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Abstract—Smart grids are becoming popular with the advent
of sophisticated smart meters. They allow utilities to optimize
energy consumption during peak hours by applying various
demand response techniques including voluntary curtailment,
direct control and price incentives. To sustain the curtailment
over long periods of time of up to several hours utilities need
to make fast and accurate consumption predictions on a large
set of customers based on a continuous flow of real time data
and huge historical data sets. Given the numerous consumption
patterns customers exhibit, different prediction methods need
to be used to reduce the prediction error. The straightforward
approach of testing each customer against every method is
unfeasible in this large volume and high velocity environment.
To this aim, we propose a neural network based approach
for automatically selecting the best prediction method per cus-
tomer by relying only on a small subset of customers. We also
introduce two historical averaging methods for consumption
prediction that take advantage of the variability of the data
and continuously update the results based on a sliding window
technique. We show that once trained, the proposed neural
network does not require frequent retraining, ensuring its
applicability in online scenarios such as the sustainable demand
response.

Keywords-smart grid; consumption prediction method; neu-
ral network;

I. INTRODUCTION

Recent technological advances have brought in house-
holds smart meters capable of bidirectional communication
and remote control. They are part of the emerging smart grid
which promises to optimize customer electricity consump-
tion through dynamic price incentives [1], voluntary partic-
ipation [2] or direct control [3] in a world in which energy
costs are constantly rising. This helps utility providers in-
crease the reliability of the power grid, while also benefiting
customers by reducing their energy related costs. Demand
Response (DR) [4] is a popular technique for consumption
curtailment during peak hours by employing one of the three
mentioned optimization techniques. Figure 1 shows a typical
DR architecture for consumption curtailment, where real-
time and historical consumption is used to predict future
consumption. To avoid exceeding generation capacity and
thus buying energy at high rates from the spot market a DR
event may be triggered when consumption is predicted to

Figure 1: Demand Response architecture.

raise above a certain threshold. Before DR can take place,
the potential for curtailment for each customer is analyzed
and a subset of customers is selected for participation.

To perform DR, providers need to take into consideration
several variables such as customer comfort, willingness to
participate, and achievable curtailment during the targeted
time interval. Personalized models tailored to the behavior
of each customer would be ideal for accurate prediction
of electricity consumption in real-time. The scale at which
energy consumption data from residential and commercial
customers have become available due to the pervasive
deployment of smart meters however prohibits so far the
development of such personalized solutions. Nonetheless,
near real-time1 (e.g., every 15 minutes) decision making is
a requirement for some applications such as sustaining a
target reduction throughout the duration of a DR event in
smart grids (i.e., sustainable DR).

In the past, several machine learning and data mining

1Being distributed environments, smart grids exhibit network latency
and processing delays. Hence real-time decision making in smart grids
is considered to be in the order of seconds and minutes not milli or
microseconds as in classic real-time computing. For this reason when
referring to real-time we actually mean near real-time throughout the paper.



approaches have been applied to energy consumption data
for prediction purposes. However, such approaches have
certain limitations when real-time computational guarantees
have to be met. In this paper we take a very pragmatic
approach by intensively studying a real-world, large-scale
and high resolution electricity consumption dataset, dis-
cussing the challenges associated with real-time predictions
and evaluating the limitations of existing approaches on
this task. In a real-world scenario, the rate at which smart
meters produce data varies according to the utility cyber-
infrastructure, ranging from seconds to several minutes. As
a result, large amounts of continuously flowing data (e.g., a
single month of 15-minute sampled electricity consumption
data results in ∼4 billion data points for Los Angeles
customers) need to be processed fast. Given the various
consumption patterns of individual customers as well as the
various methods used for prediction, more historical data
may be necessary for training highly accurate models. To
solve the volume and velocity aspect of this big data problem
there is a need for scalable and agile solutions that require
minimal training and that are capable of adapting to changes
in real-time.

