
Towards Prediction with Partial Data in Sensor-based
Big Data Applications

Saima Aman
Department of Computer Science
University of Southern California

Los Angeles, CA
saman@usc.edu

Charalampos Chelmis, Viktor Prasanna
Department of Electrical Engineering

University of Southern California
Los Angeles, CA

{chelmis, prasanna}@usc.edu

Abstract—Many emerging big data applications such as in

smart electric grids, transportation, avionics, manufacturing, and

remote medical and environment monitoring involve sensors for

tracking, monitoring, and control. These sensors are generally

located at geographically dispersed locations and expected to

periodically send back acquired information to centrally located

nodes or processing centers. In many cases, the data from sensors

is not available at central nodes at a frequency that is required for

fast and real-time modeling and decision-making. For example,

while many of these sensors are capable of collecting information

at a high speed, logging data every minute or so, the physical

limitations, specially latency, of the transmission networks limit

the frequency at which data from sensors can be transmitted

back to the central nodes. Also, consumers may limit frequent

transmission of information from sensors located at their premises

for security and privacy concerns. Finally, the data may not reach

the central nodes due to faults in the sensors or transmission

systems. All these scenarios raise the issue of data veracity in big

data applications. While volume, variety, and velocity aspects of

big data have been the focus of much recent research, veracity

has received less attention. In this paper, we propose a novel

solution to the problem of making short term predictions (up to

a few hours ahead) in absence of real-time data from sensors.

A key implication of our work is that by using real-time data

from only a small subset of influential sensors, we are able to

make predictions for all sensors. We thus reduce unnecessary

transmissions from sensors and provide a practical solution to

data veracity in many sensor based big data applications. We

use real-world electricity consumption data from smart meters

to empirically demonstrate the usefulness of our method.

Keywords—data veracity, short-term prediction, prediction

model, smart grid

I. INTRODUCTION

Low cost wireless sensors are increasingly being deployed
in large numbers for performing tracking, monitoring, and
control in emerging big data applications such as in smart
electric grids, transportation, avionics, manufacturing, and re-
mote medical and environment monitoring. These sensors are
generally located at geographically dispersed locations and
expected to periodically send back acquired information to
centrally located nodes or processing centers [12] via wireless
links and the Internet [11], [32]. Examples of such sensors
include climate sensors for monitoring features such as temper-
ature, solar radiance, and green-house gas measurements [21];
smart meters for measuring energy consumption [32], [22];
loop detectors installed under pavements for recording traffic

[27]; and meters on wind turbines that record wind speed and
turbines’ power output [10].

Due to several factors, data from all sensors is not available
at the central nodes in real-time or at a frequency that is
required for fast and real-time modeling and decision-making.
For example, while many of these sensors are capable of
collecting information at a high speed, logging data every
minute or less, physical limitations of existing transmission
networks, such as latency, bandwidth and high energy con-
sumption [12] are key factors that limit the frequency at
which data from sensors can be transmitted back to the central
nodes [7]. Thus, sensors either transmit a quantized version of
the measurements [12] or collect high resolution data locally
but transmit information periodically in batches one or more
times a day. For instance, wind turbines record data every few
seconds, but transmit data every five minutes to far-off research
centers for use in forecasting algorithms [10].

Another factor responsible for non-availability of real-
time data at the central nodes is that consumers may opt-
out or limit frequent transmission of information from sensors
located at their premises for security and privacy concerns
[23]. For instance, fine-grained electricity consumption data
collected through smart meters can be used to infer activities
of the consumers and also indicate the presence or absence of
dwellers in the consumer premises [24]. Furthermore, sensor
data may not reach the central nodes due to faults or outages,
and unreliability or shadow fading of transmission links [11].
All these situations reflect the partial data problem, where
only partial data from sensors is available in real-time, and
complete high resolution data is available only periodically,
generally one or more times a day.

