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Abstract—Existing Big Data streams coming from social
and other connected sensor networks exhibit intrinsic inter-
dependency enabling unique challenges to scalable graph ana-
lytics. Data from these graphs is usually collected in different
geographically located data servers making it suitable for
distributed processing on clouds. While numerous solutions for
large scale static graph analysis have been proposed, addressing
in real-time the dynamics of social interactions requires novel
approaches that leverage incremental stream processing and
graph analytics on elastic clouds.

We propose a scalable solution based on our stream pro-
cessing engine, Floe, on top of which we perform real-time
data processing and graph updates to enable low latency graph
analytics on large evolving social networks. We demonstrate the
platform on a large Twitter data set by performing several
fast graph and non-graph analytics to extract in real-time
the top k influential nodes, with different metrics, during
key events such as the US NFL playoffs. This information
allows advertisers to maximize their exposure to the public
by always targeting the continuously changing set of most
influential nodes. Its applicability spans multiple domains
including surveillance, counter-terrorism, or disease spread
monitoring. The evaluation will be performed on a combination
our local cluster of 16 eight-core nodes running Eucalyptus
fabric and 100s of virtual machines on the Amazon AWS public
cloud. We will showcase the low latency in detecting changes in
the graph under variable data streams, and also the efficiency
of the platform to utilize resources and to elastically scale to
meet demand.
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I. OVERVIEW AND BACKGROUND

Online social networks are complex environments char-

acterized by fast changes in the topology and dynamic

interactions between members. The advent of social services

such as Facebook and Twitter has catalyzed their evolution

and has opened up numerous interdisciplinary research op-

portunities for analyzing their structure as social entities and

establishing theories for the observed patterns. Data sciences

play an important role in this process by enabling insight on

the social networks through data analysis techniques. While

promising, the efficiency of applying such techniques for

low latency real-time analysis is limited by the growing

complexity and dynamics found in social networks. To give

an example, Twitter has an average of 6,000 tweets per

second however during peak, rates up to 143,200 tweets per

second have been observed. In Facebook’s case we notice

an average of 41,000 posts per second or about 2.4Mb

of data each second. Processing this huge amount of fast

streaming data to extract useful knowledge in real-time is

challenging and requires besides efficient graph updates,

scalable methods for performing incremental analytics in

order to reduce the complexity of the data-driven algorithms.

Existing graph processing methods have focused either

on large shared memory approaches where the graph is

streamed and processed in-memory [6], or on batch pro-

cessing techniques for distributed computing where periodic

graph snapshots are taken and processed independently [9].

While these techniques are efficient for some classes of

evolving graphs where data is either centrally stored or their

structure is slow changing, present day online social net-

works where data is gathered in geographically distributed

data centers (i.e., on the cloud) and which exhibit fast

topology changes. At the other end of the spectrum we

find streaming engines such as Apache Storm or our Floe

streaming engine [8] which are capable of processing fast

streaming data at low latency but lack graph abstractions that

can leverage the evolving inter-dependencies found in social

networks. Incremental algorithms for graph based analytics

have been previously proposed [5] however they have yet to

be integrated into streaming platforms.

As part of our research activities, our group is actively

involved in scalable fault-tolerant stream processing engines

tailored for clouds and scalable incremental analytics on fast

evolving graphs. Specifically we address: (1) the adaptabil-

ity, fault-tolerance, and scalability required by the stream

processing pipeline to continuously ingest high-velocity,

variable data streams; (2) the graph abstractions required to

enable incremental graph analytics on distributed memory

systems; and (3) the scalability of specific data-driven graph

oriented analytics. Our integrated platform, addressing the

above problems, is built on top of our streaming engine

Floe which allows fault-tolerant, elastic, and stateful stream

processing at higher peak throughput as compared to Storm

[1]. Incremental graph algorithms are implemented on top

of it to allow real-time graph analytics.

The focus of this challenge is on demonstrating the

scalability and low latency processing capabilities of our

platform for real-time analysis of fast evolving graphs. We



target a specific use case involving the detection of evolving

key nodes in social networks. The motivation behind this

use case is driven by the countless examples of practical

applications it enables. These range from advertising and

surveillance to disease spread monitoring. Taking for in-

stance a simple advertising scenario during a major event

such as the NFL playoffs, an ad company could try to

maximize its reach by targeting key nodes in the social

network.
The rest of the paper is structured as follows: Section II

gives the details of the social network application; Section

III describes and analyzes the novel features of the scalable

architecture for graph enabled streaming analytics; and fi-

nally Section IV illustrates the demonstration scenario and

performance metrics for the challenge.

