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Abstract—The pervasive deployment of advanced sensing in-
frastructure in Cyber-Physical systems, such as the Smart Grid,
has resulted in an unprecedented data explosion. Such data
exhibit both large volumes and high velocity characteristics,
two of the three pillars of Big Data, and have a time-series
notion as datasets in this context typically consist of successive
measurements made over a time interval. Time-series data
can be valuable for data mining and analytics tasks such as
identifying the “right” customers among a diverse population,
to target for Demand Response programs. However, time series
are challenging to mine due to their high dimensionality. In
this paper, we motivate this problem using a real application
from the smart grid domain. We explore novel representations
of time-series data for BigData analytics, and propose a
clustering technique for determining natural segmentation of
customers and identification of temporal consumption patterns.
Our method is generizable to large-scale, real-world scenarios,
without making any assumptions about the data. We evaluate
our technique using real datasets from smart meters, totaling
∼ 18, 200, 000 data points, and show the efficacy of our
technique in efficiency detecting the number of optimal number
of clusters.

Keywords-demand response; pattern mining; time-series;
cyber-physical systems

I. INTRODUCTION

The ubiquitous deployment of Advanced Metering In-
frastructure (AMI) by utilities have enabled electricity
usage sensing and bi-directional communication between
consumers and electric utilities [1]. This provides ample
opportunities to efficiently deal with peak demands, and
reduce energy consumption during peak demand periods
using pricing incentives as in Demand Response (DR) pro-
grams [2], [3]. The growing availability of high resolution,
high-dimensional electricity consumption data offers unique
opportunities in developing forecasting models [4], [5], but
has also offered a data goldmine for data analytics which
are crucial in helping consumers understand their electricity
consumption footprints and utilities unlock the potential ben-
efits of investing into smart meters by unraveling customer
behavior in fine granularities. As customers usage varies
widely based on their needs, defining and describing subsets
of customers whose usage patterns are in some way similar
from sensed data is of paramount importance to Smart Grid
applications [2].

Analysis of energy meter data has received wide atten-
tion recently [5], [6]. Energy consumption recorded at fine
granularity and the use of two-way communication between
smart meters and utilities has enabled applications such as
DR [7], [8], customer segmentation [9], [5], [10], consumer
behavior prediction [9], energy consumption estimation from
customer characteristics [5], customer preferences and socio-
economic characteristics derivation [11], and detection of
consumption anomalies [12], [13]. Principal component
analysis (PCA) has been extensively used in the literature
to discover correlations with consumption data [14] and for
variable selection among a large set of predictors [15], as
well as to predict electricity consumption [16], [17].

In this work, we focus on uncovering patterns from large-
scale AMI data over a large population and across various
temporal granoularities. Intuitively, energy consumption is
expected to be periodic, as it is governed by human activities
which usually follow some schedule (e.g., daily or weekly).
For example, a person is very likely to be at the same
place on Monday mornings, and therefore it is also likely
that an emerging behavior can be recorded; in this case
the kwh of a building will be similar on Monday mornings
even if occupied by multiple tenants or hosts hundreds of
office spaces. However, usage is likely to differ by few
half hours earlier or later due to natural irregularities in
behavior (e.g., someone returned home at 6:30 p.m. instead
of 6 p.m.). So how does a utility go about uncovering such
patterns for hundreds of thousands or millions of customers
automatically? To address this question, we use PCA to
uncover (i) temporal patterns between consumption values
for each customer individually, and (ii) spatial patterns, i.e.,
patterns common to several customers. We propose new
representations of time-series data to mine such patterns
across various temporal granularities. To the best of our
knowledge, we are the first to address the challenge of auto-
matic discovery of patterns from large-scale AMI data over
a large population and across various temporal granularities.

The remainder of this paper is organized as follows. In
Section II, we describe electricity consumption data repre-
sentations to uncover implicit patterns from a large-scale
real-world corpus. In Section III, we analyze consumption
patterns and motivate the need for a dimensionality reduction
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Figure 1: Matrix representation of 15-minute energy consumption data.

technique. In Section IV, we conduct cluster analysis in the
principal component space, and present a detailed analysis
on the results in Section V. We conclude in Section VI.

