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Abstract—It is difficult to obtain accurate prediction results
of cascades over online social networks, therefore a variety
of diffusion models have been proposed in the literature to
simulate diffusion processes instead. We argue that such models
require extensive simulation results to produce good estimates
of future spreads, while at the same time requiring training
over observed data to learn the parameters that they incorpo-
rate into the various influence mechanisms that drive diffusion.
In this work, we take a complimentary approach. We present
a generalized, analytical model of influence in social networks
that captures social influence at various levels of granularity,
ranging from pairwise influence, to local neighborhood, to the
general population, and external events, therefore capturing
the complex dynamics of human behavior. Commonly used
diffusion models in social networks can be reduced to special
cases of our model, by carefully defining their parameters. Our
goal is to provide a closed-form expression for the probability
of infection for every node in an arbitrary, directed network
at any time t. However prior work in the literature has shown
that exact computation of infection probabilities is #P-hard. We
make an independence assumption about the infection events of
a node’s incoming neighbors, which results our formula being
an approximation. We quantitatively evaluate the approxima-
tion quality of our analytical solution as compared to numerous
popular diffusion models on a real-world dataset and a series
of synthetic graphs.

Keywords-analytical framework; computational models; dif-
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I. INTRODUCTION

Influence analytics and diffusion prediction in online

social networks have been important for many domains from

marketing to public health. With the tremendous increase

in the volume of data, network sizes reach millions of

nodes, restricting the applicability of computational models

for diffusion prediction. Prior work on diffusion processes

[1], [2], [3] includes studying the diffusion of innovations

[4], [5] and word-of-mouth recommendations [6]. Existing

models of spreading processes in networks attempt to model

diffusion as a result of social influence, i.e., the more

influential a user is the wider the spread [7]. Diffusion is

modeled using a network structure with static or dynamic

edge probabilities [6], [8], which are estimated from past

observational data [1]. According to such models, each node

independently infects its neighbors with some probability,

and each infected node then propagates the infection in the

network. Even though this process captures individual influ-

ence (i.e., node-to-node), it ignores social influence effects

which appear as a result of neighborhood or global pressure

[5]. [7] proposed to mediate this problem by incorporating

the notion of social capital to characterize the network effect

in the influence process, whereas [5] presented agent-based

computational models, which quantified pairwise influence

and global dynamics in the spread of technology adoption

at the workplace. Two of the most widely used diffusion

models are the Linear Threshold Model (LTM) [9], and the

Independent Cascade Model (ICM) [6].

Typically proposed methodologies for influence calcu-

lation and models of diffusion need extensive simulation

results to be evaluated, usually by means of statistical

analysis. In fact, it has been shown that exact computation

of infection probabilities is #P-hard [10]. Instead, we devise

a novel formulation of progressive diffusion with minimum

computational complexity. We provide a generalized, analyt-

ical solution to the diffusion mechanism that comprises of

two processes unfolding over the network simultaneously:

(a) pairwise influence, and (b) pressure from collective

dynamics. Particularly, our work introduces an important

dimension to the diffusion process, which in our case

explicitly encompasses not only pairwise influence, but also

local neighborhood effects, aggregate social behavior, and

external factors, or a combination of the above.

Our methodology is vertex-centric, i.e., models each user

separately, offering great flexibility in terms of modeling

personalized influence functions, and allows for the use of

time-dependent influence functions. Note, that in this work,

we are not concerned with learning the parameters that drive

the spread of infection from observational data. While this

aspect is important, it is outside of the scope of this paper.

To the best of our knowledge, our work is the first

to enable analytical computation of complex, non-linear

phenomena like influence, while considering multiple factors

that can change over time, without requiring extensive

simulation runs to estimate the propagation probabilities at

the steady state. Our formula explicitly and formally unites

a rich class of popular diffusion processes in social networks

[9], [6], [5] as special cases.