II. REAL-TIME SOCIAL NETWORK ANALYSIS FOR

UNCOVERING KEY NODES

The goal of our real-time social network analysis is to find

the set of key nodes (or people) and how it evolves over time.

Here we determine a key node based on various metrics such

as out edge degree (e.g. number of re-tweets), cluster coef-

ficients (i.e. how connected is a node’s neighborhood), and

influence seed nodes (i.e. set of nodes that should be targeted

to start a information cascade). The goal of the application is

twofold: (1) identify popular people over time in real-time;

and (2) identify bots, under the same considerations, which

look for specific keywords and automatically re-tweet the

messages (see §III-C).
As seen next, our application deals with several key

problems such as a fluctuating data streams and a constantly

changing set of key nodes. The application is divided into 3

parts: (1) information integration, (2) data analytics, and (3)

information diffusion. Here we explain their characteristics:

A. Graph Updates based on Fast Stream Processing
Streaming data is by nature unstructured and any depen-

dencies need to be extracted by considering its properties

and by analyzing the specific use case. Complex applica-

tions built on top of social networks consider numerous

sources combined together. This is made possible by the

strong integration between various online social media, e.g.,

Facebook posts can be automatically tweeted and vice versa.

Semantics help manage the processing of this complex data

once it is extracted, normalized and semantically annotated

by a stream processing engine such as Floe.
Based on semantics the graph can be updated by rely-

ing on latest information. Given the numerous views such

complex data has, deciding the correct representation for

the application at hand is a crucial step. Taking as an

example the Twitter data, it can be modeled as a graph where

nodes represent users and edges their interactions based on

tweets, re-tweets, or mentions. Furthermore directed graphs

can model outgoing edges as re-tweets or mentions, and

incoming edges as re-tweets of other users’ tweets.

The stream processing engine needs to adapt to several

forms of dynamism. First, the stream rate can vary greatly

based on time-of-day or event and can scale up by a factor

of 100 in a few seconds. Second, we need to consider that

at any given point the number of active users can vary

significantly impacting specific regions in the graph that may

or may not be geographically collocated. This leads to a fine

choreography between fast elasticity and load balance that

needs to be carefully planned if analytics are to be performed

in real-time. Finally, it needs to cope with potential system

failures which may render the real-time processing useless.

B. Incremental Graph Analytics Algorithms for Identifying
Key Nodes

Identifying key nodes in evolving graph requires an ef-

ficient method that is robust and adaptive to the velocity

and variations in data streams. Various techniques based on

centrality measures [4] and more recently the tipping model

[7] exist. Irrespective of the method, traditional approaches

consider static graphs or periodic snapshots on which they

run the entire algorithm and recompute the set from scratch.

In dynamically evolving social graphs this approach is

intractable, especially for real-time operations. To enable

scalable robust solutions we adopt an incremental analytics

approach where a new solution is incrementally computed

based on the previous one and graph updates that arrived

since the last computation.

We rely on a recently proposed algorithm based on shell

decomposition [7] as it was demonstrated to outperform the

classic centrality measures and show robustness against the

removal of high-degree nodes. This algorithm allows us to

determine the smallest possible set of individuals (seed set)

such that, if initially activated, the entire population will

eventually become activated, adopting the new property, or

in our case re-tweeting the ad. The algorithm is highly

dependent on updating the graph hence its efficiency de-

pends on how fast the semantically annotated graph updates

are applied to the existing graph. These updates can take

place continuously as they arrive or in batches of fixed

length or taken at fixed intervals. During low streaming

rates (hundreds per second) a batch approach may be more

suited whereas during high streaming rates (thousands or

tens of thousands per second) a continuously processing

would be desired. The size of the batch or the interval at

which it is created depend on the processing capabilities

of the streaming engine. In our case we will showcase the

advantages of an elastic architecture for scaling to meet

the demands of any real-time graph structured stream by

employing incremental continuous analytics. Finally, we

develop an incremental algorithm to identify the evolving

set of triangles in the graph and hence calculate the cluster

coefficient to identify evolving cliques in the network in

order to mark potential bots which could be used to speed

up the propagation of our ads.



The mapping of these algorithms on our proposed scalable

solution for real-time analytics on fast changing social

graphs will be detailed in Section III-C.

C. Visualization Portal

The application is intended for two types of information

consumers, namely system operators, and data analysts.

Operators visualize real-time information on the key nodes

to decide on operational changes such targeting newly intro-

duced players by following them or monitoring they activity.