II. ENERGY CONSUMPTION DATA

Smart Grids are facing a data explosion, with millions
of customers getting upgraded to smart meters and power
utilities contending with over 100 energy consumption data
points per customer, per day, sampled every 15-mins that
they need to analyze and use for intelligent grid operations
[2], [3], [9], [10]. Insights from smart meter data enable util-
ities to maintain efficient and reliable grid operations, while
also allowing consumers to use energy more effectively.
However, statistical techniques for analyzing electricity con-
sumption data may yield different results when applied at
different granularities. Next we discuss two dimensions for
which the level of resolution is important:

• Temporal: Appropriate “arrangement” (e.g., daily,
weekly or monthly) of fine-grained 15-minute data
(similarly hourly or daily data) can capture different
patterns due to lifestyle, environmental, structural, and
customer features.

• Spacial: Different consumption trends can be identified
when analyzing data at the fine-grained household level
or at the aggregated feeder level.

Thus, a set of questions arises: What is a good represen-
tation for energy consumption data? What kind of patterns
should one expect to emerge out of a corpus of energy
consumption data depending on data representation? Next,
we set forth to answer such questions.

A. Stashing Consumption Data

We consider a daily observation of 15-minute energy
consumption data Ec = [e1, . . . , e96], where ecj is the energy
consumed by customer c in the jth 15-minute interval of the
day. We begin by arranging daily observations into a matrix
Ec per customer c (Figure 1a), such that rows represent days
in a year and columns represent 15-minute intervals of the

day when energy consumption values were recorded1. In this
case, the size of each matrix Ec is 365 × 96. We use this
representation to study daily patterns per building, as well
as to examine temporal variations in demand.

Next, we form a matrix of aggregate yearly2 observations
from all customers c ∈ [1, N ] for a specific day of the week
(e.g., Monday). It follows that matrix Ed, where d ∈ [1, 7]
denotes the day of the week, consists of rows which rep-
resent daily observations obtained for each customer c as
shown in Figure 1b. In this case, the size of each matrix
Ed is 52 × N × 96. We use this representation to study
variations in electricity demand over time (for the same day
of the week) per customer and also to identify similarities
(for the same day of the week) between customers.

The aforementioned matrix representations constitute fine-
grained consumption data stashing strategies. For coarser
representations we considered averaging energy consump-
tion values row- or column- wise. For simplicity, we present
here a representation according to which the contents of
the matrix are obtained by considering the mean of energy
consumption values for each day of the week accordingly
at a specific 15-minute interval over the period of a day.
Following, the notation used for the representation discussed
in Figure 1b, we obtain that êdcj =

1
|D|

∑|D|−1
k=1 ed(N(k−1)+c)j

for day d, customer c, |D| number of distinct d days (e.g.,
number of Mondays) over the course of a year, and jth 15-
minute interval of the day. In this case, the size of each ma-
trix Êd is N×96. We use this representation to study coarse-
grain similarities in behavior between customers as well as
statistically understand how their consumption changes on
average by the day of the week.

B. Data Set

The dataset used in this study was obtained from the
University of Southern California campus microgrid3. The

1We also considered a representation where rows represent weeks in a
year and columns represent energy consumption values over a week period.

2We also experimented with semester-based segmentations.
3The dataset is available upon request for academic use from the USC

Facility Management Services (FMS).
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Figure 2: Smart meter data for an individual building measured over five years.

(a) Building 54 (b) Building 68 (c) Building 106

Figure 3: Smart meter data for three buildings of different functions measured over a period of one year.

dataset comprises of a collection of observed electricity
consumption values (measured in kWh at every 15 minutes)
from 115 buildings, collected over a period of five years
(January 1, 2009 to December 30, 2013), totaling 18,127,680
data points across all smart meters. The dataset contains a di-
verse set of building types: academic buildings with teaching
and office space, residential dormitories, and administrative
buildings. Building names have been obfuscated for privacy.

