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Abstract—Popular social networking sites have revolutionized
the way people interact on the Web, enabling rapid information
dissemination and search. In an enterprise, understanding how
information flows within and between organizational levels and
business units is of great importance. Despite numerous studies
in information diffusion in online social networks, little is known
about factors that affect the dynamics of technological adoption at
the workplace. Here, we address this problem, by examining the
impact of organizational hierarchy in adopting new technologies
in the enterprise. Our study suggests that middle-level managers
are more successful in influencing employees into adopting a new
microblogging service. Further, we reveal two distinct patterns
of peer pressure, based on which employees are not only more
likely to adopt the service, but the rate at which they do so
quickens as the popularity of the new technology increases. We
integrate our findings into two intuitive, realistic agent-based
computational models that capture the dynamics of adoption at
both microscopic and macroscopic levels. We evaluate our models
in a real-world dataset we collected from a multinational Fortune
500 company. Prediction results show that our models provide
great improvements over commonly used diffusion models. Our
findings provide significant insights to managers seeking to realize
the dynamics of adoption of new technologies in their company,
and could assist in designing better strategies for rapid and
efficient technology adoption and information dissemination at
the workplace.

Keywords—agent based computational models; adoption dynam-
ics; influence; evolutionary models; diffusion of innovations

I. INTRODUCTION

Researchers have well studied the importance of social
networks on information spread [1], [2], emphasizing partic-
ularly on information dissemination. Traditionally, diffusion
and cascading behavior have been formalized as transmission
of infectious agents in a population, where each individual
is either infected or susceptible, and infected nodes spread
the contagion along the edges of the network. There are,
however, differences between information flows and the spread
of viruses. While viruses tend to be indiscriminate, infecting
any susceptible individual, information is selective and passed
by its host only to individuals the host thinks would be inter-
ested in it. Diffusion models heavily rely on the premise that
contagion propagates over an implicit network, the structure
of which is assumed to be sufficient to explain the observed
behavior. However, the structure of the underlying network has
to be learned [3] from a plethora of historical evidence, i.e.
cascades. Although diffusion theory brings up the importance

of friendship relations, adoption behavior is instead examined
on the premises of the behavior of the entire population [2].

Unlike in online social networking sites where users create
links to others who are similar to them [4], or whose contri-
butions they find interesting [5], in a corporate environment,
employees form “bonds” not because of similar “tastes” but
due to tasks at hand or because of reporting-to relationships,
i.e. organizational hierarchy. In this sense, there is no explicit
“social network”, however, formal structures such us the
organizational hierarchy may provide hints of influence at
the workplace. The dynamics of information diffusion on a
corporate environment are yet unknown and may be entirely
different from online social networks. The interplay between
formal structure and information propagation at the enterprise
has been recently examined [6]. The authors found that social
and organizational structure significantly impacts the spreading
process of emails, while at the same time indicating context
independence. In our study, on the contrary, we do not know
the chain of infections, i.e. we do not observe who influences
whom. Instead, we empirically quantify the role of reporting-
to relationships and local behavior (teammates), as well as the
effect of global influence (overall popularity) in the spread of
technology adoption at the workplace.

To characterize the adoption mechanism of new technolo-
gies at the workplace, we propose two simple and intuitive
agent-based computational models with the least possible
number of parameters. We emphasize on accurately modeling
the cumulative number of adoptions over time, rather than
trying to predict which node in the network will infect which
other nodes. In this sense, we not only model the influence
each node has on the diffusion (microscopic modeling), per-
mitting user behavior to vary according to the behavior of the
general crowd, but we also provide a simple mechanism by
which adoption rate rises and decays over time (macroscopic
dynamics). For our study, we have acquired the organizational
hierarchy of a Fortune 500 multinational company. In addi-
tion, we gathered adoption logs of the internal microblogging
service, which resembles Twitter, during the first two years of
adoption of the service in the enterprise. This dataset allows us
to empirically characterize individual dynamics and influence,
and examine the spread of adoption through the hierarchy.

