 ) = 𝛾1, 𝑡2 |𝑉𝑎𝑟 (𝛾1 ) = 𝜀

Since 𝑡1 dominates𝑚 there cannot be a variable 𝑥 comple-

mented in 𝑡1 |𝑉𝑎𝑟 (𝛾1 ) but uncomplemented in𝑚 |𝑉𝑎𝑟 (𝛾1 ) . Be-
sides, by definition, there are no uncomplemented variables

in 𝛾1. Then we have that

𝛾1 =𝑚 |𝑉𝑎𝑟 (𝛾1 ) . □

We later denote the term 𝜔𝛽2𝛾1 as the separator of 𝑡1 from 𝑡2.

Lemma 4. Suppose 𝑡1 ⊐ 𝑡2. Then
(a) If |𝛼𝛽

1
| = 0, then there is no gap between 𝑡2 and 𝑡1.

(b) If |𝛼𝛾
2
| = 0, then there is no gap between 𝑡2 and 𝑡1.

Proof. Suppose there exists a minterm 𝑚 such that 𝑡1 domi-

nates𝑚 and𝑚 leads 𝑡2, i.e., 𝑡1 > 𝑚 |
𝑉𝑎𝑟 (𝑡1 ) and𝑚 |

𝑉𝑎𝑟 (𝑡2 ) > 𝑡2.

Case (a): If |𝛼 | = |𝛽1 | = 0, then

𝑡1 = 𝜔 𝛾1

𝑡2 = 𝜔 𝛽
2
𝛾2

By Lemma 3,𝜔𝛽2𝛾1 is a subterm of𝑚. Now the result follows

directly from Lemma 1, since𝑚 |
𝑉𝑎𝑟 (𝑡1 ) = 𝜔 𝛾1 = 𝑡1.

Case (b): If |𝛼 | = |𝛾2 | = 0, then 𝑡2 = 𝜔𝛽2 = 𝑚 |
𝑉𝑎𝑟 (𝑡2 ) . But for 𝑡2

to lead𝑚, by Lemma 2 wemust have that𝑚 |𝑉𝑎𝑟 (𝑡2 ) > 𝑡2. □

The next result is a necessary condition for the existence of a

gap between two terms.

Lemma 5. There is a gap between terms 𝑡2 and 𝑡1 with 𝑡1 ⊐ 𝑡2
only if

|𝛼𝛽1 | > 1 ∨ |𝛽1𝛾2 | > 1 ∨ |𝛼𝛾2 | > 1.

Proof. Suppose |𝛼𝛽1 | ≤ 1 ∧ |𝛽1𝛾2 | ≤ 1 ∧ |𝛼𝛾2 | ≤ 1 and

still there is a minterm𝑚 such that 𝑡1 dominates𝑚 and𝑚 leads 𝑡2,

i.e., 𝑡1 > 𝑚 |
𝑉𝑎𝑟 (𝑡1 ) and𝑚 |

𝑉𝑎𝑟 (𝑡2 ) > 𝑡2. By the previous lemma, it

must be that |𝛼 | + |𝛽1 | = 1 and |𝛼 | + |𝛾2 | = 1. Thus |𝛼 | = 1, for

otherwise |𝛽1𝛾2 | = 2. It follows that |𝛽1 | = |𝛾2 | = 0.

By Lemma 3, 𝜔𝛽2𝛾1 is a subterm of𝑚. Let 𝛼 = 𝑥 where 𝑥 is a

variable. Thus 𝛼 = 𝑥 .

𝑡1 = 𝜔 𝑥 𝛾1

𝑡2 = 𝜔 𝑥 𝛽2

We need to consider two cases: (a) 𝑥 appears in 𝑚, and (b) 𝑥

appears in𝑚.

Case (a): Here𝜔𝑥𝛽2𝛾1 is a subterm of𝑚. Thus,𝑚 |𝑉𝑎𝑟 (𝑡1 ) = 𝜔𝑥𝛾1 =

𝑡1. But for 𝑡1 to dominate𝑚, by Lemma 1 we must have that

𝑡1 > 𝑚 |𝑉𝑎𝑟 (𝑡1 ) .
Case (b): 𝜔𝑥𝛽2𝛾1 is a subterm of𝑚. For 𝑡2 to lead𝑚, by Lemma 2

we must have that𝑚 |𝑉𝑎𝑟 (𝑡2 ) > 𝑡2. But note that𝑚 |𝑉𝑎𝑟 (𝑡2 ) =
𝜔𝑥𝛽2 = 𝑡2. □

Lemma 6. If |𝛼 | > 1 and 𝑡1 ⊐ 𝑡2 then there is a gap between
𝑡2 and 𝑡1, i.e., there is a minterm𝑚 ∉ 𝜇 (𝑡1) ∪ 𝜇 (𝑡2) such that 𝑡1
dominates𝑚 and𝑚 leads 𝑡2.