Analysts evaluate the effectiveness of different interaction

strategies, or the evolution of the key players during events

or over a period of time.

A web based visualization portal serves as a central

service for this information diffusion. It offers a view of

the social network graph overlaid with the key nodes at the

present time. The view offers the possibility to scroll back in

time and to visualize the evolution of the set. Given the real-

time analytics we perform the view is constantly updated

with the latest information on the key nodes. The portal also

offers a view on some system specific metrics such as set

update latency, current stream rate, computational resources’

load. The portal relies on historical already processed data

stored in a repository and real-time data from the data

stream.

III. SCALABLE ARCHITECTURE FOR GRAPH ENABLED

STREAMING ANALYTICS

To enable real-time graph processing we augmented our

initial Floe scalable distributed stream processing framework

with support for run-time elasticity, load-balancing, and low

latency fault-tolerance. On top of this improved version

we added an incremental graph processing framework for

low latency analytics on evolving graphs. The former is

used to pre-process high-velocity raw data streams, enable

information integration, and generate relevant graph update

events. The latter is used to consume graph update events

and execute continuous graph analytics for tracking high

influence nodes in the evolving graph.

A. Elastic Stateful Stream Processing using Floe

Floe enables applications requiring continuous stream

processing and analytics by following the familiar directed

acyclic graph (DAG) [1], [10] model. In the DAG abstract

dataflow, the nodes in the graph represent the processing ele-

ments (PEs) while the edges represent the direction and flow

of data between these PEs. Floe applications are deployed

on a distributed cluster and offer scalable operations through

message partitioning, process replication and data parallel

operations. Floe’s distinguishing features that separate it

from other solutions are: (1) support for runtime elasticity,

both within (scale up/down) and across virtual machines

(scale in/out); (2) efficient state management and seam-

less state migrations to support elasticity for both stateless
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Figure 1. Floe container components.

and stateful processing elements; and (3) integrated load-

balancing and fault-tolerance with low-latency (sub-second)

fault recovery.

The above features are achieved through an integrated

framework that utilizes consistent hashing to form a peer-

ring which is used both for state and message partitioning

among the peers (cf. Figure 1). Each node consists of

a peer monitor, a state and message backup manager, as

well as scale manager as shown in figure 1. The state and

backup manager is responsible for asynchronous incremental

state checkpointing and backup of the state as well as

unprocessed messages on the neighboring peers, while the

scale manager is responsible for monitoring the load (e.g.,

buffer length, memory usage, CPU usage) on the node and

initiate either load balance or scaling in/out operations based

on the negotiations with its neighbor on the peer ring. The

peer ring coupled with incremental backup and continuous

monitoring allows the system to elastically scale the system

with very low latency. It also supports efficient load bal-

ancing and low latency fault-recovery. Figure 2 shows the

latency characteristics for the load-balancing operation (i.e.,

to shed some of the load to the neighbor on the peer ring),

which involves both message replay and state migration. We

observe low latency (sub-second to few seconds) for such

operation for a range of data rate and checkpointing period.

We also observe similar characteristics for scaling in/out and

fault-recovery operations, however, the plots are omitted for

brevity.

B. Evolving Graph Analytics using the Proposed Graph
Framework

We developed an incremental graph framework on top of

Floe to support efficient storage and incremental processing

of evolving graphs. The framework leverages the stateful

processing elements supported by Floe to distribute the

evolving graph across the cluster. This in turn provides



Figure 2. Backup node latency to restore state and replay tuples.

runtime elasticity and dynamic load-balancing required for

high velocity graph analytics on evolving graph. To the

best of our knowledge the proposed framework built on

top of a streaming engine is the first system to enable fast

information integration and incremental graph algorithms at

large scale with support for elasticity and fault-tolerance.

Figure 3 shows various components of the incremental

graph framework built on top of Floe. The Graph Update
Event Generator component is a Floe application that pro-

cesses the incoming raw data streams and generates graph

update events (e.g., add/remove vertex, add/remove edge,

update edge value/weight, and update vertex value). These

graph updates are consumed by the Dynamic Graph Parti-
tioning component which uses online partitioning algorithms

that balances the processing cost across the cluster as well

as minimizes the overall communication cost by reducing

the edge cuts across the nodes. In addition, it also has

to minimize the state and partition migration at runtime.

Note that these requirements exhibit potentially conflicting

decisions and the partitioning algorithms use a optimization

function that maximizes the overall throughput.