Our previous studies [2] have shown that prediction
accuracy depends among others on costumer type. Since
no algorithm is universally better, an exhaustive search
among all possible available prediction methods is required
to minimize the prediction error. Given real-time constraints,
such a solution is unfeasible. The main challenge is therefore
to properly identify the best performing prediction model for
each individual customer in order to achieve good overall
prediction performance, while keeping complexity low for a
solution to have real-time applicability.

In this paper we address this issue by proposing an artifi-
cial neural network (ANN) based solution which achieves
over 84% accuracy in selecting the best electricity con-
sumption prediction method for each customer. To the
best of our knowledge this is the first attempt to provide
such an automated online method for accurate, real-time
prediction of a large number of time series with different
characteristics. Furthermore, to address the variability in
customer consumption which is difficult to predict with the
methods widely used by utility providers, we introduce two
historical averaging models that use a sliding window of
previous readings to forecast future electricity consumption
values. The advantage of our historical averaging methods
is their ability to provide accurate predictions with a low
computational complexity. For experiments we rely on a
representative real-life historical data set comprised of 190
industrial customers with consumption sampled at 15 minute
intervals. The data set contains a wide range of consump-
tion patterns as shown in Figure 2. Particularly, Figure 2
demonstrates few examples of electricity consumption (y-
axis) variability over time (x-axis) in our dataset.

The main contributions of this paper are as follows:

Figure 2: Electricity consumption (y-axis) as a function of
time (x-axis).

• We analyze low complexity prediction approaches that
are traditionally used by utilities on a real-world
dataset. We introduce two historical averaging methods
to further reduce dependencies on historical data, thus
minimizing complexity.

• We provide a detailed evaluation of our methods on a
real-world energy consumption dataset. We show that
our proposed methods achieve remarkable improve-
ments in terms of prediction accuracy as compared to
traditional energy consumption prediction approaches,
especially for customers exhibiting high variability con-
sumption patterns.

• We propose a neural network based method to predict
the best consumption prediction method given a small
subset of the total customer data set. We show that by
using simple information derived from the historical
time series we can achieve high accuracy without
having to retrain the network often. This makes our
method suited for near real time scenarios such as DR.

The rest of the paper is structured as follows: Section
II depicts some of the recent results in terms of consump-
tion prediction and analysis of different methods; Section
III presents four existing consumption prediction methods
as well as the two methods we propose, while Sect. IV
outlines the neural network method for prediction the best
consumption method. Experimental results are analyzed in
Sect. V. Finally conclusions and future work are presented
in Sect. VI.

II. RELATED WORK

Research on electricity demand forecasting considers
long-term and medium-term prediction for utility planning
and maintenance purposes, and short-term forecast for eco-
nomic scheduling [6]. As utilities move towards sustainable
DR, very short-term predictions are required for near real-
time control (e.g., predictions 1 hour ahead at 15 minute
granularity). Research on energy consumption prediction



can be divided into three groups [6]: simple averaging
models; statistical models (e.g., regression and time series);
and artificial intelligence (e.g., Artificial Neural Networks
(ANNs) and pattern matching [7]) approaches. Next, we
briefly discuss some recent results in this area.

Averaging models: Utilities and Independent Service
Operators (ISOs) use averaging models [8][9][10] based
on recent consumption [11], due to their simplicity. Such
models make predictions based on linear combinations of
consumption values from “similar” days. Some of these
methods used in practice are described in Sect. III.

Regression models: Regression models combine sev-
eral independent features to form a linear function. This
helps interpret the relationship between various factors more
easily. Our prior work [12] builds regression tree models
using weather and schedule data for energy prediction. It
evaluates the effect of different feature combinations on the
prediction accuracy.

Probabilistic linear regression and Gaussian process re-
gression models for predicting the total kWh consumption
as a function of building features, were proposed in [13]. A
hybrid method for probabilistic short term load prediction
was presented in [14], where a regression tree is used to
cluster similar data, and then, a relevance vector machine
is constructed for each cluster using Bayesian Inference.
Support Vector Machines (SVM) were used for load fore-
casting in [15]. An on-line least-square SVM based method
is introduced by Aung et al. [16]. In their small scale
evaluation (only 2 smart meters were used), they argue their
method outperforms the least-square SVM based method
introduced in [17].