Proof. Let 𝑥1 and 𝑥2 be two variables in 𝛼 , i.e., 𝑥1𝑥2 is a subterm

of 𝑡1 and 𝑥1 𝑥2 is a subterm of 𝑡2. Let 𝛼 = 𝑥1𝑥2𝜂 where 𝜂 is the rest

of 𝛼 , i.e., the conjunction of the remaining variables in 𝛼 . Clearly

𝜇 (𝑡1) and 𝜇 (𝑡2) are disjoint. Besides, 𝑥1𝑥2 is not a subterm of any

of the minterms in 𝜇 (𝑡1) ∪ 𝜇 (𝑡2). Now consider the term

𝑡 = 𝜔 𝑥1 𝑥2 𝜂 𝛽1 𝛽2 𝛾1 𝛾2 and let𝑚 ∈ 𝜇 (𝑡) .
Note that

𝑚 |𝑉𝑎𝑟 (𝑡1 ) = 𝜔𝑥1𝑥2𝜂𝛽1𝛾1 < 𝜔𝑥1𝑥2𝜂𝛽1𝛾1 = 𝑡1,

by Lemma 1 we must have that 𝑡1 dominates𝑚. Similarly, we have

that

𝑚 |𝑉𝑎𝑟 (𝑡2 ) = 𝜔𝑥1𝑥2𝜂𝛽2𝛾2 > 𝜔𝑥1 𝑥2𝜂𝛽2𝛾2 = 𝑡2,

then by Lemma 2 we must have that𝑚 leads 𝑡2. □

Theorem 1. There is a gap between terms 𝑡2 and 𝑡1 with 𝑡1 ⊐ 𝑡2
if and only if

|𝛼 | > 1 ∨ any two of |𝛼 |, |𝛽1 |, |𝛾2 | are greater than 0.
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Proof. The “only if” part follows from Lemma 6. For proving

the “if” part, suppose that there is no𝑚 such that 𝑡1 dominates𝑚

and𝑚 leads 𝑡2 and still the condition is true. If |𝛼 | > 1 then there

is a gap by Lemma 6. We again need to consider 3 cases:

Case (a): |𝛼 | = 1, |𝛽1 | > 0.

Consider the term 𝑡3 = 𝜔𝛼𝛽1𝛽2𝛾2. It is not hard to see that

𝑡1 > 𝑡3 |𝑉𝑎𝑟 (𝑡1 ) and 𝑡3 |𝑉𝑎𝑟 (𝑡2 ) > 𝑡2. Thus the same holds

for any𝑚 ∈ 𝜇 (𝑡3), i.e.,
𝑡1 > 𝑚 |

𝑉𝑎𝑟 (𝑡1 ) and 𝑚 |
𝑉𝑎𝑟 (𝑡2 ) > 𝑡2 .

Case (b): |𝛼 | = 1, |𝛾2 | > 0.

Consider the term 𝑡4 = 𝜔𝛼𝛽1𝛾1𝛽2𝛾2. As above, 𝑡1 > 𝑡4 |𝑉𝑎𝑟 (𝑡1 )
and 𝑡4 |𝑉𝑎𝑟 (𝑡2 ) > 𝑡2 . Similarly to case (a) it will hold for any

minterm𝑚 ∈ 𝜇 (𝑡4), i.e.,
𝑡1 > 𝑚 |

𝑉𝑎𝑟 (𝑡1 ) and 𝑚 |
𝑉𝑎𝑟 (𝑡2 ) > 𝑡2 .

Case (c): |𝛼 | = 0, |𝛽1 | > 0, |𝛾2 | > 0.

Consider the term 𝑡5 = 𝜔𝛽1𝛾1𝛽2𝛾2. As above 𝑡1 > 𝑡5 |𝑉𝑎𝑟 (𝑡1 )
and 𝑡5 |𝑉𝑎𝑟 (𝑡2 ) > 𝑡2 . Similarly to case (a) it will hold for any

minterm𝑚 ∈ 𝜇 (𝑡5), i.e.,
𝑡1 > 𝑚 |

𝑉𝑎𝑟 (𝑡1 ) and 𝑚 |
𝑉𝑎𝑟 (𝑡2 ) > 𝑡2 . □

3.2 Gap in an Expression
In the previous section, we only considered gaps between two terms

without considering any larger expression that they may be a part

of. Here we consider the general problem.

Definition 6 (Gap wrt. an Expression). Given two terms 𝑡1,
𝑡2 and a Boolean expression Φ, we say that there is a gap between
𝑡1 and 𝑡2 with respect to Φ if and only if there exist minterms𝑚1 >

𝑚 > 𝑚2 such that
(1) 𝑚1 ∈ 𝜇 (𝑡1),
(2) 𝑚2 ∈ 𝜇 (𝑡2), and
(3) 𝑚 is not an implicant of Φ ∨ 𝑡1 ∨ 𝑡2.

