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Abstract—Popular social networking sites have revolution-
ized the way people interact on the Web. Researchers have
studied social networks from numerous perspectives, mostly
focusing on publicly available social networks and microblog-
ging sites. Enterprises however have recently being adopting
and utilizing microblogging services as part of their day to day
operations. The goal of this paper is to study the topological
properties of a corporate microblogging service, its dynamics
and characteristics. Through an extensive analysis of enterprise
microblogging data, we provide insights on the structural
properties of the extracted network of directed messages sent
between users of a corporate microblogging service, as well as
the lexical and topical alignment of users. We compare our
results to traditional, general purpose, online social networks
and discuss the implications of our findings. To the best of
our knowledge, this work is the first quantitative study of an
enterprise microblogging service, its usage characteristics, and
its derived social network based on replies between users.

Keywords-micro-blogging; social networks; social media; en-
terprise; measurement; analysis;

I. INTRODUCTION

Social Networks have revolutionized the way people

communicate and interact, while serving as a platform for

information dissemination, content organization and search,

expertize identification, and influence discovery. The popu-

larity of online social networks like Facebook and Twitter

has given researchers access to massive quantities of data

for analysis. Such datasets provide an opportunity to study

the characteristics of social networks in order to understand

the dynamics of individual and group behavior, underlying

structures, and local and global patterns that govern infor-

mation flow.

Most of the analysis performed thus far has focused on

publicly available social networks [1]. However, microblog-

ging capabilities are adopted and used in the enterprise as

well [2]. The topological characteristics of enterprise social

networks have thus far not been studied, partially due to

the lack of available datasets. In this work, we provide an

extensive quantitative analysis of enterprise microblogging

data, collected from a large, international corporation over a

one year period. Specifically, we have extracted and studied

the directed network we inferred from @reply messages in

a corporate microblogging service, which resembles Twitter.

We believe this is the first quantitative examination of

structural and topological characteristics of a microblogging

service in a coporate setting. Our findings confirm the

power-law, small-world, and scale-free properties of the

@replies network. We further examine the lexical and topical

alignment of users in the @replies network and discover that

semantic similarity of users as a function of their distance is

significantly higher as compared to online social networks.

In addition to validating structural and semantical proper-

ties of the @replies network and comparing our findings

to traditional online social networks, we further provide

significant insights into the corporate microblogging service.

We observe that the world is “smaller” in the corporate

environment (as expected), even though the inferred net-

work appears to have similar structure to online networks,

with a large, strongly connected core, surrounded by many

small clusters of low-degree nodes. This suggests that high-

degree nodes in the core exhibit characteristics of expertise,

conceptualized by frequent message exchanges with other

nodes. Such high-degree nodes are therefore critical for

the connectivity and flow of information in the corporate

environment.

In this work, we focus on the complete snapshot of

a corporate microblogging service. For our analysis, we

consider the complete user corpus, instead of only focusing

on users belonging to the largest connected component.

This includes users who may have contributed to one-to-

many conversations, but, who have never sent a directed

@reply message. This definition does not include users

who tried the service once and never used it, or found it

useless. We do not seek to discover or test the perceived

benefits and barriers to adoption of microblogging services

in enterprise environments. We further do not attempt to

examine information flow or temporal evolution of this

network. While such aspects are important, they are beyond

the scope of this paper.

II. RELATED WORK

The structure and evolution of online social networks

has been investigated in detail by Mislove et al. [1] and

Kumar et al. [3]. Ahn et al. [4] analyzed Cyworld, MySpace

and Orkut. Kumar et al. [3] examined two online social



networks and found that both possess a large strongly

connected component. Girvan and Newman observed that

users in online social networks tend to form tightly knit

groups [5]. Amaral et al. [6] and Newman [7] examined

the small-world properties (small diameter and high clus-

tering) of different networks, while Kleinberg [8] proposed

a model that captures small-world properties. The extracted

social network examined in this paper exhibits small-world

properties much like other general purpose online social

networks. Marlow et al. [9] investigated patterns in Flickr

user activity and examined vocabulary overlaps between user

pairs. Schifanell et al. [10] focused on topical and lexical

alignment among users who lie close to each other in the

Flickr social network and exploited this alignment as an

indicator of user connectivity.