Partial data raises the issue of data veracity in sensor
based big data applications and questions the reliability of
models running at central nodes that assume availability of
high resolution data in real time. Veracity is closely tied with
the other 3 Vs of big data, that is, volume, velocity and variety
[20] that respectively describe the increasing size of data, the
increasing rate of data generation, and the increasing range of
data types used. While these 3 Vs characterize the quantitative
aspect of big data, veracity characterizes the qualitative aspect
of data. Without addressing veracity, big data solutions risk
degradation in performance and inaccurate interpretation of
generated insights. A possible approach - as discussed in this
paper - is to develop creative solutions using data from a small
subset of sensors selected on the basis of some heuristics or



learning methods, while minimizing information loss resulting
from leaving out data from remaining sensors. The intuition
behind this approach is that in many cases, sensors may
be located spatially close to each other and thus likely to
be correlated, or they may measure similar activities driven
by similar schedules such as those on an academic campus
or traffic on high density roads. If this information can be
leveraged, it will obviate the need for real-time transmission
from all sensors to the central nodes, and thereby reduce the
load on the transmission network. Also, it would make it
simpler to add new sensors without straining the network.

In this paper we address the partial data problem in context
of smart electricity grids. In smart grid, high volume electricity
consumption data is collected by smart meters at consumer
premises and securely transmitted back to the electric utility
over wireless or broadband networks [32], where they are
processed for high-level use cases and applications such as
planning, customer education, and demand response [3]. A va-

riety of other data sources such as weather and daily schedules
that may indirectly indicate power consumption [6] are also
utilized in smart grid (Figure 1). Transforming the traditional
power grid into a smart grid requires learning algorithms that
can model data being generated at high velocity to predict
electricity consumption and use that to initiate curtailment
programs ahead of time by the utility to avoid potential supply-
demand mismatch [2]. Here we witness partial data problem
when data from smart meters is only partially available in real-
time. To address this, we propose a novel two-stage solution:
First, we learn the dependencies among time series of different
smart meters on a similar day in recent past. Then, we use data
from a small subset of smart meters which are found to have
high influence on others to make predictions for all meters.
We show that this technique results in only ⇠ 0.5% increase
in prediction error, while using real-time data from only ⇠ 7%
of smart meters (Figure 8(b)). Our main contributions are:

1) We propose to leverage dependencies among time series
sensor data for making real-time predictions with partial data.
While time series dependencies have been used previously
(Section II), the novelty of our work is in extending the notion
of dependencies to discover influential sensors and using real-
time data only from them to do predictions for all sensors.

2) Using real-world smart grid data, we empirically demon-
strate that by trading a fraction of prediction accuracy, we are
able to do real time prediction for several hours ahead using
real-time data from only a small subset of smart meters.

The rest of the paper is organized as follows. We begin with
reviewing related work in Section II. We provide definitions of
important terms used in the paper as well as formal problem
definition in Section III. Our proposed method is described
in Section IV and the experimental results are presented in
Section V. We conclude the paper in Section VI.

II. RELATED WORK

Within big data, research on veracity broadly deals with
data quality and trustworthiness. Ensuring data quality for big
data applications requires detecting and repairing erroneous
data in a scalable and timely manner [29]. Data generated from
sensors in many big data applications is particularly susceptible

Fig. 1. An illustration of how big data in Smart Grid is utilized for prediction
for different use cases.

to quality issues due to discretization in continuous data, mis-
alignment in data due to out-of-sync sensor clocks, faults,
anomalies, and network delays [22]. Trustworthiness depends
on factors such as data origin, collection and processing,
and trusted infrastructure [14]. Another aspect of veracity -
which is also the focus of this paper - is associated with
the availability and timeliness of data [14]. It is an important
consideration for many big data algorithms that assume ideal
scenarios with all required data readily available.