If 𝑡1 and 𝑡2 are part of Φ then we only need to say “𝑚 is not an

implicant of Φ."

Definition 7. Let 𝑡1 and 𝑡2 terms in Φ and 𝑡1 ⊐ 𝑡2 . We denote
𝜔𝛽2𝛾1 as the separator of 𝑡1 from 𝑡2.

We introduce the following notation:

sep(𝑡1, 𝑡2) = Ω(𝑡1, 𝑡2) B2 (𝑡1, 𝑡2) Γ1 (𝑡1, 𝑡2)
to represent the separator of 𝑡1 from 𝑡2.

Note also that this symbolic expression,𝜔𝛽2𝛾1, already appeared

in Lemma 3. The following lemma strengthens Lemma 3.

Lemma 7. Let Φ be an expression in DNF and 𝑡1 and 𝑡2 be terms
in Φ such that 𝑡1 ⊐ 𝑡2. Let 𝑠 = sep(𝑡1, 𝑡2). Then for any𝑚 ∈ 𝜇 (𝑠)
either𝑚 ∈ 𝜇 (𝑡1), or𝑚 ∈ 𝜇 (𝑡2), or there exist minterms𝑚1 ∈ 𝜇 (𝑡1)
and𝑚2 ∈ 𝜇 (𝑡2) such that𝑚1 > 𝑚 > 𝑚2.

Proof. Suppose𝑚 does not belong to either 𝜇 (𝑡1) or 𝜇 (𝑡2). Clearly,
𝑡1 and 𝑡2 cannot be subterms of𝑚. Note also that𝑉𝑎𝑟 (𝑡1) = 𝑉𝑎𝑟 (𝜔) ⊎
𝑉𝑎𝑟 (𝛼) ⊎ 𝑉𝑎𝑟 (𝛽1) ⊎ 𝑉𝑎𝑟 (𝛾1). Since𝜔𝛾1 is a subterm of𝑚 |

𝑉𝑎𝑟 (𝑡1 )
and 𝑡1 is not a subterm of𝑚, there must be a variable in 𝛼𝛽1 (in 𝑡1)

that appears complemented in𝑚. Thus 𝑡1𝛽2 > 𝑚 |
𝑉𝑎𝑟 (𝑡1𝛽2 ) . Simi-

larly, there must be a variable 𝛼𝛾2 (in 𝑡2) that appears uncomple-

mented in𝑚. Thus 𝑡2𝛾1 < 𝑚 |𝑉𝑎𝑟 (𝑡2𝛾1 ) .

Now consider the terms 𝑠1 = 𝑡1𝛽2𝛾2 and 𝑠2 = 𝑡2𝛽1𝛾1. Let 𝑉 =

𝑉𝑎𝑟 (𝑠1) = 𝑉𝑎𝑟 (𝑠2) = 𝑉𝑎𝑟 (𝑡1) ∪ 𝑉𝑎𝑟 (𝑡2). It is not hard to show

that

𝑠1 > 𝑚 |𝑉 > 𝑠2

and the result follows. □

Theorem 2. Let Φ be an expression in DNF and 𝑡1 and 𝑡2 be terms
in Φ such that 𝑡1 ⊐ 𝑡2. There is no gap between 𝑡2 and 𝑡1 with respect
to Φ if and only if 𝑠𝑒𝑝 (𝑡1, 𝑡2) is an implicant of Φ.

Proof. “If”: If 𝑠𝑒𝑝 (𝑡1, 𝑡2) is an implicant ofΦ, then everyminterm𝑚

in 𝜇 (𝑠𝑒𝑝 (𝑡1, 𝑡2)) is also an implicant of Φ.
“Only if”: Follows from the previous lemma, since if 𝑠𝑒𝑝 (𝑡1, 𝑡2)

is not an implicant of Φ, then there is a minterm of 𝑠𝑒𝑝 (𝑡1, 𝑡2)
that is strictly below some minterm𝑚1 ∈ 𝜇 (𝑡1) and above some

minterm𝑚2 ∈ 𝜇 (𝑡2). □

Theorem 3. Let Φ be an expression in DNF. Φ is convex if and
only if for all distinct terms 𝑡𝑖 , 𝑡 𝑗 in Φ such that 𝑡𝑖 ⊐ 𝑡 𝑗 , 𝑠𝑒𝑝 (𝑡𝑖 , 𝑡 𝑗 ) is
an implicant of Φ.

Proof. Follows as a result of Theorem 2 □

Example 2. Consider an excerpt of an educational system con-
sisting of faculty who teach courses, students who enroll in courses,
and the chairs of the department in which the respective courses are
taught. In this example, we focus on the access controls of different
users over an abstract permission with respect to a specific course
which is controlling who can(not) attend the lectures for that course.
In particular, in the context of our policy model framework, we con-
sider the following variables whose English translation is provided
next to them:

• 𝑥1 = isTeachingCourse, which is True if a user is currently
assigned to teach that course, else False.