The rest of the paper is organized as follows. We describe
our dataset in Section II. We study the impact of hierarchical
structure on the way adoption spreads in Section III, and we
examine employees behavior with respect to overall popularity



of the microblogging service in Section IV. To capture the
macroscopic, temporal dynamics of adoption at the workplace,
we propose two novel models that effectively model user
behavior with respect to the entire population and individual
influence in Section V. In Section VI, we provide extended
social simulation results of our agent-based computational
models of adoption at the workplace. We provide an overview
of the most relevant related work which has been undertaken
in this area in Section VII. Finally, we discuss the findings of
our work and draw our conclusions in Section VIII.

II. DATASET

The company we studied is a Fortune 500 multinational
company, which operates outside the IT-sector. Our dataset
consists of a snapshot of the organizational hierarchy, con-
taining over 12K employees. Our dataset further contains
employees’ join logs during the first two years of adoption
of a microblogging service from the enterprise (July 2, 2010
to March 22, 2012). During this time period, the number
of employees who join the service increases dramatically.
Even though, not all employees have joined the microblogging
service by the time we obtained the raw data for this paper,
a broad spectrum of employees (9, 421 users) had joined the
microblogging service (77.35% of hierarchy dataset), sharing
19, 371 status updates and exchanging 20, 370 replies [7]. The
functionality of the microblogging service resembles that of
Twitter, imposing no restrictions on the way people interact or
who they chose to follow. As in Twitter, users author messages
in the enterprise microblogging service, and form threaded
discussions. The main purpose of the corporate microblogging
service is to promote and enable collaboration and sharing
within the enterprise. The ultimate goal of the corporate
microblogging service is to become the primary platform for
asynchronous collaboration and colleagues’ communication.

The company did not officially initiate usage of the mi-
croblogging service. Rather, it was independently initiated by
an employee, in the begging of July, 2010. It was not promoted
or even mentioned in any formal corporate communications.
Our dataset does not contain information with respect to
growth and invitations. We can only speculate that growth
was achieved through email and word of mouth invitations.
More details on the topological properties of the corporate
microblogging service, its dynamics and characteristics, and
the interplay between its social and topical components, users’
homophily and activity, as well as latent topical similarity and
link probability can be found at [7].

III. EFFECT OF ORGANIZATION HIERARCHY

The underlying process of influencing employees towards
adopting the microblogging service is unknown and non trivial.
Here, we assume that when an employee chooses to join the
corporate microbloging service, she then has some influence
on the employees who directly report to her, according to the
formal organizational chart. Some of these employees will
choose to join, which will in turn influence some of their
team members into joining themselves and so on. Therefore,
we assume that an employee’s decision to join depends on:
1) direct influence by her manager, 2) peer influence by her
teammates, and 3) social influence resulting from the overall
popularity of the microblogging service in the enterprise. In

this section we seek supporting evidence on the influence
inflicted by managers to employees reporting directly to them.

Assume that manager u urges her team members to join the
microblogging service. A directed link eju exists if employee
j directly reports to u according to the formal organizational
hierarchy. If j joins the microblogging service after u, we
call her join an “influenced join”. We counted the number
of employees who joined the microblogging service after their
manager and found that there are three classes of employees:
(i) employees who did not join the microblogging service even
if their manager did (10.94%), (ii) employees who did join the
microblogging service before their manager (36.04%), and (iii)
employees who did join the microblogging service after their
manager (53.01%).

Let N be the total number of employees directly reporting
to manager u. Let K be the number of employees in N that
joined the microblogging service after their manager u, and
k be the total number of employees in N that joined the
microblogging service after their manager u within the first n
draws. The stochastic process according to which employees
directly reporting to u choose to join the microblogging service
is described by the “urn model” [8], in which n balls are drawn
without replacement from an urn containing N balls in total,
of which K are white. The probability P (X = k|K,N, n) that
k of the first n employees reporting to manager u, joined the
microblogging service after their manager purely by chance
is equivalent to the probability that k of the n balls drawn
from the urn are white. We set n = 8, calculating the number
of employees that joined the microblogging service after their
manager within the first 8 draws. This probability is given by
the hypergeometric distribution:

P (X = k|K,N, n) =

(

K
k

)(

N−K
n−k

)

(

N
n

) . (1)

We plot the average number of employees that joined the
microblogging service after their manager during the first n
samples as a function of the number of employees that joined
the microblogging service after their manager. Figure 1 shows
the result. The scatter plot is approximated [8] by the Weibull

cumulative distribution (k̂ = 24(1−e−(0.02K)0.84 ). We use this

expression to estimate the expected number k̂ of employees
to join the microblogging service after their manager within
the first n joins for a manager with K employees reporting
to her that joined the microblogging service after her. Using

Equation 1, we calculate the probability that k̂ employees
joined after their manager purely by chance. We found that
for K > 3, this probability is exceedingly small. Since it
is exceedingly highly unlikely for employees to adopt the
microblogging service after their manager purely by chance,
we conclude that the number of employees who joined after
their manager u is a prominent indicator of u’s influence.

A. Influence Score

Let Nj denote the number of employees who directly report
to u and have joined the microblogging service. Let α ≤ Nj be
the number of employees that report to u and have joined the
microblogging service after u, and let q ≤ Nj be the number of
employees that report to u and have joined the microblogging
service before u. While a high number of employees reporting
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Fig. 1: Average number k of employees that joined the
microblogging service after their manager, within the first n
samples vs the total number K of employees that joined the
microblogging service after their manager, and approximation.

to u that have joined the microblogging service after u implies
that u has high influence, a high q value is an indicator that
one lacks influence. We propose an adaptation of the z-score
[9], as a measure that combines the number of employees
that have joined before and after their supervisor. Influence
score (“ι-score”) measures how different this behavior is from
a user with “random” influence, i.e. a manager the employees
reporting to whom join after him with probability p = 0.5
and before him with probability (1 − p) = 0.5. We would
expect such a random influencer to have Nj ∗p = Nj/2 team-
members who joined after their supervisor with a standard

deviation of
√

Nj ∗ p ∗ (1− p) =
√

Nj/2 [9]. The ι-score
measures how many standard deviations above or below the
expected “random” value a manager u lies:

ι(u) =
α−Nj/2
√

Nj/2
=

α− q√
α+ q

. (2)

If the employees reporting to manager u have joined the
microblogging service after u about half of the time, u’s ι-
score will be close to 0. If they join after u more often
than not, u’s ι-score will be positive, otherwise, negative. We
also calculate the time-independent ι-score of employees using
Equation 2, with the difference that α ≤ N is the number of
employees that have joined the microblogging service (time
invariably) and q ≤ N is the number of employees that have
not joined the microblogging service. Above, we measured
influence at the level of individual employees, assuming that
influence scores are fixed in time, but that they differ from em-
ployee to employee. A more sophisticated model of influence
might include some small increase (similarly for decrease) in
influence score as a function of time. We stick to the simpler
model for simplicity, and because our fundamental result is
not sensitive to such details.

Next, we examine the correlation between ι-score of
managers and the number of employees reporting to them
(team size), hoping to get a clearer picture of the relationship
between the two quantities. We characterize the average ι-
score of managers with λ employees reporting to them as
ι(λ) = 1

|u:λu=λ| =
∑

u:λu=λ ι(u). Figure 2a shows the average

ι-score of managers with λ employees reporting to them, that
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Fig. 2: (a) Average ι-score of managers with λ team members
that have joined the microblogging service. (b) Average time-
invariant influence of managers, who have themselves joined
the microblogging service (similarly for those who have not
joined), with λ team members.

have joined the microblogging service. Here, we focus on man-
agers that have themselves joined the microblogging service,
so that a time comparison of joining times is meaningful.
A clear increasing trend is evident, providing a supporting
evidence on top-down influential flow through the formal
organizational hierarchy. Figure 2b shows the average time-
independent ι-score of managers with λ employees reporting
to them. Figure 2b further shows different plots of the average
time-independent ι-score of managers based on the premise
that they have joined the microblogging service themselves
or not. The average time-independent ι-score of managers
that have not joined the microblogging service exhibits more
fluctuations due to greater data sparsity. In every case, the
average time-independent ι-score of managers that have joined
the microblogging service is slightly higher than for managers
that have not joined the service. Even though we cannot at the
time explain the reasons why this effect appears, the average
time-independent ι-score increases for both classes as the team
size λ increases, clearly indicating a strong correlation between
the two quantities. We explain this trend as a prominent
indicator of influence imposed by managers to employees
reporting directly to them.