A multiple linear regression model for load prediction,
where affecting factors are iteratively analyzed, was pre-
sented in [18]. A nonlinear and non-parametric regres-
sion model for next day half-hourly load prediction was
employed in [19] for stochastic planning and operations
decision making. The model contains a combination of max-
imum, minimum and average demand and temperature from
the last 1-hour, 24-hours, and 48-hours. Day of the week,
day of the year and holiday effects are also incorporated.

Time series: An overview of time series forecasting
approaches for electricity price prediction was presented
in [20]. In order to capture the market fundamentals at
multiple time granularities (e.g., short, medium, and long-
term), the price vector was split into components, which
can be separately solved on different time horizons. One
of the early reviews for time series based methods for load
forecasting was given in [21]. Later, a time series method for
short term load forecasting (few hours to few weeks ahead)
of hourly loads was proposed in [22]. A comparison of time
series methods for load forecasting with other methods was
presented in [23]. Seasonal time series were investigated in
[24].

Artificial Intelligence (AI) Approaches: Many common
AI techniques, such as ANNs, expert systems and pattern
matching techniques can be beneficial to demand forecasting
[25]. An overview of AI methods applied to short-term
electric load forecasting was provided in [26], [27]. Hourly
electricity consumption forecasting for day-ahead prediction
based on pattern sequence similarity was performed in [7].
An ensemble model based on this work, was later presented
in [28].

All aforementioned methods give accurate predictions in
specific scenarios regarding the consumption sampling gran-
ularity, consumption variation and number of used features.

Integrated software systems: Systems for analyzing,
understanding and predicting the consumption behavior of
customers have been proposed as well. In [29] a research
platform tailored for real-time predictive analytics in a cam-
pus microgrid is presented. In [30] a management system for
analyzing low latency time series analytics in smart cities is
presented.

The difficulty of efficiently selecting customers given the
large available pool smart grids operate has been addressed
in [31]. In fact a scalable selection procedure combined
with data analytics based on an approximate algorithm was
proposed to cope with data volume [31].

Classifying Consumption Prediction Methods: The fact
that the efficiency of prediction methods varies depending
on the consumption pattern has recently gained attention
[32]. In the paper the authors proposed a static sequence
of preselected methods for various day periods. The major
drawback of adopting such a static strategy is the inability
to adapt to changes. Our analysis of several consumption
datasets [2] including the 190 industrial customers (cf. Sect.
V and Fig. 2) has shown that consumption patterns do
change over time. As a result the approach we propose
in this paper to perform dynamic re-selection of prediction
methods when accuracy according to some performance
metric as described in Sect. V deteriorates beyond a specified
threshold.

III. CONSUMPTION PREDICTION METHODS

In this section we briefly present four prediction methods
used in our analysis and introduce two historical averaging
models. The four methods are used by various utilities in
US. While simple, they are preferred over more advanced
because of their low compute requirements and the intuitive
interpretation of their results.

ARIMA: Auto Regressive Integrated Moving-
Average [5]. The ARIMA model predicts future electricity
consumption values based on a linear combination of
previous, equally spaced univariate time series data. Its
advantage lies in the fact that it is simple to use, and that
it does not require knowledge of the underlying domain.
However, parameter estimation for ARIMA requires human
expertise to examine the partial correlogram of the time



series. ARIMA has been used to forecast real world time
series data such as stock [33] or fuel prices [34], as well
as electricity load [35]. In our experiments, ARIMA is
trained on a 9 week window of preceding data sampled at
15 minute intervals, to make predictions for the following
week.

