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Abstract—Often in marketing, political campaigns and social
media, two competing products or opinions propagate over a
social network. Studying social influence in such competing
cascades scenarios enables building effective strategies for max-
imizing the propagation of one process by targeting the most
“influential” nodes in the network. The majority of prior work
however, focuses on unsigned networks where individuals adopt
the opinion of their neighbors with certain probability. In real
life, relationships between individuals can be positive (e.g., friend-
of relationship) or negative (e.g. connection between “foes”).
According to social theory, people tend to have similar opinions
to their friends but opposite of their foes. In this work, we study
the problem of competing cascades on signed networks, which has
been relatively unexplored. Particularly, we study the progressive
propagation of two competing cascades in a signed network under
the Independent Cascade Model, and provide an approximate
analytical solution to compute the probability of infection of a
node at any given time. We leverage our analytical solution to
the problem of competing cascades in signed networks to develop
a heuristic for the influence maximization problem. Unlike prior
work, we allow the seed-set to be initialized with populations
of both cascades with the end goal of maximizing the spread of
one cascade. We validate our approach on several large-scale real-
world and synthetic networks. Our experiments demonstrate that
our influence maximization heuristic significantly outperforms
stat-of-the-art methods, even more so when the network is
dominated by distrust relationships.

Keywords—analytical framework; diffusion models; social in-
fluence; social networks

I. INTRODUCTION

Online Social Networks have become a prevalent platform
for the diffusion of ideas and the dissemination of news, a
medium for political debates and opinion sharing, as well as
the main channel for product marketing and innovation spread-
ing. In deciding whether to adopt an innovation, a political
idea, or a product, people are frequently influenced, either
explicitly or implicitly, by their social contacts, aggregate
social behavior, and external factors, or a combination of
the above [1], [2]. Several influence diffusion models have
been proposed in the literature to formulate the underlying
influence propagation process [3], [4], [1], [5], [2]. Even
though, current models of influence spread enable the study
of complex and realistic scenarios, most models assume that
the spreading process takes place on an unsigned network.
In reality however, the polarity of relationships might not be
always positive [6], [7], [8]. In online social networks such as
Slashdot and Epinions for example, relationships might have a
positive (e.g., represent “friends” or “trust”) or negative (e.g.,
model “foe”, “spite” or “distruct” relationships) connotation.

Intuitively, positive relationships carry influence in a positive
way, whereas negative edges carry influence in a reverse
direction (i.e., one is more likely to follow a friend’s choice,
yet do the opposite of a foe).

People’s reactions to social influence can be further com-
plicated when multiple competing processes unfold over the
network (e.g., multiple companies with similar products vie
for sales using competing viral marketing campaigns) [9],
[10], [11]. Intuitively, if a company wants to market a new
product for it to be adopted by a large fraction of the network,
it may try to identify and initially target a small set of
“influential” members of the network on the premise of “viral
marketing” [12]. The problem of influence maximization has
been extensively studied for two widely used diffusion models,
i.e., Independent Cascade (IC) and Linear Threshold (LT) and
their extensions [3], [13]. As finding the optimal seed-set for
influence maximization has been shown to be NP-hard [3],
greedy algorithms and heuristics have been proposed to solve
the problem [3], [14], [15], [16]. However, in the real-world,
it is rarely the case that only a single company promotes a
single product at any given time [9], [10], [11]. But then, how
should few initial nodes be chosen for starting the process so
that the expected total influence in a given signed network
is maximized under a model of influence spread M in the
presence of competing cascades? Once central aspect of this
problem is the estimation of expected influence spread σ(S),
given the seed set, which is typically done using numerous
simulations. Even for a single cascade diffusing based on
Independent Cascade Model, it has been shown that exact
computation of the σ(S) is #P-hard [14]. Estimation of the
influence spread through analytical computation can reduce
computation by avoiding expensive simulations.