We now turn our attention to the impact of organizational
levels. Here, we assume that influence scores are characteristic
of a particular level at the organization hierarchy tree, are fixed
in time, and are the same for all employees at that particular
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Fig. 3: Average influence score as a function of hierarchy level.

level. To compute the average influence score for hierarchy
level l, we first find employees m that belong to level l. We
then compute the total number of employees N that directly
report to managers in El. Quantities α and q are defined as
before, with the difference that they now operate on the total
number of employees N that directly report to managers in
El. Finally, we use Equation 2 to calculate the influence score
for each level. Levels are ascending from the CEO (level
1) to lower levels. Level 13, which represents bottom level
employees in our dataset, contains employees with no team
members reporting to them.

Figure 3 shows the results. Level 13 has no influence score,
thus it does not appear in Figure 3. Most levels exhibit positive
influence scores, with the exception of higher levels, that are
closest to the CEO. Particularly, level 3, exhibits negative
influence on average. As before, we measured influence at
the granularity of hierarchical levels, assuming that influence
scores are fixed in time, but that they differ from level to level.
A more sophisticated model of influence might include some
small increase (similarly for decrease) in influence score as a
function of time, and also introduce a balancing factor based
on the number of total employees at a level and the number
of total employees reporting to them. While it is intuitive to
assume that higher levels in the organization would have higher
impact due to the report-to relationships involved, our study
suggests that middle levels are more successful in influencing
employees lying lower in the hierarchy. Even though we do not
have supporting evidence from other use-cases, we conjecture
that middle-level managers are the most influential with respect
to “convincing” others to adopt new technologies (in this case
the new microblogging service).

IV. EFFECT OF PEER PRESSURE

We study the problem of progressive diffusion, where
the employees who adopt the microblogging service become
infected and do not become healthy again (i.e. employees do
not unsubsribe the service once they join). Classic models of
social and biological contagion (e.g. [10], [11]) and observa-
tional studies of online contagion [12], [13], [14], [15] predict
that the likelihood of infection increases with the number of
infected contacts. However, recent studies suggest that this
correlation can have multiple causes that might be unrelated to
social influence processes [16]. In our observational study of

microblogging service adoption at the workplace, this assump-
tion suggests two alternative modeling scenarios. According
to the first scenario, an employee is more likely to adopt
the microblogging service if more of her teammates join the
service (Section IV-A). According to the second scenario, an
employee is more likely to adopt the microblogging service as
its popularity increases (Section IV-B). Our goal in this section
is to find models that will provide a good fit with respect to the
probability of adoption for each user given the actions of their
teammates (local neighborhood) or overall popularity (global
influence).

A. Independent Cascade Model

Influence of friends is generally modeled to be additive.
For instance, the independent cascade model (ICM) [17] states
that a node has n independent chances to become infected,
where n is the number of infected “friends”. In our case, every
node can be infected only once, and once infected, it stays in-
fected. Because of the structure of the organizational hierarchy,
employee u’s “friends” may include either (i) her teammates
alone, or (ii) her teammates and her direct supervisor. Starting
with a single employee who has joined the microblogging
service, employees susceptible to infection, decide to join the
microblogging service with some probability that depends on
the number of their infected “friends”. We model the influence
employees receive by their “friends” as multiple exposures to
an infection according to ICM [17] as pICM = 1− (1− λ)n.