Figure 2 shows smart meter data for a specific building
measured over five years. The x-axes represents the days
of year, the y-axes denotes interval of the day, and the z-
axes shows energy consumption. This visualization corre-
sponds to the matrix representation of customer-wise 15-
minute energy consumption data presented in Section II-A
(see Figure 1a). Our assumption is that by grouping daily
observations together (i) daily patterns can be observed, (ii)
the persistence or sift of such patterns over the course of a
month, semester, or year can be studied, (iii) consumption
can be compared over the years.

Despite some variability, Figure 2 demonstrates a distin-
guishable pattern that persists across days and also across the
years: consumption increases during the course of a day and
peaks around the 60-th time slot (∼ 3pm). Periods of reduced
consumption (e.g., during Spring 2013) compared to the
average behavior, or inversely, increased consumption (e.g.,
during Summer 2012) can also be identified. Continuing our
analysis, we present daily consumption observations over a
course of a year for three buildings of different types in
Figure 3. From Figure 3, it can is seen that the electricity
consumption of building 54 drops significantly during sum-
mer. Instead, building 68 demonstrates a considerably stable

consumption pattern throughout the year, whereas, building
106 exhibits a different consumption pattern with its peak
consumption period being in the evening and late at night.

Visualizing the high resolution historical data confirms our
hypothesis that valuable behavioral patterns can be mined
and their evolution can been tracked over time to understand
shifts in behavior, lifestyle or other customer characteristics.
It also motivates the need for an automated, principled way
to perform such analysis.

III. CONSUMPTION PATTERNS MINING

A. Principal Component Analysis

Given many vectors in a D-dimentional space, how can
we visualize them when dimentionality D is high? More
importantly, is it possible to group high resolution electricity
consumption data acquired over a number of years for a large
number of customers efficiently? We argue here that even
though clustering methods can be directly applied to raw
electricity consumption data, this is inefficient as it requires
storage and processing of high dimensional and high volume
data. Hence, it would be beneficial to cluster consumption
data in a space of reduced dimension. To address this gap
we apply Principal Component Analysis (PCA) [18] on our
large-scale, real-world dataset using the representations in
Section II-A. Our goal is to express electricity consumption
data in a way that enables the identification of tacit patterns,
highlights their similarities and magnifies their differences.
As a side effect, we use PCA for data compression.

PCA uses an orthogonal transformation to convert a set
of observations of possibly correlated variables into a set
of values of linearly uncorrelated variables called principal
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Figure 4: PCA on energy consumption data in matrix format (see Figure 1a) per building, over a period of three years.
Color scheme (better seen in color): Monday, Tueday,Wednesday, Thursday, Friday, Saturday, Sunday.

components. Particularly, PCA transforms the data to a new
coordinate system such that the first principal component
accounts for as much of the variability in the data as
possible, and each succeeding component in turn has the
highest variance possible under the constraint that it is
uncorrelated with the preceding components.

We experimented with the various representations detailed
in Section II-A. We discuss our findings next.

Our first experiment involved performing PCA on each
matrix formed for each building where rows represent days
and columns time of the day (see Figure 1a). Figure 4 shows
the results plotted on the first two principal components for
a Building 1 for three years (due to space limitations). Data
points are colored to indicate days of the week so as identify
underlying patterns across days. Since no distinct cluster
formation is observable, Figure 4 supports our assumption
that energy consumption values across days are similar and
do not vary significantly. We do notice a distinct separation
between weekdays and weekends however; this means that
energy consumption follows very different consumption
patterns during the week and weekends. Intuitively, this
makes sense for a campus building which thrives with
students during the week but has limited activity during
the weekend. The differentiation between weekdays and
weekends is consistent across the year.

Next, we performed PCA on each matrix formed for each
day of the week for all buildings in our dataset simultane-
ously (see Figure 1b). Figures 5, 6, and 7 summarize the
results plotted on the first two principal components for each
day, for all buildings, for year 2012. Due to space limitations
we refrain from presenting results for all years and also
for other principal components4. Our findings are consistent
for all five years in our dataset however, hence we assume
them to be robust. Data points represent daily observation
vectors across the two main components and are colored to
distinguish between buildings.