Generic time-series prediction methods such as Auto-
Regressive Integrated Moving Average (ARIMA) [8] and
Auto-Regressive Trees (ART) [25] use observations made in
recent past to make predictions for short-term future. Existing
works assume such past observations to be readily available in
real-time. However, as mentioned in Section I, this assumption
does not hold true for many sensor-based big data applications
because large volumes of data cannot be transmitted over the
network in real-time and only partial data is available in real
time. The solutions proposed to address this problem can be
categorized into two types: 1) In the first type, the approach
is to reduce the volume of transmitted data by techniques
such as data compression [22], [28], data aggregation [17],
and model-driven data acquisition [15]. The need to develop
communication efficient algorithms is also highlighted in [30],
where only network volume sub-linear in the input size is
considered feasible for big data applications. 2) In the second
type, attempts are made to estimate missing real-time data by
techniques such as interpolation based on regression [18], or
through transient time models that use differential equations to
model system behavior [13]. Main challenge with these meth-
ods is that estimates depend on the accuracy of models and
interpolation errors get propagated to subsequent analysis and
decision-making steps. Another method for estimation is using
spectral analysis of time series, though it is a more complex
and involved process that is suitable only for periodic time
series [5]. We use a different approach where instead of trying
to estimate the missing real-time data, we try to do predictions
using partial real time data by learning dependencies among
time series originating from different sensors.



Different approaches have been proposed to learn depen-
dencies among time series data; the more popular among them
are based on cross-correlations [8] and Granger Causality [16].
The latter is used to determine if the past values of a series
help in predicting future values of another series. It has gained
popularity in many domains such as climatology, economics,
and biological sciences due to its simplicity and robustness
[5], [4]. Granger Causality is time consuming for evaluating
pairwise dependencies when large number of variables are
involved. Lasso-Granger [4] is proposed to provide a more
scalable and accurate solution, which uses an L1-penalty to
do variable selection corresponding to dependency discovery.
In our work, we use the Lasso-Granger method to discover
dependencies among time series from different sensors. The
novelty of our work is in extending the notion of dependencies
to determine influence of each sensor and using this informa-
tion in our proposed prediction model for partial data that uses
real-time data from only those sensors that have an influence
on others.

Big data research in Smart Grid has previously dealt with
applications such as optimization and real time forecasting
in microgrids using real-time streaming sensor data [6], for
clustered time series prediction for customers in utility service
areas [33], and for customer selection for demand response us-
ing big data analytics [19]. All these works highlight the need
to develop approximate algorithms to do scalable analytics on
big data witnessed in smart grid. In our work, we highlight
that in addition to scalability of models, it is also necessary to
have scalability of data collection. In [6], data streams from
over 84K sensors per second from buildings in a campus
are monitored for predictive analytics, while in [19], data
from over 200K smart meters per hour is used for customer
selection for demand response. These analyses assume that
high resolution data is readily available in real-time as needed.
However, at a city-scale, real-time data collection at such large
scale from sensors all over a city becomes prohibitive, given
the limited capacity of transmission networks. Such scenarios
necessitate development of alternative methods - as we do in
this paper - that could work with only partial data that is
available in real-time.

III. PRELIMINARIES

In this section, we formulate the problem of prediction with
partial data (PPD) addressed in this paper and give formal
definitions of key words used in context of the problem.
Consider a large set of sensors S = {s1, ..., sn} deployed in a
big data application. These sensors collect data in real-time1.
Given network bandwidth constraints, some of these sensors
can send data back to a central processing node (CPN) in
real-time, while the rest of the sensors send the collected high-
resolution readings to the CPN every few hours. Our goal at
the CPN is to use this partial data to make predictions for all

sensors for a given prediction horizon h.

Definition 1: A time series output of a sensor s

i

is an
ordered sequence of readings T

i

= {xi

j

}, j = 1, ..., t over past
time stamps up to the current time stamp t.

1In context of this paper, data collected at 15-min intervals are considered
real-time, even though models proposed in this paper would be equally
applicable to data at smaller resolutions.

Fig. 2. Prediction with Partial Data (PPD): Given a set of sensors S =
{s1, ..., sn}, some sensors can send readings back to a central processing
node (CPN) in real-time, while the rest send collected high-resolution readings
back every few hours resulting in partial data at the CPN.

Definition 2: Given a set of sensor time series outputs
{xi

j

}, j = 1, ..., t, i = 1, ..., n, short-term prediction is to
estimate {xi

j

}, j = t+1, ..., t+h, i = 1, ..., n for a horizon h,
which is a few hours ahead.