On the other hand, most of the studies on microblogging

networks have focused on Twitter. Krishnamurthy et al. [11]

presented a detailed characterization of Twitter, identified

distinct classes of Twitter users and their behaviors, geo-

graphic growth patterns and current size of the network. Java

et al. [12] explored Twitter’s topological and geographical

properties, analyzed user interactions at the community level

and showed how users with similar interests connect to each

other. Zhao et al. [13] explored the factors that influence

people’s tendency to share personal information in Twitter,

and examined microblogging’s potential impact on informal

communication at work. Through a qualitative study, they

concluded that microblogging at workplace can assist in

building stronger personal bonds between colleagues, rather

than being used for professional benefits, even though they

hinted that microblogging provides a complementary in-

formal communication channel for coworkers to share and

exchange information and ideas. Wu et al. [14] investi-

gated workplace relationships built between coworkers using

microblogging services and determined interaction patterns

that signal personal versus professional closeness between

colleagues.

Zhang et al. [2] provided a systematic examination of

adoption and usage of a microblogging tool in a corpora-

tion environment, emphasizing on the perceived benefits of

corporate microblogging and barriers to adoption. Ehrlich et

al. [15] and DiMicco et al. [16] examined microblogging

in workplace with emphasis on content type (percentage of

information sharing messages versus questions and status

updates) and users microblogging behavior as a function

of their motivation. Their main focus was on providing

qualitative results and insights on the reasons and ways

people are utilizing microblogging for communication in a

corporate environment. Guy et al. [17] presented an API

for gathering and sharing interpersonal connections across

multiple services and demonstrated its potential value with

a comprehensive qualitative analysis.

Our study focuses on the social connectedness of an

extracted corporate social network, as well as the properties

and characteristics of social content, tie formation and in-

formation flow, in the context of a corporate microblogging

service, with the goal of comparing our findings to tradi-

tional, online social networks, identifying similarities and

exposing differentiations.

III. DATA SET

The dataset for this analysis is a complete snapshot of a

corporate microblogging service, which resembles Twitter. It

consists of 4,213 unique users, who posted 16,438 messages

by the end of August 2011, when we obtained the raw data

for this paper. The corporate micro-blogging site does not

impose any restrictions on the way people interact or who

they chose to follow, much similar to Twitter.

A. Description of the Network

We inferred a directed network of users’ interaction flow,

mining directed user messages (@replies). We represent the

@replies network as a directed graph G = (V,E):

• vertices: V = {ui|i = 1, ..., N}, where N = |V | =
4, 213 is the total number of users,

• edges: E = {eij |i, j = 1, ..., N}, where M = |E| =
4, 489 is the total number of edges,

• I : E → V × V defined as follows: an edge eij exists

and points from node i to node j if user i has sent at

least one @reply message to user j.

We have chosen this intuitive definition for edges due to

the way messages are delivered in the corporate microblog-

ging service. If we were to consider broadcast messages, all

users would be connected to everyone else, thus forming a

densely connected graph, which would provide little insight.

Instead we chose to represent the “transer” of content from

user i to user j when user i sends user j a @reply message.

An undirected edge eij between users i and j if either

user sent a message to the other would not capture the

semantics of directed communication, which may or may

not be reciprocal. We considered weighting the edges by the

frequency of replies sent from user i to user j. The addition

of weights however would have no effect on the structure

and properties of the inferred social graph. It would change

node rankings in terms of PageRank or similar metrics, but

this is not the focus of this paper.

B. High Level Statistics

Table I presents the high level statistics of our dataset.

Some comments are in order. First, the average number of

messages per thread is 2.02, while the ratio of the broadcast

messages to the number of personal replies is ≈ 1.011. Even

though these statistics indicate on average shallow conver-

sations, we found that is not the case overall. The mean is

so small due to the heavy-tailed distribution of number of

messages per user. Further, even though the average number

of messages per user is ≈ 4, the average number of replies

per user is quite higher (≈ 7.3), indicating users’ tendency



Metric Value

Number of users 4,213
Number of messages 16,438
Number of threads 8,139
Number of broadcast messages 8,174
Number of personal replies 8,264
Number of hashtags 637
Number of groups 88

Table I
HIGH-LEVEL STATISTICS OF THE @REPLIES NETWORK.

to directional communication instead of broadcasting of

personal status updates or sharing of news. The study by

Zhang et al. [2] reports a 25% average of “conversation

seeking” type of messages in an enterprise social network.

Assuming that “share news” type of messages also probe

some sort of response, the combined average of ≈ 60% in

that study aligns quite well with our findings here.