NYISO: New York ISO [8]. This baseline is calculated
from previous five days with the highest average kWh value.
These days are chosen from a pool of ten previous days,
which are selected starting two days prior to the event
day, and excluding weekends, holidays, past DR event days
or days on which there was a sharp drop in the energy
consumption. In addition a day is included in the pool only
if the average consumption on that day is more than 25% of
the last selected day. The process repeats until all ten days
have been placed in the pool of days for baseline calculation.
Days are then ranked based on average hourly consumption
and five days with the highest value are selected. Finally,
the baseline is calculated by taking hourly averages across
these days. For baseline calculation on a DR event day,
a morning adjustment factor can also be calculated from
the two hour values prior to the DR event by comparing
calculated baseline consumption and actual measured data.
The value of this adjustment factor cannot be less than 0.8
or more than 1.2 [11].

CASCE: Southern California Edison ISO [10]. This
model estimates baseline consumption by averaging past
ten days. These days cannot include weekends, holidays
or past DR event days. Once ten days have been selected,
the baseline is calculated as their hourly average. similar
to NYISO, a morning adjustment factor is applied to the
calculated baseline.

CAISO: California ISO [9]. According to this model,
the baseline is the hourly average of three days with the
highest average consumption value among a pool of ten
selected previous days. Selected days cannot be weekends,
holidays, past DR event days. CAISO’s performance can be
considerably improved by introducing a morning adjustment
factor [11].

A. Online Sliding Window Consumption Prediction

Next, we detail an online consumption prediction method
that performs averaging on a sliding window of historical
data. Our hypothesis is that predictions can become faster
and more accurate by employing running historical average
values which are updated constantly with real-time data
when these become available. To achieve this, we blend
the averaging approach of ISO models with the moving
average of ARIMA. Particularly, our method constructs an
initial training matrix for the entire week made up of one
month 15 minute averages totaling 672 values for each
customer. Starting from Monday, we make one hour ahead
predictions for the upcoming Monday by using a moving
average technique. As the actual value for the predicted

interval becomes available, the training matrix entry for the
interval is updated by a weighted average as follows:

c̄t =

∑n
i=1 c

t
i

n
, (1)

where n the number of items in the sample and ci are weekly
measurements at the same time interval t. After the initial
c̄t values are computed for each customer, they need to be
updated when a new observation ctn+1 becomes available.
The updated average can be computed as:

ĉt =
c̄t ∗ n ∗ (1− w) + ctn+1 ∗ w

n + 1
, (2)

where w is some arbitrary weight. Selecting a weighting
strategy can be challenging and may require experimenta-
tion. For the purposes of this work, we experimented with
numerous weighting schemes. In the end we selected to
present two approaches that gave us the best prediction
accuracy. Particularly, we derive our conservative sliding
window (CSW) method by weighting new values by 20%
and our aggressive sliding window (ASW) method by
weighting new values by 50%. Our hypothesis is that CSW
captures strong correlations (if any) among consumption
values from one week to another. Contrary, ASW assumes
recent observations to offer higher predictive power when
the prediction horizon is short.

IV. PREDICTING THE BEST CONSUMPTION
FORECASTING METHOD

As explained in Sect. I the main issues that consumption
prediction faces in the context of smart grids are the large
historical data sets, continuous real-time data, and prediction
accuracy that depends on a combination of data set and
prediction method properties. In fact, we have shown in prior
work [2] that customer characteristics affect the prediction
accuracy of electricity forecasting models. Particularly, we
concluded in that study that no single model gives the
best performance in all cases and different models may
perform differently for different customers. To validate this
we conducted a pilot experiment to build an Oracle model
that picks the best performing model for each prediction
interval for each customer. The results (cf. Figure 7) show
an improvement as compared to individual prediction meth-
ods. However, training and predicting the consumption for
every customer across all available methods and picking the
method that gives the smallest error at each time interval is
computationally prohibitive and unfeasible for the real-time
demands of sustainable DR.