In this paper, we consider a range of prediction horizons to
study how the performance of a prediction model varies with
respect to how far the prediction horizon is from the time of
prediction. Usually, for short-term predictions, the prediction
horizon is within few hours and the prediction intervals are
15-min, 30-min or 1-hour long.

Problem Definition We formulate the problem of predic-
tion with partial data (PPD) as follows: Given a set of sensors
S with time series outputs {xi

j

}, j = 1, ..., t, i = 1, ..., n, make
short-term predictions {xi

j

}, j = t+1, ..., t+h, i = 1, ..., n for
each sensor s

i

2 S , when readings {xo

k

}, k = t � r + 1, ..., t
for o 2 O are missing for a subset O of sensors, O ⇢ S .

Figure 2 provides an illustration of the problem. For
simplicity, we assume all time-series outputs from sensors to
be sampled at the same frequency and be of equal length.

We hypothesize that we can learn dependencies in past time
series outputs from sensors and use them to make predictions
when real-time readings from all sensors is not available. The
intuition behind this approach is that many sensors are located
spatially close to each other and their readings are likely to
be correlated, or they may measure similar entities such as
electricity consumption or vehicular traffic which are governed
by similar schedules and human activities. If past dependencies
can be useful in making future predictions, our next step is to
identify the set of sensors that are more helpful in making
predictions for other sensors, so that we can collect real-time
readings from only these sensors.

Definition 3: A dependency matrix M is an n⇥f matrix,
where each element M[i, j] represents the dependence of time
series T

i

on time series T
j

.

The dimensions of a dependency matrix may not be equal.
Generally, there may be data available from different types
of sensors, while we may want to make predictions for only
one type of sensors. In such a case, n < f . For example, for
making electricity consumption predictions for n smart meters,
we may use an additional set of sensors, such as w weather
sensors. Then, f = n + w. From the dependency matrix, we
can now determine which sensors to select for collecting real-
time readings.



Definition 4: The influence Ik of a time series T
k

is
defined as the sum of all values in the column k in the
dependency matrix M.

Ik =
nX

j=1

M[j, k] (1)

The sensors with higher influence values can be selected for
collecting real-time readings. This allows transmission of very
few readings in real-time compared to the case of transmitting
all readings.

Definition 5: Compression Ratio, CR is defined as the
ratio between the total number of sensor readings that would
be required for real-time prediction and the number of read-
ings actually transmitted from selected influential sensors for
prediction with partial data.

CR =

P
n

i=1 |Pi

|P
n

i=1 |Pi

|�P
o2O |P

o

| (2)

where P
i

is the sequence of past values from sensor s

i

used
for prediction and |P

i

| is the length of this sequence; O is
the subset of sensors with missing real-time readings and n is
the total number of sensors. For simplicity, we consider same
length l of past values for all sensors. Hence, |P

i

| = l, 8i and
above equation can be simplified as

CR =
n

n� |O| (3)

Space saving SS achieved with compression can be corre-
spondingly calculated as: SS = 1� CR

�1.

IV. METHODOLOGY

In this section we describe our proposed method for
short-term prediction with partial data. We use a two-stage
process, where we first learn dependencies from past data and
determine influence for individual sensors, and then use this
information for selecting influential sensors for regression tree
based prediction.

A. Influence Discovery

A simple approach to making predictions for a given sensor
s

i

2 O in terms of recent real time data from other sensors is
to cast it as a regression problem. In an ordinary least squares
(OLS) regression, given the data (xi, y

i

), i = 1, 2, ..., n, the
response y

i

for the i

th observation is estimated in terms
of p predictor variables, x

i = (x
i1, ..., xip

) by minimizing
the residual squared error. For our problem of prediction
with partial data, the predictor variables for s

i

comprise of
sequences {P

k

}
k 6=i

of past values from other sensors.

We use a method based on lasso for selection of sensors
that show stronger influence on the given sensor s

i

and leave
out others. The lasso method is used in regression for shrinking
some coefficients and setting others to zero [34]. This is
achieved by penalizing the absolute size of the regression
coefficients. Another advantage of using the lasso method
is that it can improve the prediction accuracy. The OLS
method generally gives low bias due to over-fitting but has
large variance. By shrinking or setting to zero some of the

coefficients, the lasso improves variance and hence may reduce
overall prediction errors [34].