II. ANALYTICAL MODEL OF INFLUENCE

A. Unified Model of Influence

We model a social network as a directed graph G =
(V,E), where a node v ∈ V represents an individual, and

edge (v, u) ∈ E exists if v interacts with u (in our context

v influences u). For every node v, we define the set of

incoming neighbors Ni(v) = {u|(u, v) ∈ E}, and the set

of outgoing neighbors No(v) = {u|(v, u) ∈ E}. Our goal is

to model the probability of infection for every node in the

network at any time t. We start with a seed set S ⊂ V of

infected nodes at time t = 0. The infection process proceeds

in discrete time steps, in which two types of influence unfold

over the network [5]. First, each infected node v attempts to

infect its neighbors (individual influence). Each attempt of

infecting node u ∈ No(v) has a chance of success, but the

probability of infection p(v,u)(t) is pairwise and may change

over time. We assume infection attempts from different

neighbors to be independent. Second, each susceptible node

u can be infected with probability ru(t), independent of

individual influence. Such collective influence may include

external factors [11], or external sources of exposure [13],

or the status of the incoming neighborhood of u [5].

We note that: (i) function ru(t) is node specific, and may

be time dependent, (ii) there may be arbitrary number of

collective influence attempts on a node, as we assume ru(t)
is not conditioned upon the node already having undergone a

collective influence attempt or not. The process repeats until

a pre-specified stopping criterion is satisfied (e.g., number

of time steps elapsed, or fraction of infected nodes has

exceeded some number).

B. Infection Probability Formula Under the Unified Model

Let Bu,t represent the probability of infection of node

u by the time t. Initial values {Bu,0} are either 0 or 1
depending on the membership of u in the seed set. Let

Ev,t denote the indicator variable, which is 1 if node v

is infected by the time t, 0 otherwise. To find the prob-

ability of a node u being infected at time t, we consider

an arbitrary ordering of its incoming neighbor set Ni(u):
< v1, v2, . . . , vn >. Based on this, we define zero state

probability at time t − 1: P 0
sn,sn−1,...,s1

, where superscript

0 denotes Eu,t−1 = 0. The subscript is a vector, which

elements si denote the value of Evi,t−1, and can take values

in {0, 1, ∗}. si = 0 represents Evi,t−1 = 0, si = 1 denotes

Evi,t−1 = 1, and si = ∗ indicates marginalization over the

state of vi, i.e., ‘Evi,t−1 = 0 or 1’. For instance, for a

node u with four neighbors, P 0
0,1,∗,1 denotes the probability

P (Eu,t−1 = 0, Ev4,t−1 = 0, Ev3,t−1 = 1, Ev1,t−1 = 1). We

begin by calculating Bu,t in the special case of G being a

tree, i.e., each node has at most one incoming neighbor.

Corollary 1: The infection probability of node u with

parent v in a tree is given by:

Bu,t = 1− (1− ru(t))
(

(1− pv,u(t))(1−Bu,t−1)

+ pv,u(t)(1−Bv,t−1)

t−1
∏

k=1

(1− ru(k))
)

. (1)

Proof: The probability of node u not being infected

by time t is P (Eu,t = 0) = 1 − Bu,t. Either one of two

things must have happened for u not to be infected by time

t. First, state Eu,t = 0 was reached from state (Ev,t−1 =
0, Eu,t−1 = 0) if and only if collective influence ru(t) failed

to infect u at time t. Intuitively, when the parent of u was not

infected at timet−1, the only chance for u to be infected at

time t is through collective influence ru(t), with probability

1 − ru(t). Second, state Eu,t = 0 was reached from state

(Ev,t−1 = 1, Eu,t−1 = 0), i.e., when the parent of u was

infected at time t−1, if and only if collective influence was

unsuccessful, and furthermore v failed to infect u. As the two

processes are independent, this can happen with probability

(1− ru(t))(1− pv,u(t)). It follows that,

1−Bu,t = P 0
1 (1− ru(t))(1− pv,u(t)) + P 0

0 (1− ru(t))