In many online social networks, users with shared inter-

ests may create and join groups. In the corporate microblog-

ging service users are able to create and join groups to

collaborate with smaller teams. Messages sent within group

boundaries are broadcast to group members only, while

private message exchanges among group members are also

feasible. We found that the average number of messages per

group is 24.6, indicating considerably high activity patterns

across all groups.

Finally, the sparsity of text in micro blogging social

networks has traditionally been a hurdle for researchers

interested in performing some type of statistical analysis of

micro blogging content. We counted the average number of

words per message in this social network and we found it to

be ≈ 29.1. This number is quite high, indicating that most

messages are adequately descriptive and could be safely

used for statistical analysis (e.g. sentiment analysis), like

Bayesian inferencing.

On the contrary, the number of hashtags per message

is quite low, ≈ 1.6 on average. Tagging, allows users to

organize web resources (e.g. photos in Flickr, bookmarks

in Delicious or tweets in Twitter). Twitter users adopted

hashtags as an attempt to alleviate the significant information

overload that the streaming nature of social media impose to

users interested in specific topic(s). Huang et al. [18] exam-

ined tagging strategies followed by Twitter users for content

management and filtering. Rather than using hashtags, users

of the corporate microblogging service mostly rely on group

membership for content organization.

IV. ANALYSIS OF NETWORK STRUCTURE

In this section we characterize the structural properties of

the @replies network. Let us denote the average in-degree

(number of users j who have sent a message to user i) by din
and the out-degree (number of users j to whom user i has

sent a message) by dout. Then, din = 1.07 and dout = 1.07,
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Figure 1. Distribution of users’ in-degree and out-degree (both axes are
in logarithmic scale).

while average degree is d = 2.14. It has been shown that the

degree distributions of many complex networks, including

social networks, conform to power laws [1]. The @replies

network exhibits such characteristics. Figure 1 shows the

probability distributions of the number of k neighbors (in-

degree and out-degree respectively). For reference Table II

reports the mean and variance of in/out-degree.

The existence of edge eij does not guarantee that the

reciprocal edge eji also exists. Hence the relationship is

not symmetric. If user A sends a message to user B, the

edge eAB is created, but not vise versa. We call user B

the “follower” of user A. If B also replies to A, then they

are each other’s “mutual followers”. Figure 2 shows the

scatter plot of the number of followees versus the number

of followers. The points are scattered around the diagonal,

indicating equal numbers of followers and followees (pos-

sibly indicating reciprocal/mutual links). Figure 3 presents

the cumulative distribution of the out-degree to in-degree

ratio, exhibiting high correlation between in-degree and out-

degree. This high correlation could be explained as a result

of symmetric links being created due to the tendency of

users to reply back when they receive a message from other

users. Our analysis of the level of symmetry in the directed

@replies network reveals that the degree of symmetry is not

as significant as one would expect. Overall, the @replies

network exhibits low level of reciprocity with only 21.49%
symmetric links, whereas the percentage of symmetric links

in the largest connected component is 23.18%. Our results

align very well with those reported in [19] for reciprocity in

Twitter. Following similar reasoning to [19], we conjecture

that users tend to share information with their colleagues

in a broadcast manner, rather than exchanging one-to-one

messages, even if a conversation is initiated with a directed

message between two users. Further validation is out of
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Figure 2. Scatter plot of the number of followers and the number of
followees.
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Figure 3. CDF of out-degree to in-degree ratio.

scope of this paper and we leave it for future work.

We now examine clustering, which quantifies how densely

the neighborhood of a node is connected. Not all nodes

are connected in one cluster. There are Ncc = 3, 570
connected components, with the largest component encom-

passing Nccmax = 582 nodes (13.8% of the network).

Figure 4 (top) shows the histogram of connected component

sizes. The clustering coefficient of node u, with set SN of

N neighbors, is defined as the number of directed links

that exist between nodes in SN , divided by the number

of all possible directed links N ∗ (N − 1) between the

nodes in SN . The clustering coefficient of the network,

c, is 0.0335. Figure 4 (bottom) shows the histogram of

individual clustering coefficients at each node. Due to the

fact that we compute this metric over the complete network,

the clustering coefficient of the graph is low. However,
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Figure 4. Top: Histogram of connected components sizes. Bottom:
Histogram of clustering coefficients.
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Figure 5. Top: Histogram of clustering coefficients in LCC. Bottom:
Average clustering coefficient as a function of degree in LCC.