Our goal is to uncover patterns (i) across days for each
building, and (ii) between buildings for a day of the week.
Figures 5, 6, and 7 demonstrate two interesting patterns in
our dataset. First, the electricity consumption values for any

4We found that the first two principal components account for 90% of
the data variability.

given building form a very well formed group, suggesting
that the energy consumption needs remain similar across a
semester (e.g. Spring) for a given day of the week (e.g. every
Monday). The same result can be verified for the course of
the year by comparing the data point clouds corresponding
to individual buildings for Spring, Summer, and Fall for the
same day as in Figure 8. Furthermore, a observable variation
between the energy needs of buildings during weekdays and
weekends can be observed, further validating our discussion
around Figure 4.

Figures 5, 6, and 7 also expose similarities in consumption
between buildings; this means that buildings that naturally
cluster together in the first two principal components share
similarities on certain levels. For example, buildings with
same function type (such as classrooms, office buildings, or
dormitories) are expected to follow similar schedules in an
academic environment thus exhibiting similar characteristics
in their consumption. Lifestyle, appliances or other house-
hold characteristics can thus be predicted by consumption
data [9] as inferred by clustering consumption time series
on an appropriately transformed space.

We conjecture that PCA of appropriately organized data
exposes hidden trails in electricity consumption data which
would remain hidden and therefore unexploited otherwise.
Moreover, instead of relying on 96 dimensions for our anal-
ysis, four dimensions (actually two principal components
provide an adequately good approximation) are sufficient for
describing 95.83 % of the data (97.9 % of the variance lies in
the first two principal components) and the implicit patterns
in it resulting into 95, 8% compression (i.e., 4 instead of 96
dimensions).

IV. CLUSTERING OF CONSUMPTION PATTERNS

In Section III we manually annotated Figure 7a to high-
light major clusters. We argued there that a distinct sep-
aration between such clouds can be observed indicating
different consumption patterns among buildings but also
similarities between (i) the consumption characteristics of
a given building for various instances of the same day of
the week (e.g., Monday), and (ii) between daily observation
vectors of different buildings. In this section, we propose
to automate this tedious and laborious process using clus-
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Figure 5: PCA on energy consumption data stashed for each day-of-the-week (see Figure 1b) for Spring semester of 2012.

(a) Monday (b) Tuesday (c) Wednesday

(d) Thursday (e) Friday (f) Saturday

Figure 6: PCA on energy consumption data stashed for each day-of-the-week (see Figure 1b) for Summer semester of 2012.
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Figure 7: PCA on energy consumption data stashed for each day-of-the-week (see Figure 1b) for Fall semester of 2012.

(a) Spring (b) Summer (c) Fall

Figure 8: PCA on Sunday energy consumption data (see Figure 1b) for Fall semester of 2012.

ter analysis to identify buildings with similar consumption
characteristics.

Clustering electricity consumption data in K groups such
that the demand curves of the days belonging to a cluster
are similar among them and dissimilar to the curves of those
days belonging to other clusters according to some distance
is challenging for numerous reasons. First, there is a great
number of distance metrics that can be considered. Second,
the number of possible patterns is unbounded. Third, we
argued in Section II-A that multiple levels of granularity
and representation may result in different clustering config-
urations and a plethora of interpretations. To address these

challenges we venture to address the questions of which
clustering technique should be chosen, how many clusters
should be created by considering a variety of clustering
methods.

A. Clustering Methods

1) K-means Clustering: K-means [19] partitions N ob-
servations into k disjoint subsets such that the intra-cluster
distance between observations belonging to a cluster and the
point designated as cluster centroid is minimized. Specifi-
cally, K-means partitions the data space into Voronoi cells
such that the distance between a data point and the geometric



center of its Voronoi cell is lees than the distance to the
centers of other cells [5]. Euclidean distance is used as the
distance metric, and variance as a measure of cluster scatter.
K-means is a greedy algorithm and as such its performance
depends on the appropriate selection of the initial cluster
centers [20]. A proper number of clusters K is also hard to
be determined beforehand; setting K to some value without
proper reasoning is not appropriate.

2) Hierarchical Clustering: Hierarchical Clustering [21]
is typically used to build a binary tree representation of a
dataset by successively merging similar groups of obser-
vations without requiring a predetermined number of clus-
ters. There are two approaches for hierarchical clustering:
agglomerative and divisive. The agglomerative hierarchical
clustering, which we use here, recursively combines clusters
until a single data point remains.