Given n sensor outputs in form of time series x

1
, x

2
, ..., x

n,
with readings at timestamps t = 1, ...T , for each series x

i, lasso
gives a sparse solution for coefficients w by minimizing the
sum of squared error and a constant times the L1-norm of the
coefficients:

w = arg min
TX

t=l+1

������
x

i

t

�
nX

j=1

w

T

i,j

Pj

t

������

2

2

+ �kwk1 (4)

where Pj

t

is the sequence of past l readings, i.e., Pj

t

=
[xj

t�l

, ..., x

j

t�1], w

i,j

is the j-th vector of coefficients w

i

representing the dependency of series i on series j, and �

is a parameter which determines the sparseness of w

i

and
can be determined using cross-validation method. The weight
vectors w

i

form the rows of the dependency matrix M. We set
diagonals of the dependency matrix to zero, i.e., M[i, i] = 0
in order to remove self-dependencies and simulate the case of
making prediction without a sensor’s own past real-time data.
Given M, influence I of all series can be calculated using
equation 1.

B. Influence Model (IM)

We first split the readings for each smart meter into a
set of daily series {Di

j

}
i=1,...,n,j=1,...,q at 15-min resolution,

where q is the number of days in the data and n is the
number of sensors. Splitting into smaller day long windows
ensures stationarity for each window. Stationarity means that
the dependence on the preceding values does not change with
time. Then we learn dependency matrix M

j

for each day as
described in Section IV-A.

Predictions for a given day g are based on training data
comprising of readings from a previous similar day sim. We
consider two cases of similarity:
1) previous week, which is the same day of the week in
preceding week, i.e., sim = g � 7, if the days are indexed
serially. It captures similarity in terms of similar schedules,
which for a university campus, and for many other settings
involving human activity, follow a weekly pattern.
2) previous day, which is the day preceding the given day,
i.e., sim = g � 1. It captures similarity in terms of weather
conditions, as successive days are likely to have little change
in weather.

We apply a windowing transformation to the daily se-
ries {Di} in both training and test data to get a set of
hpredictor, responsei tuples. Given time-series x with k values,
the transformation of length l results in a set of tuples of the
form h(x

t�l+1, ..., xt

), x
t+h

i such that l  t  k � h.

The prediction model for a sensor s
i

is a regression tree [9]
that uses predictors from all sensors with non-zero coefficients
in the dependency matrix learned from a similar day, i.e.,
predictors are taken from {Dk}, 8k : M

sim

[i, k] 6= 0. Since
M[i, i] = 0, sensor s

i

’s own past values are not used as
predictors. Hence, a key benefit of this model is that we are

able to do predictions for a sensor in absence of its own past

values by using past values of its influential sensors.



C. Local Influence Model (LIM)

In this variant of the influence model, we further reduce
the number of sensors used as predictors in the influence
model. For each sensor s

i

, we sort the corresponding row
M[i, ] in the dependency matrix and based on this, we consider
only readings from the top ⌧

l

sensors in the influence model.
Because we select top influencers locally for each sensor, we
call this as a local influence model.

D. Global Influence Model (GIM)

In another variant of the influence model, instead of se-
lecting the top local influencers for each sensor, which when
aggregated still require collecting data from a large number of
sensors, we propose finding the top set of influencers globally.
Using dependency matrices M

j

, we calculate daily influence
Ii

j

for each sensor s
i

as described in equation 1. After sorting
the sensors based on their influence values, we consider only
readings from the top ⌧

g

sensors in the influence model.
Because we select top influencers globally for all sensors, we
call this as a global influence model.

V. EXPERIMENTS

Here we describe the experiments conducted to evaluate
the performance of our models with respect to the baseline
model built using real-time data. We also examine how pre-
diction accuracy changes with the number of sensors used for
prediction.