in a random network with the same number of nodes

(N ) and degree (d), c = d
N

= 0.0005 [20]. Figure 5

(top) shows the histogram of connected component sizes

for the largest connected component, which contains 582
nodes, with an average node degree dLCC = 12.97. The

clustering coefficient of the largest connected component is

cLCC = 0.2311 ≫ crandom = 0.0223. Figure 5 (bottom)

shows how the clustering coefficient of nodes vary as a

function of node degree. The average clustering coefficient

follows a decreasing trend with increasing node degree. It

is higher for nodes of low degree, suggesting significant

clustering among low-degree nodes. This evidence of strong

local clustering supports the intuition that people tend to

be introduced to others via mutual contacts, thus increasing

the probability of two neighbors u and v of user z to be
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Figure 6. From left to right and top to bottom, distribution of the number
of messages nm per user, the number of replies nr per user, the number
ng of distinct groups to which a user’s messages belong and the number
g of group related messages per user, the number nt of distinct hashtags
per user and the number t of hashtag assignments per user.

connected themselves [1], thus exchanging directed @reply

messages in this case.

Next, we look at the properties of shortest paths between

users in the large weakly connected component. As only

21.49% of links are reciprocal, we expect the average path

length between any two users to be longer than other known

networks. The average path length is Dav = 3.5677 and

the diameter is Dmax = 11. Even though the graph is

directed, these values are remarkably short and quite similar

to corresponding values for Flickr and Orkut [1]. In a

random network with the same number of nodes (N ) and

degree (d), Lrandom = ln(d)
ln(N) = 10.9699 [20]. The small

diameter (Dmax ≈ Lrandom) and the strong local clustering

of this network (c ≫ crandom) qualify the network of

@replies as small-world network [21], and further indicate

that the graph has scale-free properties.

V. CONTENT ANALYSIS

In this section we take a close look at the content

aspect of the @replies network, focusing on numerous user

activities. We further investigate the correlations between

such activities. Figure 6 shows the probability distributions

of the number of messages nm and the number of replies

nr per user, the distribution of the number of groups ng to

which a user belongs and the probability of finding a user

with a number nt of distinct hashtags in his vocabulary.

Figure 6 further shows the total number t of hashtag

assignments per user (a hashtag used twice is counted twice)

and the total number g of group related messages per user

(the number of messages sent to a group instead of binary

group membership). More precisely, if fu(t) is the frequency

of hashtag t being used by user u, then the total number of

Activity x E[x] Var[x]

in-degree 1.0197 25.2624
out-degree 1.0197 23.6404

nm 3.9195 321.6220
nr 1.5196 84.7008
g 3.9067 321.3277
ng 1.1721 0.6040
t 1.5884 39.7527
nt 1.2601 9.1692

Table II
AVERAGES AND FLUCTUATIONS OF USER ACTIVITIES.

hashtag assignments of user u is given by: tu =
∑

t fu(t).
Similarly, if fu(g) is the number of times user u has sent

a message to group g (either privately to another group

member or broadcast to the group), then the total number

of group messages of user u is given by: gu =
∑

g fu(g).
All activities show behavior consistent with power law

networks; the majority of users show small activity pat-

terns with few nodes being significantly more active. All

distributions are broad, indicating that the activity patterns

of users are highly heterogeneous. For reference, Table II

reports the mean and variance of different activities. The

average number of group related messages (g) seems to be

restricted on average, but its variance is quite high. The

use of hashtags (t) is relatively low with the average being

≈ 1.6 hashtags per message, which makes tagging even

scarcer than in traditional social networks like Flickr. Our

results have lower values than those of traditional online

social networks [1]. This difference can be explained as a

result of not restricting our analysis only to users for whom

we have messages, hashtags, group participation and contact

information, contrary to [10].

A. Correlations Between Features

Marlow et al. [9] reported that some Flickr user activities

are correlated (e.g. the number of photos uploaded by a user

is strongly correlated with the number of hashtags from the

same user). We wanted to test the validity of this hypothesis

for our @replies network. Figures 7 and 8 respectively show

the number of group related messages and the number of

hashtag assignments as a function of the number of messages

nm and replies nr of a user. Clearly, g exhibits strong

correlation to the number of messages (replies). Frequent

communication between group members is expected, since

joining a group is likely driven by a business need. However,

we cannot conjecture the same for hashtag assignments.