3) Hausdorff-based K-medoids Clustering: K-medoids
[22] is similar to K-means, but K-medoids is more robust to
noise and outliers as compared to K-means due to the fact
that it minimizes the sum of pairwise dissimilarities instead
of a sum of squared Euclidean distances. In contrast to K-
means, a medoid is chosen as the representative item for
each cluster at each iteration by identifying an observation
within the cluster that minimizes the sum of distances to all
other objects in the cluster.

To avoid clustering individual consumption values for
each customer for individual time slots, we propose a
modified K-medoids algorithm based on Hausdorff distance
[23]. Our proposed algorithm proceeds as the standard K-
medoids algorithm except for evaluating the cluster centroids
differently. Specifically, instead of considering the distance
matrix that K-medoids employs, we instead consider the
absolute distance values between electricity consumption
observations as computed by the Hausdorff distance.

Hausdorff distance: Hausdorff distance [23] measures
how far two subsets are from each other; two sets are close if
every point of either set is close to some point of the other
set. Let A = {a1, a2, . . . , am} and B = b1, b2, . . . , bn be
two non-empty subsets of a metric space. Their Hausdorff
distance dH(A,B) is calculated by computing the shortest
distance between each feature ai in set A with respect
to features in set B, and then maintain the largest value.
In other words, Hausdorff distance is the greatest of all
distances from a point a in one set to the closest point b
in the other set. Formally,

dH(A,B) = max{ sup
a∈A

inf
b∈B

d(a, b), sup
b∈B

inf
a∈B

d(a, b) }, (1)

where sup represents the supremum and inf the infimum.
As it stands, dH(A,B) is not always symmetric. Therefore,
we consider the Hausdorff distance to be: dH(A,B) =
max{dH(A,B), d(B,A)}5.

5We also experimented with the mean of the minimum pairwise distances
between data points of two subsets.

B. Voronoi Decomposition

Voronoi Decomposition [24] is used to partition a space
into regions based on distance from a set of points (often
referred to as seeds) which is specified beforehand. For each
such seed there is a corresponding region, called Voronoi
cell, consisting of all points closer to that seed than to
any other. The Voronoi decomposition is dual to Delaunay
triangulation according to which three nearest data points
are computed and triangles are formed iteratively. Voronoi
decomposition tries to maximize the minimum angle in
the triangles formed. A circumcircle is drawn for each
triangle. The circumcenter may or may not lie in interior
of a triangle. Circumcenters lying in adjacent triangles are
connected using line segment. Such line segments form
a closed region called Voronoi Region. A 2-D Delaunay
triangulation ensures that the circumcircle associated with
each triangle contains no other point in its interior. This
definition extends naturally to higher dimensions.

We are particularly emphasizing on the use of Voronoi
Decomposition as we found it very efficient in the task of
detecting outliers. Intuitively, the presence of outliers can be
visualized using Voronoi diagrams. More importantly, outlier
detection can be automated by identifying large and perhaps
unbounded regions in the Voronoi Decomposition. This is
in turn useful for data denoising, which can be applied as a
pre-processing step before time-series clustering.

C. Optimal Number of Clusters

The most challenging problem of clustering has invariably
been to select the right number of clusters [20], [5]. When
ground trough is unavailable then the best number of clusters
is impossible to find. For these reasons, we apply three
indices to determine the optimal number of clusters in a
clustering configuration task and also evaluate cluster valid-
ity, instead of using an arbitrary a-priori number of clusters
K. We detail these indices in the following paragraphs.

Dunn Index (DI): Despite the plethora of cluster valid-
ity indexes, we select Dunns Index [20] as a standard metric
for cluster evaluation when ground trough is unavailable.
Dunn Index, an internal evaluation scheme (i.e., the result
is based on the clustered data itself), evaluates clusters
based on two criteria: (i) minimum intra-cluster distance and
(ii) maximum inter-cluster distance. For a given clustering
assignment, a higher Dunn index indicates better clustering.