We measured this quantity on our dataset, by isolating the
employees in two classes: a) those who had exactly n “friends”
joining the microblogging service and did not join, and b) those
who had exactly n “friends” joining the microblogging service
before they themselves joined. We found that the likelihood of
adoption when no “friends” have joined is remarkably high
(0.7581 when considering teammates only and 0.6807 when
the supervisor is also considered). In both cases, the likeli-
hood of adoption becomes 1 when at least one “friend” has
joined the service. We conclude that the relationship between
the number of “friends” that have joined and likelihood of
joining most probably reflects heterogeneous popularity of the
microblogging service across teams [16]. Therefore, the naive
conditional probability does not directly give the probability
increase due to influence via multiple joining “friends” [16].

B. Exponential Growth Model

We studied earlier the effect of multiple teammates and
neighbors of an employee u on the probability of u to join the
microblogging service. Even though we discovered a positive
correlation, we argued that this correlation might be an effect
of multiple causes. We hypothesized that the more popular
the microblogging service is for a team, the more likely it is
for multiple team members to adopt it. Further, as employees
observe others adopting the microbloggig service, they may
not only be more likely to adopt the service, but the rate at
which they do so may quicken as the popularity of the service
increases. In this section, we venture to explore this hypothesis.

Figure 4 shows the probability that an employee will
join the microblogging service as a function of the service
popularity. Intuitively, as more people adopt the microblogging
service, a certain “buzz” around the service begins to unfold,
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Fig. 4: Probability an employee joins the microblogging ser-
vice given that n employees have adopted the service before.
Solid lines lines depict probability estimates calculated with
the exponential growth model.

increasing the probability of others joining the service as
well. Interestingly, Figure 4 reveals that employees join the
microblogging service following two very different, clearly
distinctive patterns. According to the “optimistic” pattern (red
line), the probability of adoption increases more profoundly
as the overall number of people who join increases. Contrary,
the “pessimistic” pattern (green line) yields a probability of
adoption that increases marginally as the total number of
people who join the service increases over time. Even though
we cannot at the time explain this effect, these two distinct
classes of people remain to be fully understood in future work,
in conjunction to surveys and targeted interviews.

V. MODELING ADOPTION

What is the underlying hidden process that drives adoption
of new technologies at the workplace? Our goal here is to
find a generative model that generates the observed adoption
process of the new microblogging service at the enterprise
we are studying, given the organizational hierarchy. Such a
model should exhibit the properties we observed in Sections III
and IV and reproduce the true cumulative number of adoptions.
We aim for simple and intuitive modeling with the least
possible number of parameters.

Prior work on modeling complex networks in social, bio-
logical and technological domains has focused on replicating
one or more aggregate characteristics of real world networks
[18]. Here, we take a different approach. Instead of having a
target network to generate, we let individual influence and peer
pressure dynamics determine the diffusion process of adoption
of the new microblogging service over the formal organization
hierarchy. We propose two models that account for influence
effects imposed by the formal organizational structure. We
compare our results to the true epidemic and we show that
the estimates produced by our models are consistent with the
real observations.

A. Complex Contagion Model

From the empirical analysis presented in the previous sec-
tions, we incorporate the following dynamics into our model:

• Employees are influenced by their managers to join
the microblogging service.

• Employees have multiple chances to get infected
(join). Once an employee is infected, she cannot
recover, i.e. an employee does not unsubscribe from
the service.

• As employees observe others adopting the microblog-
ging service, they are not only more likely to adopt
the service, but the rate at which they do so quickens
as the popularity of the service increases.

We begin by selecting a single node from the organization
hierarchy to start the infection. We chose the seed node to be
the exact employee that first registered to the microblogging
service according to our dataset. At each time step, the virus
can be spread as follows. Each node that was infected at time
t − 1 has n chances to infect the n employees that directly
report to her, each with probability p, at time t. Once a node
is infected, it cannot be infected again. An infected employee
is not allowed to infect her direct supervisor, so following this
strategy, the virus can only propagate towards the leaves of the
hierarchy tree. Once all infected nodes are examined, healthy
nodes have the chance to be “randomly” infected by observing
the general popularity of the microblogging service up to time
t− 1. For nt−1

i total infected nodes at time t− 1, the proba-
bility of “random” infection is computed using the pessimistic

exponential growth pattern fit (pEG = e(0.000147n
t−1

i
−9.51502))

from Section IV-B. Note that the selection of the pessimistic
exponential growth pattern is a conservative choice in that it
does not unfairly help our model in predicting the cumulative
number of adoptions over time.