• 𝑥2 = isEnrolledIntoCourse, which is True if a user is currently
enrolled into the given course, else False.

• 𝑥3 = isRemoteAccess, which is True if a user is trying to ac-
cess the lectures from outside the school campus, and False
otherwise.

• 𝑥4 = isDeptChair, which is True if a user is the chair of the
department in which the course is currently being taught, else
False.

Based on the above conditions, suppose we create a sample policy Φ
with three rules 𝑡1, 𝑡2, and 𝑡3 in our educational system as follows:

Φ = 𝑡1 ∨ 𝑡2 ∨ 𝑡3, where

𝑡1 = 𝑥1 𝑥2𝑥4 𝑡2 = 𝑥1 𝑥3𝑥4 𝑡3 = 𝑥1𝑥2 𝑥3

Following are English translations for the three rules provided above:

• 𝑡1 = Students enrolled in the course can remotely attend (say,
from their homes) the course’s lectures.

• 𝑡2 = A chair can attend the lectures for the courses in the
department for which (s)he is the chair as long as they are
present in the classroom when the course is in session.
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• 𝑡3 = A faculty member, irrespective of whether s(he) is the
department chair or not, should be present in the classroom to
attend (and present) the lectures for that course.

Note that we do not introduce yet another variable corresponding
to our abstract permission because if that were the case then that
variable would have been present in all the rules, and so that would
have made the evaluation of that variable trivially redundant.

Based on Theorem 3, we now determine whether policy Φ is convex.

• 𝑡2 ⊐ 𝑡1 because |ℵ(𝑡1, 𝑡2) | = 0 and 𝑠𝑒𝑝 (𝑡2, 𝑡1) = 𝑥1𝑥2𝑥3
• 𝑡1 b 𝑡2 because |ℵ(𝑡2, 𝑡1) | = 1

• 𝑡3 ⊐ 𝑡2 because |ℵ(𝑡2, 𝑡3) | = 0 and 𝑠𝑒𝑝 (𝑡3, 𝑡2) = 𝑥2 𝑥3𝑥4
• 𝑡2 b 𝑡3 because |ℵ(𝑡3, 𝑡2) | = 1

• 𝑡3 b 𝑡1 because |ℵ(𝑡1, 𝑡3) | = 1

• 𝑡1 b 𝑡3 because |ℵ(𝑡3, 𝑡1) | = 1

• 𝑠𝑒𝑝 (𝑡2, 𝑡1) ∧ ¬Φ is unsatisfiable
• 𝑠𝑒𝑝 (𝑡3, 𝑡2) ∧ ¬Φ is unsatisfiable

Because all separators produce unsatisfiability, therefore Φ is convex.
This means that we can represent the given Negation policy Φ in the
DDDO model. The following are the corresponding DDDO rules:

• ⟨𝑥1, PERMIT⟩
• ⟨𝑥2, PERMIT⟩
• ⟨𝑥4, PERMIT⟩
• ⟨𝑥1𝑥2, DENY⟩
• ⟨𝑥1𝑥3, DENY⟩
• ⟨𝑥3𝑥4, DENY⟩

As one can observe from the below equation, the Negation policy
(on the left) and the DDDO policy (on the right) produce equivalent
expressions:

Φ = 𝑥1 𝑥2𝑥4∨𝑥1 𝑥3𝑥4∨𝑥1𝑥2 𝑥3 = (𝑥1∨𝑥2∨𝑥4)∧¬(𝑥1𝑥2∨𝑥1𝑥3∨𝑥3𝑥4)

Now that we have seen an example of a policy that is convex,

next we provide another example of a policy Ψ that is very similar

to the policy Φ shown in the above example, but which comes out

to be non-convex based on Theorem 3 as we demonstrate below:

Example 3. Suppose again we consider three rules 𝑡1, 𝑡2, and 𝑡3,
which are exactly the same as in Example 2, but with a minor modifi-
cation on rule 𝑡1 as follows:

𝑡1 = 𝑥1𝑥2𝑥4

Therefore, our new Negation policy Ψ becomes:

Ψ = 𝑥1𝑥2𝑥4 ∨ 𝑥1 𝑥3𝑥4 ∨ 𝑥1𝑥2 𝑥3

In the following, we show that there is at least one separator that is
not an implicant of Ψ, which in turn proves that Ψ is not convex:

• 𝑡2 ⊐ 𝑡1 because |ℵ(𝑡1, 𝑡2) | = 0 and 𝑠𝑒𝑝 (𝑡2, 𝑡1) = 𝑥1𝑥2𝑥3
• 𝑡1 ⊐ 𝑡2 because |ℵ(𝑡2, 𝑡1) | = 0 and 𝑠𝑒𝑝 (𝑡1, 𝑡2) = 𝑥1𝑥4
• 𝑡2 b 𝑡3 because |ℵ(𝑡3, 𝑡2) | = 1