A. Datasets

Electricity Consumption Data: This data2 is collected
by smart meters installed in buildings in the USC campus
microgrid [32] in Los Angeles. There are over 170 smart
meters that collect data at 15-minute intervals. The dataset
has about 7 years’ electricity consumption values with 170 ⇥
365 ⇥ 24 ⇥ 4 ⇡ 5.96 million readings per year. The average
meter reading is 30.5 kWh per 15-min interval, with a standard
deviation of 7.65 kWh [2]. In our experiment we use one
semester’s data from a subset of 115 smart meters that have
consistent data output with minimal missing values.

Weather Data: This data includes hourly temperature
and humidity data taken from NOAA’s [26] USC cam-
pus/Downtown Los Angeles station. It is linearly interpolated
to get 15-min resolution data aligned with the electricity con-
sumption data. We used two more datasets: high temperature
data, which retains all temperatures above 70F and sets the
rest to zero; and low temperature data, which retains all
temperatures below 50F and sets the rest to zero. We use
weather data as additional features in our model.

B. Performance Comparison

In this section we introduce the baseline model and evalu-
ation metrics used in our experiments. We evaluate our models
for short term prediction for up to 8 hours ahead prediction
horizon3. Given the short horizon, the length of previous values

2The data is available on request from the USC Facilities Management
Services.

3For Smart Grid applications such as Demand Response, predictions at 15-
min resolution are generally required up to 6 hours ahead [3].

is set to 4, equivalent to 1-hour as the data is collected at
15-min granularity. For the baseline as well as the proposed
models, we use day-long cross-sections of the data for training
and testing, such that training is done on a similar day as the
testing day (ref. Section IV-B). In our pilot experiments, we
examined two choices of similar day: previous week and pre-
vious day, and found previous week to perform better. This can
be explained by the similarity in schedules on same weekdays,
and hence similar electricity consumption patterns, as opposed
to successive days. This observation may be true for many
other applications as well that involve sensors collecting data
from schedule-related activities. However, sensors collecting
other types of information, such as environmental data, may
show higher similarity in readings for successive days.

1) Baseline Model: As a baseline for other models, we use
the Auto-Regressive Tree (ART) Model which uses recent val-
ues as features in a regression tree model and has been shown
to offer high predictive accuracy on a large range of datasets
[25]. For short prediction horizons, recent observations are
found to be good indicators of future values. The ART model
is a generalization of standard autoregressive (AR) model. It is
a piecewise linear model that is learned by recursively dividing
the data using a decision tree into smaller areas, where simple
linear autoregressive models can be applied. The advantage of
ART model lies in its ability to model non-linear relationships
in the time-series, which leads to a closer fit to the data than
the AR model.

In this paper, we implement a specialized ART (p, h)
model that uses recent p values of a variable for making h

interval ahead prediction. As our proposed models are also
based on similar regression tree concept requiring h interval
ahead prediction, the ART model provides a natural baseline
to compare our models’ performance with. However, it is to
be noted that while ART models uses a variable’s own recent
observations, our models only use other variables’ observations
to make predictions.

2) Evaluation Metrics: We used the Mean Absolute Per-
centage Error (MAPE) as the evaluation metric to compare
different models and strategies. It is defined as:

MAPE =
1

n

nX

i=1

|x
i

� x̂

i

|
x

i

where x

i

is the observed value and x̂

i

is the predicted
value. MAPE was chosen because it is a relative measure
and therefore scale-independent [3], which allows comparison
across different range of sensor readings.

C. Influence Variation

In this experiment, we calculated influence for all sensors
across all days. Figure 3(a) shows how influence varies for the
top 4 influencer sensors on different days. Given how influence
for individual sensors varies with time, we decided to re-
calculate influence for each day in our experiments, rather than
use a static value calculated over a large number of days. Next,
we examined how size of sensor readings affected its influence.
Figure 3(b) shows the distribution of influence for each sensor
with the size of sensor readings. It is interesting to note that
buildings with smaller consumption values are more numerous
and have higher influence. We also observe that influence for
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Fig. 3. Variance of Influence/dependency with (a) time, (b) size, and (c) distance: higher values observed for weekdays than for weekends.

weekdays is slightly higher than for weekdays, which could
be attributed to more activity of movement of people between
buildings on weekdays.