There seems to be a close relationship on a logarithmic scale,

but such relationship is not perfectly linear. Even though

there exist many users exhibiting high activity patterns with

respect to the number of messages (replies) they send, such

users do not tend to tag their messages as often. Further,

users tend to mostly tag their own content, as in Flickr [22].

It seems reasonable to deduct that group co-membership is
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Figure 8. Number of hashtag assignments t, as a function of the number
of messages nm and replies nr of a user. Both axes are in logarithmic
scale.

a natural and direct indicator of shared users’ interests in

a corporation. Shared hashtags can also be considered as

indicator of shared interests, but with some caution.

B. Correlations Between Features and the Network

We now examine correlations between users activities

and the structure of the @replies network. Specifically, we

investigate if there is a connection between the number of

neighbors a user has and the activity patterns of such user

(i.e. number of messages, number of replies, group partic-

ipation and tagging). We characterize the average activity

of users with k neighbors (we consider in-degree and out-

degree separately), using the following quantities: (i) the

average number of messages of users with k neighbors

nm(k), (ii) the average number of replies of users with
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Figure 9. From left to right and top to bottoms, average number of (a)
messages nm, (b) replies nr , (c) distinct groups ng and (d) groups g, (e)
distinct hashtags nt and (f) total hashtag assignments t of users having k
neighbors in the @replies network.

k neighbors nr(k), (iii) the average number of distinct

groups (similarly for total number of group messages) of

users with k neighbors ng(k), (iv) the average number of

distinct hashtags (similarly for total hashtag assignments)

of users with k neighbors nt(k). For example, nm(k) =
1

|u:ku=k|

∑

u:ku=k

nm(u).

Figure 9 shows the probability distributions of such quan-

tities. All activities have an increasing trend for increasing

values of k (both for in-degree and out-degree). Large

fluctuations can be observed for large values of k due to

the fewer highly connected users over whom the averages

are performed. Notably, the average number of messages and

replies are very well correlated to the number of neighbors,

as is the average number of distinct groups. The average

number of (distinct) hashtag assignments exhibits more



Parameters x, y PCC(x, y)
kin, nm 0.9779
kin, nr 0.9608
kin, ng 0.7543
kin, g 0.9779
kin, nt 0.7157
kin, nt 0.6978

kout, nm 0.9397
kout, nr 0.9767
kout, ng 0.6967
kout, g 0.9397
kout, nt 0.5407
kout, nt 0.53

Table III
PEARSON CORRELATION COEFFICIENTS.

heterogeneity than the other measures, but still the trend

is increasing with increasing values of k. Users with many

contacts but using very few hashtags and sending very few

group messages can be observed. For reference, Table III

reports the Pearson correlation coefficients, measured for k

(both for in-degree and out-degree) and all user activities.

C. Lexical Alignment

We now examine user similarity in terms of hashtag usage,

with respect to their distance in the @replies network. We

argued earlier that users of the corporate microblogging

service mostly tag their own content. This observation along

with the personal character of tagging make us conjecture

that there will be no global hashtag vocabulary across

users, or if such a vocabulary exists, it will be extremely

incoherent. Hence, we do not anticipate an emergent globally

accepted hashtag vocabulary, commonly found in social

bookmarking sites [9], [23]. To test the existence of a

globally shared vocabulary, we selected pairs of users at

random and measured the number of their shared hashtags,

which on average is ≈ 1.001.

Even though random pairs of users don’t have common

hashtags, adjacent users in social networks tend to share

common interests, a property known as homophily [24], [25]

or assortative mixing [26]. We measure user homophily with

respect to hashtags as a function of the distance of users

in the @replies network. We regard hashtag assignments

of user u as a feature vector, whose elements correspond

to hashtags and whose entries correspond to frequencies of

hashtag usage for user u. Hence, the normalized similarity

between two users u and v with respect to their hashtag

vectors, σhashtags(u, v) can be computed as follows:

σhashtags(u, v) =

∑

t

fu(t)fv(t)

√
∑

t

fu(t)2
∑

t

fv(t)2
, (1)

where fu(t) denotes the number of times user u has used

hashtag t. σhashtags(u, v) is equal to 0 if users u and v have

no hashtags in common, and 1 if they have used exactly the
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Figure 10. Top: Average number of shared hashtags nst, σhashtags(u, v),
and σUhashtags

(u, v) of two users as a function of their distance d in the

network. Bottom: Probability distribution of the number of shared hashtags
nst of two users being at distance d on the network, for d = 1, 2, 3.

same hashtags. We further define the normalized similarity

between two users u and v with respect to their distinct

hashtag usage, as:

σUhashtags
(u, v) =

∑

t

δtuδ
t
v

√

nt(u)nt(v)
, (2)

where nt(u) is the total number of distinct hashtags of user

u and δtu = 1 if user u has used hashtag t at least once, and

0 otherwise.