B. Complex Cascade Model

The model we described above spreads the adoption of the
microblogging service over the formal organization hierarchy
as a virus, which leaves a trail whenever employees are in-
fected by their supervisors. To model this we used parameter p,
which measures how infectious supervisors are, and parameter
pEG that controls the effect of overall growing popularity
of the microblogging service over time. Here we take an
alternate approach based on which, nodes choose to become
infected after examining their immediate neighborhood (which
includes both the supervisor and employees directly reporting
to them) or after examining the overall growing popularity of
the microblogging service over time.

We start with the organization hierarchy, and two colors.
Let red represent employees who have joined the microblog-
ging service and blue those that have not. We choose a single
node to be the seed user, i.e. have color red. All other users
are painted blue. As before, we chose the seed node to be
the exact employee that first registered to the microblogging
service according to our dataset. At each time step, nodes
painted blue (not infected), calculate the payoff of picking the
color red over blue, and decide their color f(color) as follows:

f(color) =

{

red, αnred

n
> β nblue

n
blue, otherwise

, (3)



where nblue denotes the number of blue neighbors, nred

denotes the number of red neighbors and n = nblue + nred

is total number of neighbors. Parameters α and β = 1 − α
denote the rewards for choosing red and blue accordingly.
Once a node is painted red, it cannot change color again.
Finally, nodes have the chance to be “randomly” infected
by observing the general popularity of the microblogging
service up to time t − 1. As in our contagion model, for
nt−1
i infected nodes, the probability of “random” infection is

computed using the pessimistic exponential growth model fit

(pEG = e(0.000147n
t−1

i
−9.51502)) from Section IV-B.

VI. EVALUATION

In this section, we validate our models by extensive numer-
ical simulations. We begin with the organization hierarchy of
12, 170 employees, and infect the true initiator of the epidemic
(the employee who first joined the microblogging service).
Each time step represents a day. We let our models run for
600 steps, or until all employees are infected. We compare
the obtained epidemics against the real cumulative number of
adoptions extracted from our dataset. We experimented with
various values of infection probability for our contagion model
and parameters α and β for our cascade model. In the end, we
decided to use p = 0.3 for our contagion model, and α = 0.82
and β = 0.18 in our cascade model. We simulated our models
10 times and report our findings. We compare three properties
of the simulated epidemics as opposed to the true number
of adoptions over time: (i) overall number of infections, (ii)
cumulative number of infections over time, and (iii) total time
required to infect N employees. We find that our models’
estimates are consistent with the real observations.

A. Baselines

We compare our proposed models’ ability to approximate
the true cumulative distribution of infected users with three
models, which have shown superior performance in the task
of information and innovation diffusion in social networks.

• Susceptible-Infected Model (SI) [19]: Accord-
ing to the SI model, each node can infect her
neighbors, each with probability pSI . We consid-
ered the Susceptible-Infected-Susceptible (SIS) and
Susceptible-Infected-Resistant (SIR) models [20], as
well as the Susceptible-Infected-Dead (SID) model
[21] as alternatives to model social contagion, as these
models are widely used in prior work. These models
however do not appropriately capture the semantics
of adoption, according to which, an employee that
joins the microblogging service does not unsubscribe,
thus returning to the susceptible state, or becoming
resistant. Further, our analysis did not provide any
supporting evidence for the hypothesis that infected
employees do not infect others, thus modeling them
as “dead” is not appropriate in this case.

• Independent Cascade Model [17] (see Section IV).