We first derive the minimum distance between
points of different clusters: dmin = mink 6=k′ dkk′ =
mini∈Ikj∈Ik′ ‖Mk

i − Mk′

j ‖, where M1, . . . ,Mn are the
data points to be clustered, and dkk′ is the distance
between clusters Ck and Ck′ as measured by the distance
between their closest points. For each cluster Ck,
we further compute the largest within-cluster distance
dmax = max1≤k≤K Dk = maxi 6=j∈Ik ‖Mk

i − Mk′

j ‖,
where Dk is cluster’s k diameter, i.e., the largest distance



separating two distinct points in the cluster. The Dunn
index is then calculated as the quotient of dmin and dmax.

Calinski Harabasz Index (CHI): Calinski Harabasz
index [20] measures data variance by considering between-
cluster (SSB) and within-cluster variance (SSW). The opti-
mal number of K is obtained when the value of CHI(K) is

maximized. Formally, CHI(K) =

∑K

i=1
ni‖m−mi‖2∑K

i=1

∑
x∈ci

‖x−mi‖2
×

(N−K)
K−1 , where SSB =

∑K
i=1 ni‖m−mi‖2 is the overall

between-cluster variance, overall within-cluster variance is
denoted by SSW =

∑K
i=1

∑
x∈ci ‖x−mi‖2, N is the

number of observations, K is the number of clusters, ci
is the ith cluster, mi is the centroid of cluster i, m is the
overall mean of the sample data, x is a data point, and ‖ · ‖
denotes the l2-norm.

Energy Variance Index (EVI): We introduce a domain
specific metric for cluster evaluation that measures vari-
ability in energy consumption values between observations
belonging to same cluster. Intuitively, daily observation
vectors should end up in the same cluster for low variable
customers. Similarly, customers with similar consumption
patters might be grouped together. By considering the energy
difference between instances belonging to the same cluster,
we can avoid grouping together customers that have similar
consumption patterns but different magnitude scales. For
example, two customers that exhibit the same observed
pattern (e.g. mid-afternoon peak consumption) with one
being ten times the magnitude of the other (e.g., a com-
mercial and a residential customer) might have identical
consumption behavior, but entail very different treatment
by utilities for DR purposes. Utility would save time and
money by focusing their efforts on customers who are not
only positioned to reduce peak load when needed most (e.g.,
during mid-afternoon), but also by identifying customers
with the highest potential impact in consumption shedding
(i.e., large commercial entities instead of residential loads).
Specifically, we compute EVI(K) as follows:
• Step 1: Cluster the electricity demand dataset using one

of the methods described in Section IV-A
• Step 2: Identify data points belonging to clusters
• Step 3: For each cluster, formulate an energy difference

matrix where (a, b) represents absolute difference in
energy from data point a to data point b.

• Step 4: Compute sum of upper triangle in the matrix.
If point (a, b) has been considered for evaluation, (b, a)
is excluded to avoid redundant calculations.

• Step 5: Repeat Step 2 and Step 3 for all clusters.
• Step 6: Compute the intra-cluster sum of absolute

energy differences.

V. EVALUATION

In this section we discuss the clustering performance of
the methods presented in Section IV-A. All experiments
were carried out on a 64-bit Windows PC with 6 GB RAM,

2.5 GHz i5 processor. We used the indices from Section
IV-C to access clustering validity and evaluate the optimal
number of clusters in each case.

Next, we discuss the results we obtained for Monday,
Spring semester in 2012. Although we performed exper-
iments for each day of the week, for each of the three
semesters, for all five years in our dataset, we refrain
from presenting these results here due to space limitations.
However, we note that our observations are consistent across
experiments, hence we believe our conclusions to be robust.
Figure 9 shows the results for K-means, Hausdorff-based
K-medoids, and Voronoi Decomposition.

Figure 9 shows that points belonging to one building may
be distributed to different clusters according to K-means,
which ignores the fact that data points are correlated since
they come from the same building, although from different
instances for the same day of the week. Further, different
K values may yield different results, whereas choosing an
optimal seed set to initialize the algorithm is challenging.
We leave this interesting research directions as future work.

To avoid clustering individual daily consumption ob-
servations for a given building, which can in turn result
in a building participating in numerous clusters, we used
the Hausdorff-based K-medoids algorithm to determine one
point per building instead. We found the two variations we
considered6 to produce similar results.