• 𝑡3 ⊐ 𝑡2 because |ℵ(𝑡2, 𝑡3) | = 0 and 𝑠𝑒𝑝 (𝑡3, 𝑡2) = 𝑥2 𝑥3𝑥4
• 𝑡3 b 𝑡1 because |ℵ(𝑡1, 𝑡3) | = 1

• 𝑡1 b 𝑡3 because |ℵ(𝑡3, 𝑡1) | = 1

• 𝑠𝑒𝑝 (𝑡1, 𝑡2) ∧ ¬Ψ is satisfiable

Therefore, since Ψ is not convex, it cannot be expressed in the DDDO
model, i.e., there is no set of permit and deny rules that can capture
the authorizations produced by Ψ.

4 ALGORITHM
In this section, we will explore the practical implications of our two

fundamental theorems by developing an algorithm for testing the

convexity of policy semantics.

Algorithm 1 Convexity-Check

1: Input: A boolean expression Φ in DNF

2: Output: True if Φ is convex; otherwise False
3: function Convexity-Check(Φ)
4: for 𝑡1 in Φ do
5: for 𝑡2 in Φ do
6: if 𝑡1 ≠ 𝑡2 and Gap-Check(𝑡1,𝑡2) then
7: 𝑠𝑒𝑝 (𝑡1, 𝑡2) = Ω(𝑡1, 𝑡2) B2 (𝑡1, 𝑡2) Γ1 (𝑡1, 𝑡2)
8: if (𝑠𝑒𝑝 (𝑡1, 𝑡2) ∧ ¬Φ) is satisfiable then
9: return False
10: end if
11: end if
12: end for
13: end for
14: return True
15: end function

Algorithm 2 Gap-Check

1: Input: Product terms 𝑡1 and 𝑡2 ∈ Φ
2: Output: True if a gap between 𝑡2 and 𝑡1 exists; otherwise False
3: function Gap-Check(𝑡1,𝑡2)

4: if |ℵ(𝑡2, 𝑡1) | > 0 then
5: return False
6: else
7: 𝑐1 = |ℵ(𝑡1, 𝑡2) B1 (𝑡1, 𝑡2) |
8: 𝑐2 = |ℵ(𝑡1, 𝑡2) Γ2 (𝑡1, 𝑡2) |
9: 𝑐3 = |B1 (𝑡1, 𝑡2) Γ2 (𝑡1, 𝑡2) |
10: return ℵ(𝑡1, 𝑡2) > 1 ∨ (𝑐1 > 0) ∨ (𝑐2 > 0) ∨ (𝑐3 > 0)
11: end if
12: end function

Algorithm 1 is constructed upon the main result presented in

Theorem 3 to validate the convexity property of the set of rules in

the policy. Algorithm 1 efficiently examines each separator, provid-

ing a method to verify whether it is an implicant of Φ using an SAT

solver (Line 8). This algorithm utilizes Algorithm 2 as a criterion to

avoid computing separators that fail to meet the conditions speci-

fied in Theorem 1. The purpose of this criterion is to streamline the

search for separators to be evaluated. In practice, it helps reduce

the running time.

The complexity of Algorithm 1 is influenced by various factors.

First, to compute each separator, the algorithm requires𝑂 (𝑛2) com-

parisons in the worst-case scenario, where 𝑛 represents the number

of terms in the DNF. Additionally, each separator computation in-

volves a Gap-Check criterion, which is linear in the number of

variables. Furthermore, the algorithm involves solving the satisfi-

ability problem (SAT) as a subroutine. Therefore, considering 𝑚

as the maximum number of variables across all the terms in the

formula, the overall complexity of Algorithm 1 can be expressed as

𝑂 (𝑛2 ∗ (𝑚 + 𝑆𝐴𝑇 )).
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Table 2: Characteristics of Policy Datasets (Each Rule Is a
Conjunction of Variables)

Dataset # Variables # PERMIT Rules # DENY Rules

healthDDDO 69 49 26

teachDDDO 49 39 14

paperDDDO 35 18 11

healthNeg 64 58 -

teachNeg 46 40 -

paperNeg 34 20 -

5 EXPERIMENTS
In this section, we present the experiments conducted to evaluate

the performance of checking convexity for access control policies

across three distinct datasets. These datasets contain rules consist-

ing of a conditional expression and a decision. The two different

types of decisions for each rule are PERMIT and DENY. The experi-
ments aim to investigate various aspects of convex and non-convex

policies, including:

(1) Efficiency of the SAT solver

(2) Their performance across different DDDO policies,

(3) Difference in computational complexity between convex and

non-convex and

(4) Performance under a fixed number of rules.

Considering the novelty of our approach in this domain, there

are currently no existing methods available to serve as a baseline

for comparison. In the next sections, we start by providing details

of our experimental setup and the datasets used therein.