We also investigated how the dependencies (given by the
entries in the dependency matrix M) between sensors’ time
series output varied with the geographical distance between
them. In Figure 3(c), we plot average dependency with respect
to the distance between pairs of sensors. The results are
grouped by averages for each weekday. The distances are
binned into 6 bins of 0.3 km each. We observe decreasing
dependency as the distance between the sensors increases.
This result validates our assumption of greater dependency
among sensors located close to each other. In smart grid
case, this can be explained by the fact that there is greater
movement of people between neighboring buildings compared
to those farther apart, and hence more dependency among their
electricity consumption. Furthermore, there is more movement
on weekdays on campus than on weekends, hence we observe
that average dependency is higher for weekdays than for
weekends (Figure 3(c)).

D. Prediction Performance

In the first set of experiments, we use the influence model

for making predictions for different prediction horizons up to
8 hours ahead. Figure 4 shows the prediction errors of this
model, averaged over all days and for all sensors, with respect
to the baseline model. We observe that the baseline ART model
performs well up to 6 intervals (1.5 hour). We explain this
as an effect of the very-short-term prediction horizon, where
electricity consumption is not expected to drastically change
from its previous 4 values. Even though influence model does
not show clear advantage over the baseline for very-short-
term prediction, its accuracy increases with the prediction
horizon, where it consistently outperforms the baseline. Also,
its advantage becomes clear in light of the fact that it works
with only partially available recent values in real-time. Another
result to note here is that while increase in IM’s error with
increasing horizon is more subdued, ART’s error increases
rapidly with increasing horizon implying that the previous 4
values used as predictors at the time of prediction become
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Fig. 4. Performance of influence model (IM) with respect to baseline ART
model. For ART, recent values used as predictors at the time of prediction
become increasingly ineffective for longer horizons, when IM’s use of more
recent real-time values of other sensors become more useful predictors.

increasingly ineffective for predicting values beyond 1.5 hours
ahead in time. Here, more recent real-time values of other

sensors actually become more useful predictors than a sensor’s

own relatively older values. This is an important result and
main advantage of the influence model. Thus, when real-time
recent values are not available for a sensor, it uses recent real-
time values of other sensors that are identified by learning
dependencies among sensors on a similar day in past. In the
second set of experiments, we use the local influence model,
which instead of using all sensors as potential predictors,
considers real-time values from only top ⌧ influential sensors
for each sensor. We repeat experiments for ⌧ = 4, 8, 12, 16, 20
for same horizons as used earlier for IM and ART models. In
Figure 5(a), we show how the local influence models perform
with respect to IM and ART models. As mentioned earlier,
we observe ART performing well initially due to very short
prediction horizons, but its errors increase rapidly with increas-
ing horizon. The LIM models show performance comparable

to IM, while using real-time values from fewer sensors. As
expected, using increasingly fewer predictors increases the
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Fig. 5. Prediction performance of local influence model: (a) Variation in average MAPE for different models; and percentage change in MAPE with respect
to (b) IM and (c) ART. (Negative change implies increase in error.)
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Fig. 7. Prediction performance of global influence model: (a) Variation in average MAPE for different models; and percentage change in MAPE with respect
to (b) IM and (c) ART. (Negative change implies increase in error.)
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Fig. 6. Lift in MAPE across all horizons for local influence models with
respect to (a) IM and (b) ART. Positive lift is observed w.r.t. ART beyond
Top 8. (Positive lift indicates reduction in MAPE.)

prediction error for LIM models, but only slightly. Figure 5(b)
shows how LIM models’ performance deteriorates compared to
IM (in terms of percentage change) and how this gap decreases
with increasing horizon. This can be explained as the effect of
very few sensors remaining influential over longer horizons.
When averaged over all horizons, we observe 4.71% increase
in error compared to IM for Top 4 model which comes down
to 1.97% increase for Top 8 and less than 1% increase for Top
12, 16, and 20 models (Figure 6(a)). Similarly, we compare
performance change in LIM models with respect to ART model
in Figure 5(c). We observe that beyond 1-2 hour horizon, all
LIM models outperform the ART model, implying that recent

real-time values of a few influential sensors selected locally

for each sensor are far more effective as predictors than the

sensor’s own relatively older values. When averaged over all
horizons, we observe that for Top 4, there is an increase in
error by 2.24%, but for Top 8 (and Top 12, 16, 20), the
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Fig. 8. Lift in MAPE across all horizons for global influence models with
respect to (a) IM and (b) ART. Positive lift is observed w.r.t. ART beyond Top
12. (Positive lift indicates reduction in MAPE.) In (b) Only ⇠ 0.5% increase
in prediction error over ART is witnessed while using just top 8 (⇠ 7%) of
smart meters.