To fill the gap of influence computation and maximization
in signed networks with competing diffusion processes, we
propose a novel signed network influence maximization (SiNi-
Max) problem. The purpose of SiNiMax is to find a small set of
seeds with maximum positive (similarly negative) influence in
a signed social network. Unlike the few recent studies on influ-
ence maximization on signed networks [17], [7], [8], SiNiMax
enables seeds to be either positive or negative; this facilitates
diversification of the seed-set portfolio, taking advantage of
both positive and negative relationships at the same time. Our
framework enables the study of the spreading dynamics of
two concurrent yet interdependent contagion processes over a
signed network. Specifically, we extend the unified model of
influence [2] to signed networks for competing cascades and
study the dynamics of influence diffusion for two opposite



opinions, which are modeled as positive and negative, and are
spread over positive and negative edges on a signed network.
We first characterize analytically the contagion phenomena of
two competing cascades and compute the temporal evolution
of influence in a signed network. We show how our closed-
form expression can be used to efficiently study the unfolding
dynamics of opposite opinions in a signed network without
requiring extensive simulations. We then apply our model
to solve the influence maximization problem and develop
efficient algorithms to select initial seeds of either opinion that
maximize influence coverage. We use both synthetic and real-
world large-scale networks, such as Epinions and Slashdot,
to confirm our theoretical analysis on competing influence
diffusion dynamics over signed networks, and demonstrate
that our influence maximization algorithm outperforms other
heuristics.

Our work solves a fundamental problem and paves the way
towards a more comprehensive description of the dynamics of
competing processes over signed networks with applications
to numerous applications and domains, including but not
limited to competing cascades in online social networks and
interacting diseases in viral epidemiology. The rest of this
paper is organized as follows. Section II develops the analytical
solution for computing infection probabilities for competing
cascades in signed networks. In Section III we define the
influence maximization problem that we propose to solve. We
build on our solutions to develop a heuristic in Section IV.
We describe our experiments in Section V. The related work
has been discussed in Section VI and the conclusions from our
work have been drawn in Section VII.

II. UNIFIED MODEL OF COMPETING CASCADES IN

SIGNED NETWORKS

We consider a weighted, directed, and signed graph G =
(V,E,W ), where V is the set of nodes, and E is the set of
directed edges. Edges represent influence; edge (u, v) ∈ E
if node u influences v. W is a matrix whose element wuv

denotes the signed weight of an edge (u, v) in the graph.
Entries in matrix W are non-negative when the network is
unsigned, but may contain both positive and negative entries
when graph G is signed. Particularly, a positive entry wuv

may represent friendship or trust, whereas a negative value
would be indicative of a foe or distrust relationship (i.e., node u
distrusts node v. The absolute value |wuv| denotes the strength
of influence.

To extend the present understanding of multiple contagions
as they simultaneously spread through a signed network, we
consider the case of two influence diffusion processes that
spread in discrete time steps according to some propagation
model M. For simplicity, we describe the diffusion process
of competing cascades in a signed network for the standard
Independent Cascade model (ICM) [3], with the note that our
results can be easily extended to other influence models.

In our modeling, two cascades spread over the network
according to M. We use two colors, black and white, to
differentiate between them. A node can therefore be either
susceptible, black or white. Initially, all nodes are susceptible,
i.e., have not been exposed to any of the two cascades. We
study the problem of progressive diffusion, according to which

nodes that become colored (infected by either black or white)
cannot become susceptible again. Additionally, we assume that
once a node is colored it cannot change color in the future.
At every time step t, with probability pv,u, each node v that
was infected at t− 1 attempts to infect its outgoing neighbors
u with its own color. A susceptible node on which multiple
influence attempts were made, randomly selects one of such
attempts and changes from susceptible to colored.

We first describe the spreading dynamics of two concurrent
yet interdependent contagion processes over an unsigned net-
work. We extend the Unified Model (UM) [2], a generalized
analytical model of influence in networks, that incorporates
both pairwise and collective influence dynamics into the dif-
fusion mechanism for accurate calculation of the probability
of infection at any time t. According to UM, the probability
of node u being infected under ICM at or before time t, Bu,t

is given by Bu,t = 1 − (1 − ru,t)(1 − Bu,t−1). After some
algebraic manipulation, the previous equation can be written
as Bu,t = Bu,t−1 + ru,t(1 − Bu,t−1), where ru(t) denotes
collective influence. According to [2] collective influence can
be used to model local neighborhood effects, aggregate social
behavior, and external factors, or a combination of the above.
However, as shown in [2], it is possible (in case of ICM) to
aggregate the effect of multiple pairwise infection attempts into
the collective influence term. We use terms B+

u,t and B−
u,t to

denote the probability of infection of node u with black and
white respectively at or before time t. Similarly, r+u,t and r−u,t
represent collective influence due to black and white influence
respectively. From the perspective of an initially susceptible
node, the probability of being colored black at time t can be
formalized as:

P (u colored black at time t) = P (u susceptible before t,

collective black influence succeds and white fails)
(1)

However, the probability of node u being colored black at
time t can be calculated as A+

u,t = B+
u,t −B−

u,t−1. Therefore,
Equation 1 becomes

A+
u,t = r+u,t(1− r−u,t)(1−B+

u,t −B−
u,t−1) , (2)

where

B+
u,t = B+

u,t−1 + r+u,t(1− r−u,t)(1 −B+
u,t−1 −B−

u,t−1) , (3)

B−
u,t = B−

u,t−1 + r−u,t(1− r+u,t)(1 −B+
u,t−1 −B−

u,t−1) . (4)

The collective influence probabilities for each competing cas-
cade can be computed by separately due to the independence
between the two influence processes in a single time step
(i.e., the event of an attempt of a black infection on a node
is independent of an attempt of white infection). Therefore
extending the idea of collective influence of ICM from [2]to
multiple cascades

r+u,t = 1−
∏

v→u

(1− p+v,uA
+
v,t−1) (5)

and
r−u,t = 1−

∏

v→u

(1− p−v,uA
−
v,t−1) (6)

where p+v,u and p−v,u represent the probabilities of node v
exerting influence on u when v is colored black or white



repectively. Equations 2, 3, 4, 5, and 6 constitute our novel
analytical solution for computing infection probability of any
node at any time t for competing cascades that propagate based
on the ICM model on an unsigned network.

We naturally extend influence propagation model M (in
this case ICM) for signed networks based on the social
principles “the friend of my enemy is my enemy” and “the
enemy of my enemy is my friend” [18]. Specifically, the
influence is flipped when traversing a negative edge (u, v)
between nodes u and v. Intuitively, if node u is colored black
and is successful in infecting v, then v will become infected
with white. However, from the perspective of v, u’s attempt to
influence v with black through a negative edge is equivalent to
u trying to pass along white infection to v through an unsigned
edge. Therefore, flipping the infection (from black to white or
vice-versa) of the incoming neighbor which has a negative
link and removing the sign from the link is equivalent to the
diffusion process of signed network. Thus, competing cascades
in a signed network can be reduced into an equivalent problem
of competing cascades in an unsigned network. Particularly,
Equations 3 and 4 can be used to calculate the infection
probabilities in a signed network. For the calculation to be
valid, the formulas for collective influence need to be modified.
Formally,

r+u,t = 1−
∏

v
+

−→u

(1− p+v,uA
+
v,t−1)

∏

v
−

−→u

(1− p−v,uA
−
v,t−1) (7)

and

r−u,t = 1−
∏

v
+

−→u

(1− p−v,uA
−
v,t−1)

∏

v
−

−→u

(1− p+v,uA
+
v,t−1) . (8)

III. INFLUENCE MAXIMIZATION IN SIGNED NETWORKS

We redefine the problem of Influence Maximization for
signed networks as follows:

Definition 1 (Signed Network Influence Maximization):
Given a diffusion model M of competing cascades
C = {black, white} running on a signed graph G(V,E,w)
possibly weighted, and an integer m, find S ⊆ V × C such
that |S| = m, and ∀(u, c) ∈ S, infecting u with c at t = 0
maximizes the expected spread of the black infection denoted
by σM,+(S).

Note that since ‘black’ and ‘white’ are merely symbols
representing the two cascades, Influence Maximization with
‘black’ infection is equivalent to the one with ‘white’ infection,
and so an algorithm to maximize σM,+(S) would also be able
to maximize σM,−(S). The most prominent difference of this
problem from the traditional Influence Maximization problem
[3] is that in the seed set S, along with the choice of nodes,
we also need to decide the infection state black or white. Due
to the sign on the links, it is possible that initializing a node
with white color can lead to more black infections. Next we
show the NP-hardness of the problem.

Theorem 1: Signed Network Influence Maximization
problem is NP-hard.

Proof: Consider an instance of the traditional Influence
Maximization problem where we need to find a seed-set of
nodes infecting which would create maximum number of

expected infections at steady state under Independent Cascade
Model with parameter p.