5.1 Policy Datasets
We adopted policy datasets from Slankas et al. [35] who propose

inferring access control rules from natural language texts such as

requirements documents. The policies are from real-world systems

across three domains – healthcare, conference management (paper

review), and education (teaching). There are both PERMIT and DENY
rules in those policies. In addition, there are rules with comple-

mented conditions. We form DDDO rule sets using PERMIT/DENY
rules with only uncomplemented conditions.We also formNegation

rule sets using PERMIT rules that may have either complemented

or uncomplemented conditions. Therefore, we create six reference

rule sets, namely, healthDDDO, healthNeg, paperDDDO, paperNeg,
teachDDDO, and teachNeg, considering the three systems and the

type of policy model. Table 2 summarizes the characteristics of

these rule sets.

Although the previous work considers both complemented con-

ditions (in the form of negative adjectives and nouns such as unable,

none, and nothing) and DENY rules (in the form of verbs and adverbs

with negative connotations such as stop, prohibit, and never) within

sentences, they only consider the broader notion of negativity or

denying certain users or roles access to a specific action and/or

resource. So, to adapt their inferred access control rules to our

context of DDDO and Negation policies, we needed to explicitly

distinguish the two notions of negativity. Furthermore, to be able to

convert to our policy format, we identify the variables within their

Figure 2: Performance of SAT Solver for Convex Policy

English rules so that our converted rule consists of the conjunc-

tion of identified variables. For instance, for the rule “Professors

can change student grades”, we create a permit rule consisting of

three variables 𝑥1=“subject.isProfessor”, 𝑥2=“action.isChange”, and

𝑥3=“resource.isStudentGrades” (we use the terminologies subject,
action, and resource in accordance with the previous work).

For our experiments, we formed policies of the expected number

of rules by randomly selecting rules from each rule set, ensuring

a diverse and representative set of rules. For experiments where

we strictly needed Negation policies with convex semantics as

our input, we first form DDDO policies (from DDDO rule sets)

and then prepare the Negation version of those. For each DDDO

policy, we first construct two DNFs:A containing the disjunction of

conjunctive expressions in PERMIT rules, and similarly, B for DENY
rules. Then, we constructA∧¬B and subsequently convert that to

DNF using a Boolean algebra library for Python. The conjunctive

expressions in the resulting DNF are the rules in the resulting

Negation policy. Note that the number of rules in such policies will

be much more than the figures reported in Table 2.

5.2 Implementation and Efficiency of the SAT
Solver

We implemented Algorithm 1 in Python to verify the convexity of

each input policy using Glucose SAT solver [4] as a subroutine. For

all experiments, the performance of the algorithm is measured in

seconds.

We first conduct an experiment to measure the performance of

the SAT solver in the context of Algorithm 1. We generate policies

from 2 up to 1900 rules based on the healthDDDO rule set. Figure 2

presents the performance of Algorithm 1 normalized by the number

of times the SAT solver is invoked. The linear trend suggests that

the SAT solver is highly efficient even when confronted with a

substantial number of rules. This contributes to the performance

of our implementation as discussed next.
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Figure 3: Performance for Convex vs. Non-Convex Policies
(Using healthNeg Dataset)

5.3 Convex vs. Non-Convex Policies
In this experiment, we use the healthNeg rule set to generate

Negation policies and test whether they have convex semantics (i.e.,

can be represented in DDDO) or not. The objective is to discern any

notable difference in computational complexity between convex

and non-convex policies.

The results presented in Figure 3 reveal the complexity differ-

ences between convex and non-convex policies using a log-log

plot. The convex policies are quadratic in complexity relative to

the number of rules and are illustrated as a line with a slope close

to two, while the non-convex policies have linear complexity and

are depicted by a line with a slope close to one. Note that the qua-

dratic/linear behavior can be determined based on the slope of the

line due to the log scale of the axes. The computational challenge of

convex policies arises from the requirement to verify whether every

separator between any two terms (rules) constitutes an implicant

of the policy. The number of such separators is quadratic relative

to the number of rules. Conversely, for non-convex policies, the

test will be terminated as soon as the first non-implicant separator

is checked, resulting in more efficient run time.

5.4 Performance on Different DDDO Policies
In this experiment, we investigate the impact of the characteristics

of the datasets on the performance of our solution. Specifically, we

test the performance of Algorithm 1 across convex policies gen-

erated from different rule sets. For this experiment, we used the

DDDO datasets (healthDDDO, teachDDDO, and paperDDDO) to gen-

erate our policies to focus on the more computationally challenging

policy cases. To ensure comprehensive analysis, we generated 80

policies for each dataset, restricting the number of rules to a range

of 2 to 865.