= (1− ru(t))(P
0
1 (1− pv,u(t)) + P 0

0 )

= (1− ru(t))((P
0
∗ − P 0

0 )(1− pv,u(t)) + P 0
0 )

= (1− ru(t))(P
0
∗ (1− pv,u(t)) + P 0

0 pv,u(t))) ,
(2)

where P 0
∗ = P (Eu,t−1 = 0) = 1 − Bu,t−1 and

P 0
0 = P (Eu,t−1 = 0, Ev,t−1 = 0). This means v and

u were both susceptible at time t − 1. If v was also not

infected by the time t − 1, u can only be susceptible

because all collective influence till that time failed, i.e.,

P 0
0 = (1 − Bv,t−1)

∏t−1
k=0(1 − ru(k)). We set ru(0) = 1

if u ∈ S, 0 otherwise. Substituting the values of P 0
∗ and P 0

0

in Equation 2, results in Equation 1.

Next, we extend Equation 1 to a graph of any type.

Without loss of generality, we focus on directed graphs,

as undirected graphs can be converted into their directed

equivalent.

Lemma 1: The probability of a node u not being infected

by the time t is related to the zero state probabilities as

follows

1−Bu,t = (1− ru(t))

∑

si∈{0,∗}

(

P 0
sn,sn−1,...,s1

n
∏

i=1

(1− pvi,u(t))
δsi,∗

n
∏

i=1

pvi,u(t)
δsi,0

)

.

(3)

where δa,b = 1 only if a = b, 0 otherwise, is the Kronecker

delta function.

Proof: When the number of incoming neighbors is

one, Lemma 1 follows from Equation 2. Now, suppose

the statement is true for k ≥ 1 parents. Consider a

sequence xk =< sk, sk−1, . . . , s1 >. We look at the



new terms that are added due to the inclusion of vk+1.

For ease of notation, let D(xk) = (1 − ru(t))
∏k

i=1(1 −

pvi,u(t))
δsi,∗

∏k
i=1 pvi,u(t)

δsi,0 . Equation 3 can be rewritten

as

1−Bu,t =
∑

xn

P 0
xn
D(xn) . (4)

We have assumed that this is true for n = k. The addition

of vk+1 affects P (Eu,t) in ways similar to those discussed

in Corollary 1, i.e., if Evk+1,t−1 = 1, then this new node

fails to infect u with probability (1 − pvk+1,u(t)). On the

other hand, if Evk+1,t−1 = 0, node vk+1 does not have the

ability to infect. Formally, the new terms added are:

P 0
1,xk

(1− pvk+1,u(t))D(xk) + P 0
0,xk

D(xk)

=(P 0
∗,xk

− P 0
0,xk

)(1− pvk+1,u(t))D(xk) + P 0
0,xk

D(xk)

=P 0
∗,xk

(1− pvk+1,u(t))D(xk) + P 0
0,xk

pvk+1,u(t)D(xk)

=P 0
∗,xk

D(∗,xk) + P 0
0,xk

D(0,xk) ,

which would generate the required terms in the right hand

side of Equation 4, when n = k+1. This indicates that the

statement is true for k+1 incoming neighbors. By induction,

Lemma 1 is true ∀n.

Theorem 1: An approximate probability of infection is

given by the recurrence relation:

Bu,t = 1−

[

(1−Bu,t−1)

(

∏

v∈Ni(u)

(1− pv,u(t)Bv,t−1)

)

+

(

∏

v∈Ni(u)

pv,u(t)(1−Bv,t−1)

)

( t−1
∏

k=1

(1− ru(k))− 1 +Bu,t−1

)

]

(1− ru(t)) . (5)

The above formula is an approximation due to the as-

sumption that the incoming neighbors of a given node u are

independently influenced, i.e., for two incoming neighbors vi
and vj , events Evi,t−1 = 0 and Evj ,t−1 = 0 are independent.