• Diffusion Model (DM) [22], [23], [24]: Each individ-
ual’s willingness to adopt the microblogging service
at time t, U t

u, is modeled by three main elements:
the service’s stand-alone benefit, network effects, and

the idiosyncratic reservation utility. Formally, U t
u =

Qu+γN
(t−1)
u −Ru, where, Qu represents the service’s

intrinsic value perceived by employee u, which is
not affected by whether other people adopt it or not.

N
(t−1)
u represents the proportion of adopters in u’s

neighborhood at time t−1, and γ denotes the relative
importance against stand-alone benefits. Ru indicates
u’s inherent reluctance or reservation about adopting
the new service.

B. Experimental Results

First, we study simulation results produced by the base-
lines, i.e. the SI, ICM and DM models. For brevity, we focus
on reporting results for the SI model only. The analysis of ICM
and DM simulations yielded analogous results, therefore we
believe our conclusions to be robust. Figure 5a shows the true
user adoption curve, compared to simulation results produced
by the SI model, for varying infection probability values. We
notice that simulation models do not fit the real cumulative
number of adoptions over time. High infection probability
values result in sudden outbreaks, whereas very small prob-
ability values result in smooth cumulative distributions that
do not exhibit the statistical properties of the true cumulative
number of infected users. The total number of infections and
the time required to infect the whole body of employees is
also inconsistent with the observed adoption curve.

Next, we show the outcome of ten runs of our complex
contagion model (see Section V-A) in Figure 5b. The figure
also shows the average of the ten runs. Notice a very good
alignment between the reality and simulated epidemics in all
cases. Not all runs result in the total number of true infections
by the time threshold. Further, a few runs overestimate the
cumulative number of infections, resulting in rapid epidemics.
Unlike the baselines, our complex contagion model fits more
naturally the true cumulative number of infected users in all
cases. Particularly, the simulation results remarkably follow
the speedups and slowdowns of adoption over time, exhibiting
non-linear characteristics as the true adoption curve. Some runs
diverge from the true curve after about 400 days. However,
running the model numerous times and averaging the results
seems to adequately approximate the statistical properties of
the true cumulative number of infected users. We conclude
that this is a direct result of the asymmetric contagion due to
the hierarchical influence to adoption and the integration of
peer pressure due to growing popularity of the microblogging
service at the enterprise.

Finally, we present the outcome of ten runs of our com-
plex cascade model (see Section V-B), and their average, in
Figure 5c. In this case too, simulated epidemics match the
reality very well. Similarly to epidemics produced by our
cascade model, not all runs result in the total number of true
infections by the time threshold. Further, smooth regimes of
adoption, speedups and slowdowns of the acceptance of the
microblogging service from employees is apparent. Unlike our
cascade model, this model slightly overestimates the cumula-
tive number of infections. In all cases however, we find that
this model too fits rather closely to the true cumulative number
of infected users, replicating the statistical properties of the
empirical epidemic.
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Fig. 5: True and predicted cumulative number of employees who have adopted the microblogging service (i.e. infected users).
Time is measured in days. Solid line curves represent the outcome of (a) the SI model for various probabilities of infection, (b)
ten runs of our complex contagion model (see Section V-A), and (c) ten runs of our complex cascade model (see Section V-B).

VII. RELATED WORK

The importance of social networks in information dissem-
ination has been thoroughly investigated [3], [16], [2]. In
online social networks in particular, where individuals tend
to organize into groups based on their common activities
and interests (a phenomenon known as homophily [4]), it
has been hypothesized that the network structure (friendship
or interaction) affects the way information spreads, and that
adoption quickens as the number of adopting friends increases
[13]. However, many times a node activation is not just a
function of the social network but also depends on many other
factors like imitation [1]. This has lead to the development of
epidemiology models [20] and computational approaches that
are based on thresholds models [10], deterministic or stochastic
[25]. Each agent has a threshold that, when exceeded, leads
the agent to adopt an activity. When the threshold is applied
within a local neighborhood [26], [27], local models emerge
[17]. Instead, global diffusion models perform thresholding to
the whole population [2].