Figure 4 illustrates that policies from all three rule sets exhibit

very similar performance trends. This consistent quadratic perfor-

mance across all three datasets suggests that the performance of

the algorithm remains stable irrespective of the dataset used. The

Figure 4: Performance for Convex Policies From Different
Domains

Figure 5: Impact of Rule Size (# of Variables) on Testing Con-
vex Policies (Using healthDDDO Dataset)

quadratic behavior is illustrated across the dataset as a straight line

with a slope close to 2.

5.5 Impact of Rule Complexity
In this experiment, we investigate the impact of rule complexity,

specifically, the number of variables used in a policy, on the per-

formance of our solution. Our goal is to assess the performance as

we change the number of variables in a policy while maintaining a

fixed number of rules in the policy. We also ensure that the tested

policies are convex. We first generated 3 policies with different rule

sizes from the healthDDDO dataset. We then generated other poli-

cies by progressively eliminating the variables in each case while

ensuring that each resulting policy remains convex.

The results depicted in Figure 5 reveals a consistent trend in

the running time of our solution as the rule complexity is varied
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(by eliminating variables), regardless of the number of rules. It is

evident that as the number of variables increases while holding the

number of rules constant, the computational complexity exhibits a

linear growth pattern. This phenomenon can be attributed to the

proportional increase in the size of the separator that needs to be

computed with the increment of variables.

6 RELATEDWORK
Our policy model revolves around rule-based policies which consist

of a set of rules to capture the authorizations of a system, based on

the condition that all variables in at least one of the rules should

evaluate to True for access to be permitted. Two contemporary rule-

based policy models that have received great research attention

include attribute-based access control (ABAC) [1, 14, 25, 26, 31–34]

and relationship-based access control (ReBAC) [5, 10, 11, 15, 17, 18,

20, 28, 30, 36]. The ABAC model specifies which users can access

what resources in terms of the attributes of the requesting user and

the requested resource. The ReBAC model makes the authorization

approach of ABAC model more flexible by taking into account

the sequence of relationships between users and resources, where

relationships are expressed as binary predicates instead of using

unary predicates such as attributes and roles as in ABAC.

There are variations of ABAC and ReBACmodels in the literature

that include different combinations of complemented conditions

and negative authorizations, depending on the use case applica-

tion(s) considered in the respective works, to limit access for only

certain types of users. Some works use only complemented condi-

tions (which is the Negation model in our context), whereas some

employ deny rules along with the deny-overrides conflict resolu-

tion strategy (which is the DDDO model in our context), and there

are yet works that utilize both complemented conditions and deny

rules for prohibiting access(es). In this work, we are not concerned

with proposing yet another rule-based policy model, but rather

interested in capturing the essential components of rule-based poli-

cies spanning the access control models proposed in the literature

that is sufficient enough for demonstrating our convexity analysis.

Moreover, the focus of this work is to present a systematic and effi-

cient approach to convert policies specified in the Negation model

to corresponding policies in the Deny model. Our motivation is that

deny rules are usually much easier to apprehend and manage for a

security administrator than complemented conditions, even though

a previous work argues that using the latter construct produces a

more expressive policy than using the former construct [24].

Later works focused on migrating or refactoring policies speci-

fied in a conventional access control model such as access control

lists to a rule-based policy format. Such line of works, also fa-

mously known as policy mining, takes as input the low-level policy
along with the required knowledge about the attributes of and re-

lationships between users and resources, and proposes different

approaches to extract high-level and concise rule-based policies

that preserve the authorizations captured in the given low-level pol-

icy. The policy mining concept has been extensively explored with

respect to both ABAC and ReBAC models. In the context of ABAC,

researchers have proposed algorithms tomine concise rules in terms

of the attributes of users and resources from given low-level autho-

rizations such as access logs or access control lists [2, 12, 21, 37]. In

the context of ReBAC, previous mining algorithms have focused

on inferring rules in terms of the relationships between users and

resources from given low-level policy and information about the

entity relationships [6, 7, 22, 23]. The problem of migrating a se-

curity policy enforced in a particular device to be enforced in a

different device has also been studied that considers differences in

the computational capabilities of the devices [27].

In more recent literature, there are also works that consider the

problem of determining the feasibility of mining ReBAC policies

from the given authorizations and relationships data [8, 9]. Al-

though at first glance this work seems closely related to our work,

since we are also determining the feasibility of policy convertibility,

a closer inspection will reveal that the input to our algorithm is a

policy, which is a DNF Boolean expression in the Negation model

and we are checking if we can represent that policy in the DDDO

model. So, we are also considering the feasibility of conversion be-

tween two specific constructs within rule-based policies, which are

complemented conditions and negative authorizations. Importantly,

using our policy semantics framework, we are able to determine

the feasibility of Negation to DDDO policy conversion in quadratic

time.

Our work is also related to the expressiveness analysis of access

control policies. As discussed in Sections 1 and 2, we build on a

previously-proposed approach to policy semantics and expressive-

ness [29]. While that work focuses on capturing the semantics of

various rule-based models and comparing their expressiveness, our

contribution is on determining if a policy from a more expressive

model (Negation) is convertible to a policy in a less expressive

model (DDDO). Other notable related work in the area involves

analyzing the expressiveness of XACML policies [16].