Suppose in the SiNIMax we set all the links in the graph
to positive and p−v,u = 0, p+v,u = p, ∀(v, u) ∈ E. Now we

proceed to solve SiNiMax to maximize σICM,+(S). Clearly,
∀(u, c) ∈ S, c = black because ‘white’ cannot propagate and
if (u,white) ∈ S, then replacing that element with (u,+) can
only increase σICM,+(S). Notice that this is equivalent to the
traditional ICM as there is only one type of infection that prop-
agates in the network. Therefore, a solution to SiNIMax would
provide a solution to the traditional Influence Maximization
problem which is known to be NP-hard.

Hence, SiNiMax is NP-hard.

Our formulation SiNiMax is similar to PRIM [8] with the
only difference that we allow the addition of a node with initial
coloring of ‘white’ for maximization of σICM,+(S). We point
out one major difference of competing ICM over a signed
network when compared to other formulations of ICM, in the
following theorem.

(a) Seed set S = {(v1, black)}

(b) Seed set S = {(v1, black), (v2, black)}

Fig. 1. Spread of ‘black’ and ‘white’ infections with (a) S = (v1, black)
and (b) S = (v1, black). Solid line represents a positive link and dashed line
represents a negative link. Blue nodes represent ambiguous infection.

Theorem 2: The function σICM,+(S) is not monotonic.

Proof: We disprove the monotonicity of σICM,+(S) by a
counter-example. Consider the graph in Figure 1, where solid
line represents a positive link and dashed line represents a
negative link. Suppose pv,u = 1 for all links. Starting with
seed-set {(v1, black)} (Figure 1(a)) we find that 8 nodes end
up being colored ‘black’. Two nodes have ambiguous infection.



Their state is dependent on which infection state, ‘black’ or
‘white’, node v2 decides to adopt. In any case these two nodes
must have opposite infections due to a negative link between
them (v2 is the only neighbor of the other node and so its
infection must come through v2). Therefore, σICM,+(S) =
9. Inclusion of v2 in the seed-set with ‘black’ color (Fig-
ure 1(b)) creates 7 ‘black’ and 3 ‘white’ infections. Therefore
σICM,+({(v1, black), (v2, black)}) < σICM,+({(v1, black)}).
Infecting v2 with ‘white’ in the seed-set creates at most 6
‘black’ infections. Thus, σICM,+({(v1, black), (v2,white)}) <
σICM,+({(v1, black)}), disproving the monotonicty.

IV. SEED-SET SELECTION HEURISTIC

Based on the analytical solution obtained in II, we develop
a heuristic for selecting the seed-set S for maximization of
σM,+(S). Our approach is an incremental one, where we start
with an empty set and include (u, c) at time t− 1 if infecting
u with c at t − 1 would create most number of new ‘black’
infections (expected value) at time t. The traditional greedy
approach, on the other hand, would be to chooses (u, c) which
maximizes σM,+(S ∪ (u, c)) − σM,+(S). We refrain from
using the traditional greedy approach because it would require
calculation of total spread (instead of immediate spread as in
our heuristic) adding more computational requirements. Also,
due to the lack of monotonicity the (1−1/e)-approximation [3]
is no longer guaranteed. Owing to the low value of p, it follows
that the effect of infection of a node decays quickly with
distance. Therefore, the node creating the most new number of
infections is expected to have high contribution to σM,+(S).

A. OSSUMS

Let B+
u,t(k,+) represent the probability of node u being

colored ‘black’ at time t if node k is infected with ‘black’
at time t − 1, if it was not already infected. This is done by
setting B+

k,t−1 to 1−B−
k,t−1 and calculating its impact on node

u. Similarly, B+
u,t(k,−) represent the probability of ‘black’

infection of node u at time t if node k is infected with ‘white’
at time t− 1.

B+
u,t(k,+) =











r+u,t(k, c)(1− r−u,t(k, c))
(1−B+

u,t−1 −B−
u,t−1) if u 6= k

1−B−
u,t−1 if u = k

(9)

Let r
(k,+)
u,t and r

(k,−)
u,t be the effective collective influence

due to the infection of k with ‘black’ and ‘white’ respectively.