error actually decreases (Figure 6(b)) with respect to ART.
Thus, we conclude that for this dataset, we need at least 8
influential sensors for each sensor to improve performance over
the baseline model. In the third set of experiments, we use
the global influence model, which instead of using influential
sensors locally for each sensor, uses real-time values from only
top ⌧ influential sensors selected globally for all sensors. We
repeat experiments for ⌧ = 4, 8, 12, 16, 20 for same horizons
as used earlier for ART, IM and LIM models. Figure 7(a)
shows the performance of global influence models along with
that of IM and ART models. The GIM models outperform
the ART model beyond 8 intervals (2-hour horizon), however
as the number of predictors is reduced when moving from
Top 20 to Top 4 model, we observe that increase in errors is
more pronounced for GIM 7(a) than for LIM models 5(a) for
same number of predictors. While LIM used influential sensors

selected separately for each sensor, GIM uses the same set of

influential sensors for all sensors and still gives comparable

performance with only slight deterioration. Top 20 and Top 16
GIM models even outperform IM (Figure 7(b)) for 1 interval
ahead and later for 28 and 32 intervals. This could be due to
the large number (20 and 16) of predictors selected in these
models overlapping with those of IM models. This is further
supported by the average result over all horizons, where both
Top 20 and Top 16 models show less than 1% increase in
errors compared to IM (Figure 8(a)). We also observe that all
GIM models outperform ART beyond 12 intervals, i.e., 3 hour
horizon (Figure 7(c)) and require at least 12 influential sensors
to improve performance over the baseline across all horizons
(Figure 8(b)). Thus, by sacrificing a fraction of performance

accuracy, GIM is able to provide a practical solution using

real-time values from only a few global sensors.

Finally, in Figure 9, we compare average MAPE with
respect to compression ratio (Equation 3) to understand the
trade-off between prediction accuracy and compression for
different prediction horizons. For both LIM and GIM models,
we observe that except for very short prediction horizons (1
and 4 intervals), average MAPE either decreases or increases
by a very small fraction as compression is increased. This
demonstrates the usefulness of influence models which are able
to perform well even in absence of recent real-time data from
majority of sensors, while using real-time data from only a
very small subset of sensors.

VI. CONCLUSION AND FUTURE WORK

In this paper, we address the issue of data veracity in
big data applications that arises when real time data from all
sensors is not available at central nodes due to network latency
or faults, or when limited by consumers for security and
privacy reasons. Standard models for short term predictions
are either unable to predict or perform poorly when trying
to predict with partial data. We introduce novel influence

based models to make predictions in absence of real-time
data from majority of sensors using real-time data from only
a few influential sensors. Our experimental results on real
world data derived from the smart grid domain indicate that
the performance of our models is comparable to those of
baseline autoregressive tree model. In certain cases, they are
also able to add extra predictive accuracy. Thus, these models
provide a practical alternative to canonical methods for dealing
with missing real-time readings in sensor streams, which is
generalizable to big data applications in several domains, such
as in healthcare applications, environment monitoring, and in
smart urban infrastructure. These models provide a simple and
interpretable solution that is also easy to understand and apply
for domain experts.

Future extensions of this work require further investigation
into scenarios in which the different approaches discussed in
the paper are most effective, and the range of big data problems
for which they can be useful. Another direction of research is
towards a two stage process for influence discovery, guided by
some heuristics, to make the process more scalable. Further
research is also required to improve the performance of these
methods, possibly by performing a combination of local and
global selection of influential sensors.
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