Diffusion models heavily rely on the premise that contagion
propagates over an implicit network, which has to be learned
from a plethora of historical evidence, i.e. cascades. User
characteristics such as topical or latent interests have to be
considered in user-to-user content transfers, whereas users’
homophily shapes the structure of the network through which
information flows. In a corporate environment, employees form
“bonds” not because of similar “tastes” but due to a task at
hand (i.e. a function to be completed or an organizational need)
or because of reporting-to relationships (i.e. team members
reporting to their supervisor). [3] examined the problem of
inferring the unobserved directed network over which cascades
propagate in online social networks. Unlike their approach,
which requires traces of numerous different explicit cascades
to be given as inputs, we solely rely on one implicit sample to
infer influence between employees at the workplace. In fact,
many influence models have been proposed to rank actors
within a social network [8]. However, the underlying dynamic
process occurring on the network may not be applicable to
the organizational hierarchy. Influence models typically do
not take the topology of the network into account, and when
they do, they make assumptions about the details of the
underlying dynamic process tacking place on the network.

In our empirical study, we characterize individual dynamics
and influence, and examine the spread of adoption through the
formal organizational hierarchy.

Even though most prior work has mainly focused on
publicly available online social networks, microblogging capa-
bilities have penetrated the enterprise as well [28]. Contrary to
online social networks, microblogging services for enterprises
are primarily designed to improve intra-firm transparency and
knowledge sharing. However, the adoption of such collabo-
rative environments presents certain challenges to enterprises
[29]. [28] provided a case study on the perceived benefits of
corporate microblogging and barriers to adoption. Key factors
influencing microblogging systems adoption in the workplace
include: privacy concerns, communication benefits, perceptions
regarding signal-to-noise ratio, and codification effort, repu-
tation, expected relationships, and collaborative norms [29].
The work, closest to ours, [6] examined email threads and the
formal network (e.g. hierarchical structure) imposed by a large
technology firm. They argued that the spreading process (to
whom and how fast people forward information) can be well
captured by a simple stochastic branching model. In our study,
on the contrary, we do not know the chain of infections (i.e.
we do not observe who influences whom). Instead, we use
the outcome of our empirical study to quantify influence as
a result of individual pressure from supervisors towards their
team members, as well as an effect of global popularity.

VIII. CONCLUSION

In this paper, we studied the effect of the formal organiza-
tional structure, to the adoption mechanism of a microblogging
service at the enterprise. We addressed the factors that govern
the process of adoption at both microscopic and macroscopic
levels. We found, microscopically, that employees’ tendency
towards adopting or not the new microblogging service is
influenced by their direct supervisors (dependency on the
network structure). We proposed ι-score as a prominent in-
dicator of influence imposed by managers to their teams and
we offered proof that middle level managers are on average
more successful in promoting the adoption of the new service.
Further, we empirically measured employees’ likelihood of
adopting the new microblogging service with respect to the
behavior of the general crowd. We revealed two distinct



patterns, that capture the adoption likelihood increment as a
function of the overall service popularity among the employee
population. We incorporated our findings into two intuitive
and simple adoption mechanisms, which capture both the
local and global influence, accurately reproducing the adoption
process at the macroscopic level. Prediction results show that
our models provide great improvements over commonly used
diffusion models. Our findings have important implications to
enterprises’ understanding of the mechanisms driving adoption
of new technologies, and could assist in designing better
strategies for rapid and efficient technology adoption and
information dissemination within the corporation.

A limitation of our study is that we estimate causal effects
only within the formal organizational chart, due to the fact
that we are unable to observe the actual adoption “cascade”
(i.e. who really influences whom). We are planning to further
evaluate our results with extended surveys and targeted inter-
views, as well as incorporate more datasets in future work.
We also plan to extend our models to allow for influence
scores to vary over time, as well as incorporate different
roles individual assume in the adoption process, accounting
for influence variations as a function of employees’ level in
the organization hierarchy. We would also like to investigate
the effect of network evolution (e.g. layoffs, or new hires)
on influence, since one’s influence may intuitively increase
with seniority in the company. Finally, it would be interesting
to study adoption dynamics in the presence of competing
technologies.
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