In this section we propose an ANN forecasting model
that selects for each customer the best prediction method to
use for future electricity consumption prediction among a
predefined set of forecasting models. Our ANN provides a
computationally efficient solution that intelligently combines



available models without violating the near real-time con-
straints imposed by the application. Specifically, we propose
a feed forward back propagation network [36] that takes as
input a vector of the daily consumption standard deviation
values for the past 24 days. By using the consumption
standard deviation as input to the network we want to capture
the variations in user consumption since these are the ones
that impact most the efficiency of the prediction methods as
shown in our recent study [2]. Our experimental analysis (cf.
Sect. V) suggests that our selection results in high prediction
accuracy. During training, the ANN learns by comparing the
estimated best method to the known actual best method for
each customer. The error is fed back to the ANN and is
used to adjust the inferred weights in the hidden layers so
that the learned output matches the correct output as best as
possible.

Figure 3 depicts the architecture behind the neural net-
work method. The training set consists of a randomly picked
subset of customers with consumption data for a given
historical interval. On this dataset we first run an Oracle
method which provides the prediction method with the
smallest prediction error for each customer. Once the oracle
finishes we feed as training set to the network the standard
deviation of each customer together with the best method
for that customer. After training is over we predict the best
method for the remaining customers and periodically check
whether or not the accuracy of the selected method decreased
below a user defined threshold. If so, the network is retrained
using the same random customer data set with updated
consumption values for the recent past. From our initial
experiments (cf. Sect. V) we observed that a random sample
is as good as any other customer selection approach in terms
of achieved accuracy. In future work, we plan to perform a
careful study regarding the customer sample selection and
its effect on overall accuracy.

V. EXPERIMENTS

We have tested the efficiency of our approach on a real-
world dataset consisting of 190 industrial customers from
the LA area, each with 9 weeks of 96 daily consumption
values, totaling 1,149,120 data points. Consumption data
was recorded between May 31, 2012 and June 1, 2013.
Figure 4 depicts the daily consumption values (y-axis) for
each customer (x-axis) sorted by mean consumption, while
Fig. 5 shows the daily consumption standard deviation
values (y-axis) of each customer (x-axis). As it can be seen,
approximately 1/3 of the customers demonstrate relatively
stable consumption, while about 10% exhibit high variabil-
ity.

To validate our ANN we used a three fold cross valida-
tion for training and testing. Particularly, a random subset
containing 1/3 of the customers is used for training, and
the rest for testing. We implemented our backpropagation
network in R using the neuralnet package. The number of

Figure 4: Consumption kWh.

Figure 5: Consumption standard deviation.

hidden neurons was set to 70 and the threshold value for the
stopping criterion was set to 0.01.

The performance metric we used to quantify accuracy
in the task of electricity consumption prediction is Mean
Absolute Percentage Error (MAPE):

MAPE =

(
1

n

n∑
i=1

∣∣∣∣ai − fi
ai

∣∣∣∣
)
∗ 100, (3)

where ai and fi represent the actual and predicted values
respectively, and n is the number of predictions. MAPE is a
widely used metric in smart grids for determining prediction
accuracy.

We compared the prediction accuracy of our neural net-
work with the values given by the Oracle method. Based on
the results we have also analyzed which of the 6 methods
is the most resilient, i.e., the most versatile to variability in
consumption values.

A. Experimental Results

Figure 6 shows the CDF of the MAPE values for all
methods. Besides the Oracle method which always produces
the best results, we also plot a random selection method
according to which the “best” method is selected at random.
Clearly, the neural network, which employs a combination
of forecasting methods, achieves the best results, i.e., closest



Figure 3: Architecture of the neural network method.

to the Oracle. Specifically, the neural network is able to
predict the best method for each customer with an accuracy
ranging from 0.8412 to 0.9448 for the three folds. The high
accuracy is corroborated by the overall deviation from the
best MAPE value, which we calculated to be -0.0318. We
define deviation from the best MAPE value as follows:

MAPEpredictedMethod −MAPEbestMethod

MAPEbestMethod
(4)

The small deviation from the best MAPE value, combined
with the large prediction window of one week for which
it was achieved, leads us to conjecture that our proposed
method is suitable for online scenarios where frequent
retraining is not desirable.