This provides us with a closed-form expression. Next, we

proceed with proving the Theorem.

Proof: We attempt to find the zero state probabilities for

sequence xn. When xn =< 0, 0, . . . , 0 >, u and all nodes in

Ni(u) are susceptible, which means that collective influence

till t− 1 was unsuccessful. Further, at k = 0, ru(t) = 1 for

u ∈ S. In this case,

P 0
0,0,...,0 =

t−1
∏

k=0

(1− ru(k))
∏

v∈Ni(u)

(1−Bv,t−1) . (6)

Any other sequence xn, which consists of at least one ∗ in

the i-th position, represents the state of u being not infected

by the state of its i-th neighbor. Given the state of u’s

neighbors, the conditional probability of u not being infected

is 1 − Bu,t−1. The zero state probability is then computed

as follows

P 0
xn

= (1−Bu,t−1)
∏

si=0

(1−Bvi,t−1) . (7)

Combining Equations 4, 6 and 7, results in the following:

1−Bu,t

1− ru(t)
= (1−Bu,t−1)





∏

vj∈Ni(u)

(1− pvj ,u(t))









∑

xn

∏

sj=0

(1−Bvj ,t−1)pvj ,u(t)

1− pvj ,u(t)



+

(

Bu,t−1 − 1 +
∏

k

(1− ru(t))

)





∏

vj

(1−Bvj ,t−1)pvj ,u(t)



 .

After simplification, the above equation reduces to Equa-

tion 5. This step completes the proof.

C. Complexity Analysis

The recurrence relation in Equation 5 requires inspection

of all incoming links to a node u, |Ni(u)|, at every time

step. Therefore, in order to evaluate Equation 5 for all

nodes for t time steps, the number of operations required

is t
∑

u O(|Ni(u)|) = O(|E|t).

D. Reduction to Other Models

Our analytical formula of influence in social networks,

offers great flexibility in terms of modeling a variety of

diffusion processes. It can be shown that popular diffusion

models [4], [6], [8], [1], [5] can be reduced to special cases

of the Unified Model, by carefully defining the individual

influence probabilities and collective influence functions.

III. EXPERIMENTS

We illustrate the ability of our Unified Model to capture

real-life behavior on a real-world dataset (1, 244 users and

28, 343 directed links) from Digg [14]. We compare the

predicted values obtained by Theorem 1 to 1, 000 simula-

tions of popular diffusion models on the task of information

diffusion. For each model, we start with a seed set of two

infected nodes. Table I summarizes the set of parameters

used in our experiments. Figure 1 shows the results. Our

findings imply that Equation 5 is able to accurately predict

the expected epidemics forecasted by the rest of the models

without extensive numerical simulations.

IV. CONCLUSION

In this work, we have proposed a novel, general ana-

lytical framework for influence calculation in social net-

works, which does not require extensive simulations. In

this framework, each node has its own individual function

of collective influence and pairwise influence functions for

each neighboring node. Both functions vary with time, thus
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Figure 1. Agreement of simulation and theory for the three models for Digg1k dataset.

Table I
PARAMETERS USED IN THE EXPERIMENTAL VALIDATION ON DIGG

FOLLOWER GRAPH

parameter set 1
CCM p = 0.1, r(t) = exp(0.002nt−1

i − 6)

GLT f(In(u, t), ~bu) =
∑

v∈In(u,t) bv,u
ICM p = 0.1

parameter set 2
CCM p = 0.01, r(t) = exp(0.002nt−1

i − 6)

GLT f(In(u, t), ~bu) =
exp(|In(u,t, ~bu)|)

1+exp(|In(u,t, ~bu)|)

ICM p = 0.7

making our framework directly applicable to a plethora of

situations. We have validated our results on a real-world

social network.
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