Our heuristic, termed Online Seed-set Selection using
Unified Model on Signed Networks (OSSUMS), is based on
selecting a node k and infecting it with c ∈ {black, white}

(k, c) = argmax
(k,c)

∑

u

(

B+
u,t(k, c)−B+

u,t

)

(10)

Now,

B+
u,t(k, c)−B+

u,t

=
[

r+u,t(k, c)(1 − r−u,t(k, c))− r−u,t(k, c)(1 − r+u,t(k, c))
]

(1 −B+
u,t−1 −B−

u,t−1) (11)

To evaluate
(

B+
u,t(k, c)−B+

u,t

)

for u 6= k, we need to consider
four cases:

1) Node k is infected by ‘black’ and the link from k to u is
positive:

Since k is infected with ‘black’ and k
+
−→ u, it affects only

the ‘black’ collective influence. Therefore

r−u,t(k,+) = r−u,t. (12)

And,

r+u,t(k,+) = 1− (1− pk,u(1−B+
k,t−2 −B−

k,t−1))
∏

j
+

−→u,j 6=k

(1− pj,uA
+
j,t−1)

∏

j
−

−→u,

(1− pj,uA
−
j,t−1)

= 1−
1− pk,u(1−B+

k,t−2 −B−
k,t−1)

1− pk,uA
+
k,t−1

∏

j
+
−→u

(1 − pj,uA
+
j,t−1)

∏

j
−

−→u,

(1− pj,uA
−
j,t−1)

= 1−
1− pk,u(1−B+

k,t−2 −B−
k,t−1)

1− pk,uA
+
k,t−1

(1− r+u,t)

(13)

Using Equations 11, 12 and 13, for this case

∑

k
+

−→u

(B+
u,t(k,+)−B+

u,t)

=
∑

k
+

−→u

pk,u(1−B+
k,t−1 −B−

k,t−1)

1− pk,uA
+
k,t−1

(1−B+
u,t−1)(1 −B−

u,t−1)(1 − r+u,t − r−u,t) (14)

2) Node k is infected with ‘black’ and the link from k to u is
negative: In this case, since this action does not affect the
collective influence for ‘black’ infection on u,

r+u,t(k,+) = r+u,t. (15)

And

r−u,t(k,+) = 1− (1− pk,u(1−B+
k,t−2 −B−

k,t−1))
∏

j
+

−→u

(1 − pj,uA
−
j,t−1)

∏

j
−

−→u,j 6=k

(1 − pj,uA
+
j,t−1)

= 1−
1− pk,u(1−B+

k,t−2 −B−
k,t−1)

1− pk,uA
+
k,t−1

∏

j
+

−→u

(1 − pj,uA
−
j,t−1)

∏

j
−

−→u,

(1− pj,uA
+
j,t−1)

= 1−
1− pk,u(1−B+

k,t−2 −B−
k,t−1)

1− pk,uA
+
k,t−1

(1− r−u,t)

(16)



Using Equations 11, 15 and 16, for this case

∑

k
−

−→u

(B+
u,t(k,+)−B+

u,t)

=
∑

k
−

−→u

−pk,u(B
+
k,t−1 +B−

k,t−1)

1− pk,uA
+
k,t−1

(1−B+
u,t−1 −B−

u,t−1)r
+
u,t(1− r−u,t) (17)

3) Node k is infected with ‘white’ and the link from k to u
is positive: Similar to Case 2, it can be shown that

∑

k
+

−→u

(B+
u,t(k,−)−B+

u,t)

=
∑

k
+
−→u

−pk,u(B
+
k,t−1 +B−

k,t−1)

1− pk,uA
−
k,t−1

(1−B+
u,t−1 −B−

u,t−1)r
+
u,t(1− r−u,t) (18)

4) Node k is infected with ‘white’ and the link from k to u
is negative: Similar to Case 1, it can be shown that

∑

k
−

−→u

(B+
u,t(k,−)−B+

u,t)

=
∑

k
−

−→u

pk,u(1−B+
k,t−1 −B−

k,t−1)

1− pk,uA
−
k,t−1

(1−B+
u,t−1 −B−

u,t−1)(1 − r+u,t)(1 − r−u,t) (19)

Finally, a node k is added to the seed-set with color c ∈
{black, white} which maximizes the following:

max
k

max{
∑

u

(

B+
u,t(k,+)−B+

u,t

)

,
∑

u

(

B+
u,t(k,−)−B+

u,t

)

}

(20)

where the objective function is computed by combining Equa-
tions 1, 17, 18 and 19 which produces:

∑

u

(B+
u,t(k,+)−B+

u,t)

=
∑

k
+

−→u

(

pk,u(1−B+
k,t−1 −B−

k,t−1)

1− pk,uA
+
k,t−1

(1−B+
u,t−1 −B−

u,t−1)(1 − r+u,t)(1 − r−u,t)

)

−
∑

k
−

−→u

(

pk,u(B
+
k,t−1 +B−

k,t−1)

1− pk,uA
+
k,t−1

(1−B+
u,t−1 −B−

u,t−1)r
+
u,t(1− r−u,t)

)

(21)

TABLE I. SUMMARY OF THE DATASETS

Epinions Slashdot

# nodes 131828 82144

# edges 841372 549202

# positive edges 717667 425072

# negative edges 123705 124130

And
∑

u

(B+
u,t(k,−)−B+

u,t)

=
∑

k
−

−→u

(

pk,u(1 −B+
k,t−1 −B−

k,t−1)

1− pk,uA
−
k,t−1

(1 −B+
u,t−1 −B−

u,t−1)(1 − r+u,t)(1− r−u,t)

)

−
∑

k
+

−→u

(

pk,u(B
+
k,t−1 +B−

k,t−1)

1− pk,uA
−
k,t−1

(1 −B+
u,t−1 −B−

u,t−1)r
+
u,t(1 − r−u,t)

)

(22)

The OSSUMS heuristic is summarized in Algorithm 1.

Algorithm 1 Online Seed-set Selection using Unified Model
on Signed Network (OSSUMS)

1: function OSSUM(G, m)
2: S ← ∅
3: for t = 1→ m do
4: (k, c) = argmax(k,c)

∑

u

(

B+
u,t(k, c)−B+

u,t

)

5: ⊲ Computed using Equations 21 and 22
6: S ← S ∪ (k, c)
7: end for
8: return S
9: end function

B. Complexity Analysis

Computing r+u,t and r−u,t require O(indegree(u)) com-
putations. Doing this for all nodes u requires O(

∑

u(1 +
indegree(u))) = O(|V |+ |E|) operations. Once these values
are calculated, Equation 21 and 22 are to be evaluated for each
node k, which takes O(

∑

k(1 + outdegree(k))) = O(|E| +
|V |) computations. This is to be repeated for selection of each
seed-set. Therefore, the time complexity of finding m nodes
for seed-set S for ICM using OSSUMS is O(m(|V |+ |E|)).

V. EXPERIMENTS

The experiments were conducted on two datasets: Epinions
and Slashdot [6]. Both are trust relations among users in the
corresponding social media. There link from u to v is positive
if u trusts v (u considers v a friend) and negative if u distrusts
v (u considers v a foe). The influence graph is constructed by
flipping the direction of these edges. If u trusts v, then there
is a positive link from v to u, and if u distrusts v, then there
is a negative link from v to u. The datasets are summarized
in Table V.

We compared our heuristic with the following heuristics
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Fig. 2. Influence spread achieved by the heuristics on graphs with varying fraction of negative links.

• Degree: Choose the nodes with maximum positive degree
and color them ‘black’.
• Degree Discount [15]: A heuristic designed for traditional

ICM, which performs a form of weighted discount based
on the parameter p. This heuristic is applied after remov-
ing all negative edges, and the selected nodes are colored
‘black’.
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Fig. 3. Fraction of nodes in the seed-set included with ‘black’ color by
OSSUMS. The fraction drops very quickly when majority of links in the
network are negative.

To study the effect of negative links on the influence spread
achieved by the heuristics, first we ignored the actual signs of
the links and randomly assign the signs. The selection was
done at random with probability of negative link ranging from
0 to 1, resulting in a range of graphs with fraction of negative
links 0, 0.1, 0.2, . . . , 1. Figure 2 shows the result. Observe that
in both cases, the spread achieved by the heuristics are almost
equal when the fraction of negative links is low. However,
when the graph has more negative links OSSUMS significantly
outperform other heuristics. Also, note that least spread is
achieved by OSSUMS when the fraction of negative links
is around 0.5, which suggests that achieving high influence
spread is more difficult when there are almost equal number

of positive and negative links compared to when all the links
are negative.