We used agglomerative hierarchical clustering and the
voronoi decomposition to empirically evaluate the clustering
results. The agglomerative approach makes sense because
unification of buildings into a cluster leads to a tree structure,
the height of which can be controlled based on a variety of
features (e.g., spatial distance). We further used the Voronoi
decomposition as an effective way to identify outliers, which
form open regions that cover more area than the norm. In
addition to visual inspection, we performed validity analysis
using the various indices discussed in section IV-C. Figure
10 shows the results. The optimal number of clusters is 6
according to DI (if we exclude 1 as the trivial solution), and
4 as per EVI. This agrees with the observed 6 well formed
clusters in Figure 9b for Hausdorff distance K-medoids).
Instead, according to CHI the optimal choice of k is 25.

As there is no ground truth available for this dataset,
we can only speculate about the results. Intuitively, naively
applying k-means to the observation vectors does not lever-
age the fact that consumption observations for a building
are correlated. Instead, the Hausdorff-based K-medoids is
capable of identifying good clusters of similar buildings
by operating on sets of observations and their respective
distances rather than considering individual points. EVI is
also useful to consider in this context as another measure
of clutering validity, especially when the variability in the

6Based on Equation 1 or the mean distance to calculate the distance
matrix (see Section IV-A3).



(a) K-means (b) K-medoids (c) Hierarchical Clustering (d) Voronoi

Figure 9: Clustering Results obtained from the methods described in Section IV-A.

(a) Dunn Index (b) Calinski Harabasz Index (c) Energy variance Index

Figure 10: Comparison of Clustering Results obtained from K-means using different cluster validity indices.

scale of energy consumption of consumers being grouped
together. A methodology to efficiently divide the consumer
base into appropriate bins using EVI is an interesting direc-
tion which we intent to explore in future work.

VI. CONCLUSIONS

We explored temporal patterns arising in electricity con-
sumption time-series data using a real-world, large-scale
dataset. We motivated the need for alternate representations
of electricity consumption data, arguing that approached
based on time-series representations are unable to mine im-
plicit temporal patterns over a collection of high resolution
consumption data from a diverse consumer base. We showed
that usage behavior patterns can be identified at (i) different
times-of-day, (ii) days-of-the-week, or (iii) at coarser granu-
larities (i.e., by semester or yearly) for a customer. We also
showed that similarities can be mined between customers
with phenomenally different characteristics by appropriately
clustering time-series data in a principal components space.
We applied numerous clustering algorithms over a space
of reduced dimensionality to segment daily consumption
observations and buildings (i.e., consumers) alike.

We developed a novel algorithm for time series clustering
based on Hausdorff distance that efficiently clusters build-
ings under our distance metric and data stashing technique.
The proposed method scales to large data sets, and does not
have to be confined to electricity consumption data. Instead,

our stashing and clustering approach can be applied to any
application that involves high dimensional time-series data.

Our findings have important implications for utility-side
processing and storage of high velocity, high resolution
electricity consumption time-series data. Beyond customer
segmentation and pattern analysis, the entropy (i.e., variabil-
ity) of consumption within a smart meter can yield further
understanding of customers characteristics and lifestyles,
which can ultimately be used for making more informed
targeting decisions for Demand Response.

A limitation of our work is that clusters formed by the K-
medoid (also the K-means algorithm) are highly dependent
on the choice of seeds. Due to lack of standard methods
for choice of seeds, this domain is open for interesting
future work. As no ground truth for clusters is available in
our dataset, choosing appropriate seeds becomes even more
complicated. Although we have experimented with a variety
of methods for seed selection, we did not reach conclusive
results and hence we refrained from discussing them.

Finally, we experimented with applying Voronoi decom-
position in the task of outlier detection with encouraging
preliminary results. Even though in our analysis we did
not observe differentiation in the value of Dunn index, the
Calinski Harabasz index resulted in higher values of k,
corroborating visual inspection. More importantly, we feel
that efficiently dividing the consumer base into appropriate
bins using EVI is an interesting direction, which we intent
to explore in future work.
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