To compute averages of the aforementioned similarities

we performed an exhaustive investigation of the @replies

network up to distance equal to the network diameter

(Dmax). Figure 10 demonstrates the dependency of user

similarity on distance, by showing the average number of

shared hashtags and the corresponding average cosine simi-

larities of two users as a function of d. The average number

of shared hashtags remains almost constant for d ≤ 6,

after which point it drops rapidly. High lexical alignment

is observed between neighbors for greater distance than

traditional online social networks [10], due to the fact that in

a corporate environment users exhibit more focused interests

aligned with their discipline, day to day responsibilities and

ongoing projects.

We examine user homophily with respect to groups as a

function of their distance, following similar reasoning. In

particular, we define the normalized similarity between two

users u and v with respect to their group participation as:

σUgroups
(u, v) =

∑

t

δguδ
g
v

√

ng(u)ng(v)
, (3)

where ng(u) is the number of groups of which user u is
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Figure 11. Top: Average number of (i) shared groups nsg , (ii)
σgroups(u, v), and (iii) σUgroups

(u, v) of two users as a function of their
distance d in the network. Bottom: Probability distribution of the number
of shared groups nsg of two users being at distance d on the network, for
d = 1, 2, 3.

a member and δgu = 1 if user u belongs to group g, and

0 otherwise (a user belongs at most once to a group). We

also examine user similarity in terms of messages sent to

common groups. We calculate this similarity, as follows:

σgroups(u, v) =

∑

g

fu(g)fv(g)

√

∑

g

fu(g)2
∑

g

fv(g)2
. (4)

Figure 11 demonstrates the dependency of user similarity on

distance, allowing us to draw similar conclusions for shared

groups, as for shared hashtags.

VI. CONCLUSION

In this paper we provided an extensive analysis of enter-

prise microblogging data. The extracted network of directed

@-messages sent between users of a corporate microblog-

ging service that we examined is a “smaller” world than

online social networks, has a strongly connected core of

high-degree nodes, and exhibits strong positive correlation

to users degree (both in-degree and out-degree). We further

showed that strong correlations exist between user activities,

and that users alignment in terms of their hashtag vocabulary

and group co-membership is more profound than in online

social networks, for greater distances.

The primary focus of corporate microblogging services is

narrower than traditional social network sites like Twitter,

Facebook, and Flicker. Corporate microblogging services

mostly emphasize on the business perspective and therefore

their content revolves around the work culture, work prac-

tices, and everyday problems (technical or otherwise related

to business). Discussions are often about problem solving,

relevant emerging techniques, applications and technologies,

trends, etc. Usually, some users lead the overall discussion

by expressing their opinion on a matter, which then triggers

replies. The existence of high-degree nodes that we observed

in the @replies network confirms this behavior and suggests

that such high-degree nodes are critical for the connectivity

and flow of information in this context. On the other hand,

information searches that exploit the social structure rapidly

reach the core. The design of algorithms for information

search or expertise identification in this context should

consider this observation.

Conversely to general purpose online social networks,

trust is a minor issue in corporate microblogging services,

where malicious users cannot penetrate the core due to

restricted access. Trust is often used as an indicator of exper-

tise, hence newly hired employees may pursue highly ranked

positions in the @replies network by providing unconvincing

and/or unhelpful responses (i.e. a form of “spamming”),

contributing to discussions nonetheless. We conjecture that

a “new” user should be highly trusted not only if multiple

short disjoint paths to the user can be discovered [1] but also

if the overall impact and positive sentimental response that

her replies trigger are sufficiently large.

One possible criticism of our study is that it does not

account for network evolution. Our dataset spans a time

period between July, 2010 and August, 2011. During this

time frame, the network grows rapidly. However, our obser-

vations remain valid throughout this time period, indicating

that the basic network structure does not drastically change

over time.

In conclusion, we have presented our quantitative study of

enterprise microblogging data at scale, where we examined

1) the network structural characteristics and 2) users align-

ment with respect to content. We concluded by discussing

the implications of our findings. However, examination of

multiple other corporate social networks is required to

further confirm our findings.
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