When more links are negative in a network, i.e., there are
more distrust relations between the individuals, it becomes
important to include ‘white’ colored nodes in the seed set
for maximization of ‘black’ infection. This is demonstrated
in Figure V, which shows the fraction of nodes in the seed
set included with ‘black’ color by OSSUMS. The fraction
drops very quickly when almost half of the links have negative
signs.When the fraction of negative links reaches 0.7, almost
all the nodes in the seed set are included with ‘white’ color.

We also studied the influence spread achieved by the
heuristics with varying size of the seed set. No significant
difference between them was observed on the original graphs.
This is due to the fact that the number of negative links in
both graph are less compared to the number of positive links
(14.70% and 22.60% for Epinions and Slashdot, respectively).
It follows from the results of our previous experiments (Fig-
ure 2) that the heuristics do not differ significantly when the
fraction of negative links is less than 0.5. Therefore we flipped
the sign of all the edges in the original graph so that there are
14.70% and 22.60% positive links in Epinions and Slashdot,
respectively. The results of influence spreads achieved in these
‘flipped’ datasets are shown in Figure V. Note that OSSUMS
outperforms the other two heuristics by a huge margin in
both cases. Again, this is consistent with our earlier claim
that significant advantage is observed with OSSUMS when
the number of negative links dominate the positive links.

VI. RELATED WORK

Information dissemination has been thoroughly studied on
unsigned networks [3], [14], [15], [16]. Among the models
that have been proposed Independent Cascade Model [3] has
been studied extensively. Computing the exact expectation of
influence spread has been shown to be #P-hard [14]. Typically
thousands of Monte Carlo simulations are run to estimate
the influence spread. An approximate analytical solution was
proposed [2] in the form of a Unified Model that covers
computation of expected influence for several models including
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Fig. 4. Influence spread achieved by varying size of the seed-set by the heuristics in the datasets after flipping the signs of edges.

ICM. However, the solution is specific to unsigned graph with
a single infection. We extend the formula for ICM in signed
networks with two competing infections.

Diffusion of multiple cascades has been the focus of [11],
[19]. [20] studied the diffusion of multiple cascades and
their interactions. Instead we study the spread of competing
infections, where a node can be infected by only one of
the infections prevalent in the network. Competing cascades
have been studied in [9] from game theoretic perspective for
maximizing the expected diffusion of an opinion against a
competing one. [7] proposed influence maximization on a voter
model on a social network with positive and negative links.
They find the optimal seed-set for influence maximization
on signed networks where opinions are flipped when flowing
through a negative link. We assume a similar modeling of
flipping infections over negative links, however, we show that
is NP-hard to find the optimal seed set in our model. A
similar model on unsigned network was proposed in [17],
where opinions propagate according to ICM, and positive
opinions get flipped randomly with certain probability. Unlike
their model, the expected influence spread is not monotonic,
making the influence maximization more difficult. Our model
is same as IC-P [8], however our influence maximization of
one infection we allow the inclusion of the opposite infection
in the seed-set. Inclusion of opposite infection is important
when the majority of links in the network are negative as
demonstrated in our experiments.

VII. CONCLUSION

We studied the propagation of competing cascades in
signed networks according to an extension of Independent
Cascade Model where infections are flipped when propagated
over negative links. We extended the Unified Model [2] to
competing cascades in signed networks, that provided an ap-
proximate analytical solution to the problem of calculating the
probability of infection of either of the two competing cascades
for any node at any time t. We then defined SiNiMax, a novel
signed network influence maximization problem for competing
cascades. We proposed a heuristic, Online Seed-set Selection
using Unified Model for Signed networks (OSSUMS), for this

problem that diversifies the seed-set portfolio, taking advantage
of both positive and negative relationships.

We validated our approach through experiments on real-
world large-scale signed networks. We also quantified the ef-
fect of density of negative links on influence maximization. We
demonstrated that no significant difference is observed among
the performance of the heuristics when the majority of links is
positive. However, we demonstrated that when the majority of
links is negative, our heuristic significantly outperforms state-
of-the-art heuristics for influence maximization. This result
was a direct outcome of OSSUMS ability to incorporate seeds
from both cascades into the influence maximization problem.
We in fact observed that more seeds of the opposing cascade
were selected for maximizing the cascade of interest when
negative links are more prevalent in the network. As future
work, we plan to extend our approach to multiple cascades
and other influence models on signed networks.
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[3] D. Kempe, J. Kleinberg, and É. Tardos, “Maximizing the spread of
influence through a social network,” in Proceedings of the ninth ACM

SIGKDD international conference on Knowledge discovery and data

mining. ACM, 2003, pp. 137–146.