Among individual forecasting methods, we found NYISO
to be the worst, and our ASW to be the best. For almost
40% of the customers (customers exhibiting small variations
in consumption as shown in Figures 4 and 5) however all
methods produce comparable MAPE values. Evidently, each
forecasting method is individually performing worse than the
ANN approach, thus confirming empirically that the “sum
is greater than its parts”. Figure 7 shows the percent of
times each method is the best versus the percent of times
it is selected by the neural network. It can be seen that
the dominant method is the aggressive sliding window with
45.79% of the time being the best. This points to the fact that
giving a considerable weight to the latest values maximizes
the accuracy and exceeds even that of ARIMA (32.11%).
Surprisingly, the conservative method is outperformed by
the rest of the baselines, even though Fig. 7 suggests that
it is performing better in some cases than NYISO and

Figure 6: CDF of the MAPE values for all methods.

CASCE. Even though the observation is valid, CSW is
always outperformed by some other method. We therefore
conclude that weekly patterns are not strong in our dataset.
Out of the ISO models, CASCE was dominant with 14.74%
MAPE, whereas NYISO was the method which produced
the fewest best MAPE values. This suggests that averages
of consumption values for past similar days results in more
accurate forecasts than averaging over high consumption



Figure 7: Accuracy of the neural network compared to the
oracle.

values.
While our neural network achieves good results overall,

it can also result in false positives. For example, as Fig.
7 shows, 3.68% of the time some other model is picked
up instead of the ASW method. The confusion between
ASW and other models may be an artifact of customer
characteristics. Even though the impact on accuracy is small
for this dataset, further examination is required to optimize
performance.

Execution times2. We have compared the time needed
to run the Oracle method against the time needed to train
our neural network and make predictions. The main disad-
vantage of the Oracle is that it needs to run all methods
for all customers in order to determine the best method
per customer at each point in time. For our dataset this
process takes about 170 minutes, which is too long for
any near real-time decisions. In contrast the neural network
takes 8 minutes to train and less than one second to
predict on a subset of 60 customers. Compiling a training
set for the ANN includes identifying the best method for
each customer in the training data. In our experiments
we measured this overhead to be ∼62 minutes. Figure 8
shows the results. Despite the substantial overhead, given
the real-time requirements, we emphasize that the combined
cost for running the Oracle on the subset and the training
of the ANN is incurred infrequently as demonstrated by
the small deviation from the best MAPE value for the
one week ahead prediction. Nevertheless, to avoid affecting
performance, retraining can be performed asynchronously
once deterioration becomes substantial. The small prediction
type of under a second makes it ideal for real-time use
cases such as sustainable DR as compared to the Oracle
method. Even though parallelizing the entire Oracle process
by having one process per customer would ideally lead to
a duration of ∼54 seconds per customer this would still be

2All experiments were performed on a commodity laptop.

Figure 8: Execution times of the oracle method vs. the neural
network.

much longer than the time needed by the ANN to predict
once trained.

VI. CONCLUSION

In this work we presented an efficient ANN based method
for selecting the best consumption method in smart grids.
Our method is suited for such environments where no single
prediction method can be used due to different patterns in the
time series. In the smart grid context, this is due to various
consumption patterns among customers being detected. Our
proposed ANN , including training and running the Oracle
on the train dataset) is more than three times faster than the
Oracle, which even though can result in better predictions is
computationally prohibitive. We argued that our approach is
applicable to online scenarios, such as sustaining consump-
tion curtailment in smart grids during DR. To further reduce
prediction error induced by traditional methods in use by
utilities we introduced an online historical averaging method
with different weighting schemes. We analyzed its efficiency
with respect to the number of times it outperformed other
methods in the task of energy consumption forecasting. In
future work we plan to investigate the impact of customer
sample selection as well as training dataset size on prediction
error. We further plan to explore how to incrementally update
the ANN without retraining it from scratch when required.
Last but not the least, we intend to establish a mechanism
which will keep track of prediction error and automatically
identify the quickest point in time a retraining will be
mandatory.
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