7 CONCLUSION
In this work, we proposed an empirical approach to test the con-

vertibility of policies that use complemented conditions to those

that use DENY rules. We formally characterized how a Negation

policy semantics may be tested for convexity and therefore, being

expressible using DENY rules (in the context of DDDO model). We

also showed how that can be employed as a strategy to test convert-

ibility by relying on existing SAT solver solutions. Our experimental

results are promising, demonstrating the feasibility and scalability

of the approach in the context of multiple policies. As part of our

future work, we are planning to extend our approach to derive the
PERMIT and DENY rules if the policy semantics is convex, i.e., the

equivalent DDDO policy. Our key intuition is that the separators

can help in dividing up the positive and negative parts of the indi-

vidual terms which could be used to construct the DNF-equivalent

of PERMIT and DENY rules.
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A COMPUTATIONAL COMPLEXITY OF
CONVERTIBILITY OF NEGATION TO DDDO

In this section, we briefly discuss and prove the computational

complexity of checking whether a Negation policy is convertible to

a DDDO policy. We note this discussion as out of the scope of this

paper and is provided only to support our motivation argument

in Section 1.

Semantically, the decision problem of convertibility from Nega-

tion to DDDO is about whether the given set of minterms imple-

mented by a Negation policy is convex. We show that this problem

is computationally hard, and more specifically, co-NP-complete.

We first show that the problem is in co-NP. Given a Nega-

tion policy 𝑝𝑛 that is not convertible to DDDO, there exists a

certificate which consists of 3 minterms 𝑚1 ≤ 𝑚2 ≤ 𝑚3 where

{𝑚1,𝑚3} ⊆ 𝜇 (𝑝𝑛) and𝑚2 ∉ 𝜇 (𝑝𝑛). We can verify the correctness

of the certificate in polynomial time. The verification will take

𝑂 ( |𝑝 |) time by checking each given minterm against the conditions

of all policy rules in the worst case.

We prove the co-NP-hardness of the problem by showing that the

validity problem [3, 19] can be polynomially reduced to Negation-

DDDO convertibility. The validity problem is to determine whether

a given propositional formula evaluates to true for every assignment

of truth values to its variables. Let Ψ be a propositional formula

in DNF (disjunctive normal form) over variables in set 𝑌 , i.e., Ψ =

Π1 ∨ . . . ∨ Π𝑘 where each Π𝑖 is a product of variables in 𝑌 or their

complements, e.g., 𝑦1𝑦2𝑦3 (assuming {𝑦1, 𝑦2, 𝑦3} ⊆ 𝑌 ). We define

set of conditions X = {𝑥1, 𝑥2} ∪ 𝑌 , and form negation policy 𝑝𝑛
based on it as follows:

⟨𝑥1𝑥2, PERMIT⟩
⟨𝑥1 𝑥2, PERMIT⟩
⟨Ψ, PERMIT⟩

Note that since Ψ is in DNF format, the last rule above should be

expanded into multiple rules with conditional expressions of purely

https://doi.org/10.1142/S0218213018400018
https://doi.org/10.1142/S0218213018400018
https://doi.org/10.1145/3450569.3463569
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conjunctive form: ⟨Π𝑖 , PERMIT⟩. However, we keep it as above for

the brevity of the discussion.

We now show that 𝑝𝑛 is convertible to DDDO if and only if Ψ
is valid. Let us consider the case that Ψ is valid (always equivalent

to true). In this case, the corresponding rule in 𝑝𝑛 always results

in PERMIT. In other words, 𝜇 (𝑝𝑛) = MX (set of minterms over

conditions in 𝑋 ). Since the policy-minterms will be convex, we can

express 𝑝𝑛 in DDDO.

Now, consider the case where Ψ is not valid. In this case, there

will exist a minterm 𝑚 ∈ M𝑌 that does not belong to 𝜇 (Ψ), i.e.,

Ψ evaluates to false on the truth assignment corresponding to𝑚.

Given the abovementioned first and second rules in 𝑝𝑛 , we will have:

𝑥1 𝑥2𝑚 ∈ 𝜇 (𝑝𝑛) and 𝑥1𝑥2𝑚 ∈ 𝜇 (𝑝𝑛). However, 𝑥1𝑥2𝑚 ∉ 𝜇 (𝑝𝑛)
since none of the rules in 𝑝𝑛 can authorize that minterm. Since,

𝑥1 𝑥2𝑚 ≤ 𝑥1𝑥2𝑚 ≤ 𝑥1𝑥2𝑚, we conclude that 𝜇 (𝑝𝑛) will not be
convex, and thus, it cannot be expressed in DDDO. This concludes

our reduction and proves the co-NP-hardness of the Negation-

DDDO convertibility problem.
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