[4] C. Budak, D. Agrawal, and A. El Abbadi, “Diffusion of information in
social networks: Is it all local?” in ICDM, 2012, pp. 121–130.

[5] C. Chelmis, A. Srivastava, and V. K. Prasanna, “Computational models
of technology adoption at the workplace,” Social Network Analysis and

Mining, vol. 4, no. 1, pp. 1–18, 2014.



[6] J. Leskovec, D. Huttenlocher, and J. Kleinberg, “Signed networks in
social media,” in Proceedings of the SIGCHI Conference on Human

Factors in Computing Systems. ACM, 2010, pp. 1361–1370.

[7] Y. Li, W. Chen, Y. Wang, and Z.-L. Zhang, “Influence diffusion
dynamics and influence maximization in social networks with friend
and foe relationships,” in Proceedings of the sixth ACM international

conference on Web search and data mining. ACM, 2013, pp. 657–666.

[8] D. Li, Z.-M. Xu, N. Chakraborty, A. Gupta, K. Sycara, and S. Li,
“Polarity related influence maximization in signed social networks,”
PloS one, vol. 9, no. 7, p. e102199, 2014.

[9] S. Bharathi, D. Kempe, and M. Salek, “Competitive influence max-
imization in social networks,” in Internet and Network Economics.
Springer, 2007, pp. 306–311.

[10] A. Borodin, Y. Filmus, and J. Oren, “Threshold models for competitive
influence in social networks,” in Internet and network economics.
Springer, 2010, pp. 539–550.

[11] X. He, G. Song, W. Chen, and Q. Jiang, “Influence blocking maximiza-
tion in social networks under the competitive linear threshold model.”
in SDM. SIAM, 2012, pp. 463–474.

[12] P. Domingos and M. Richardson, “Mining the network value of cus-
tomers,” in Proceedings of the seventh ACM SIGKDD international

conference on Knowledge discovery and data mining. ACM, 2001,
pp. 57–66.

[13] W. Chen, W. Lu, and N. Zhang, “Time-critical influence maximization
in social networks with time-delayed diffusion process,” arXiv preprint

arXiv:1204.3074, 2012.

[14] W. Chen, C. Wang, and Y. Wang, “Scalable influence maximization for
prevalent viral marketing in large-scale social networks,” in Proceedings

of the 16th ACM SIGKDD international conference on Knowledge

discovery and data mining. ACM, 2010, pp. 1029–1038.

[15] W. Chen, Y. Wang, and S. Yang, “Efficient influence maximization in
social networks,” in Proceedings of the 15th ACM SIGKDD interna-

tional conference on Knowledge discovery and data mining. ACM,
2009, pp. 199–208.

[16] A. Goyal, W. Lu, and L. V. Lakshmanan, “Simpath: An efficient
algorithm for influence maximization under the linear threshold model,”
in Data Mining (ICDM), 2011 IEEE 11th International Conference on.
IEEE, 2011, pp. 211–220.

[17] W. Chen, A. Collins, R. Cummings, T. Ke, Z. Liu, D. Rincon, X. Sun,
Y. Wang, W. Wei, and Y. Yuan, “Influence maximization in social
networks when negative opinions may emerge and propagate.” in SDM,
vol. 11. SIAM, 2011, pp. 379–390.

[18] D. Easley and J. Kleinberg, Networks, crowds, and markets: Reasoning

about a highly connected world. Cambridge University Press, 2010.

[19] N. Pathak, A. Banerjee, and J. Srivastava, “A generalized linear thresh-
old model for multiple cascades,” in Data Mining (ICDM), 2010 IEEE

10th International Conference on. IEEE, 2010, pp. 965–970.

[20] S. A. Myers and J. Leskovec, “Clash of the contagions: Cooperation
and competition in information diffusion.” in ICDM, vol. 12. Citeseer,
2012, pp. 539–548.


	Introduction
	Unified Model of Competing Cascades in Signed Networks
	Influence Maximization in Signed Networks
	Seed-set Selection Heuristic
	OSSUMS
	Complexity Analysis

	Experiments
	Related Work
	Conclusion
	References