The proposed framework takes graph updates as an input

and performs analytics in an incremental manner. Updates

are taken as an input in batches and processed. At the end

of the processing updates analytics (if any) are pushed out

so they can be used for further analytics or visualization.

The objective is to provide low latency analytics which is

scalable with the graph size and the graph update rates.

The user is provided with a programming abstraction

that takes graph updates as an input and enables analytics

implementation. APIs are provided to access the graph

structure and perform operations, and also to maintain the

application state required for handling the distributed incre-

mental graph analytics. This way, the framework handles

the distributed state management transparently to users. The

graph processing programming abstraction also hides the

communication between workers. Users are provided with

a simple message passing API to communicate with other

workers. Mapping details about neighbor vertices that owed

by other workers are maintained within each worker. All

graph updates and inter worker messaging is done using the

data channels of Floe.
The proposed framework initially assigns the graph up-

dates to set of workers using fast local heuristics (e.g.,

hash based). Workers then periodically re-partition the graph

based on system characteristics to further improve the par-

titioning quality. Each worker is responsible for processing

a graph partition which is stored as an adjacency list. Each

partition is i responsible for a subset of vertices Vi such

that
⋂
∀i Vi = ∅ and

⋃
∀i Vi = V . Here V represents the

set of vertices in the graph and E the edges. To reduce

the inter-worker communication overhead some of the data

is replicated among workers. This approach is particularly

useful for some algorithms such as the cluster coefficient

presented in Section III-C.
We extend the Floe’s auto-scaling algorithm to consider

not only the load on the system (such as data rate, message

queue length, CPU/memory usage), but also on graph and

application specific metrics such as graph access patterns,

edge cuts, and inter-node communication. Further, we extend

the state management APIs to allow dynamic graph repar-

titioning and merging as a result of scaling in/out. These

features allow the incremental graph analytic algorithms to

transparently adapt to the variable data streams and data load

and maintain the desired throughput.
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Distributed In 
Memory GraphGraph State Manager
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Incremental Graph Processing Algorithms

Graph Update 
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Figure 3. Architecture and components of the incremental graph frame-
work.

C. Incremental Graph Algorithms
We developed series of graph algorithms to identify key

nodes in social networks during key events such as the

NFL playoffs. Our main goal is to identify key nodes in

the networks that should be targeted for online marketing

applications. Three main analytics have been identified:

1) high degree (in/out) nodes, 2) nodes with high cluster

coefficient, and 3) seed sets nodes to initiate an information

cascade.



High degree nodes in a social network can either represent

popular/influential personal or bots. They can be differenti-

ated based on the direction of communication with other

nodes in the network. Identifying influential nodes can be

useful for marketing or information propagation. Nodes with

high cluster coefficients are normally automated bots in the

network. Some of the bots scan keywords in information

feeds and act as repeaters for these information. So bots can

be used to get some level of visibility in advertising cam-

paigns. Early adopters plays a major role when it comes to

starting a information cascade. Identifying and maintaining

the best set of early adopters to start propagating information

is a critical in a competitive dynamic marketing environment

to achieve information cascades.

High Degree Nodes. In interaction graphs such as social net-

works, nodes represent users and edges represent interaction

between users. Out edges from a node repent initiation of

a communication by a node. target node is refereed in that

communication. (e.g., A re-tweets one of B’s tweet means

there is a edge from A to B).

In this case high out degree nodes represents the nodes

that initiate most of the communication in the network and

in most cases they are automated bots. In-degree nodes

can be very popular people like celebrities. Bots in social

networks normally look for some keywords and broad cast

these messages to their networks. Identifying bots can be

important for online marketing as they can be used to

broadcast the message we want by appending the relevant

keywords to the messages. Finding celebrities in a network

is important since we can target them for advertising.

The high degree node finding algorithm uses the stream-

ing map-reduce support provided by Floe. Initially, graph

updates are extracted from social media streams. Then nodes

with edges are grouped at reducers using key as the source.

Those reducer outputs are forwarded to a different process-

ing unit and where top high degree nodes are maintained

for visualization. Reducer results are also written to the

in-memory distributed graph asynchronously with updated

degree statistics.

Cluster Coefficient. The cluster coefficient of a node in

a graph quantifies how close its neighbors are to being a

clique (complete graph). Generally nodes with high cluster

coefficient are bots in the network. The cluster coefficient

Ci for a vertex vi is given by the number of links between

the neighbors of a vertex vi divided by the number of all

possible links between neighbors.

In our online algorithm to find high cluster coefficient

nodes is based on online triangle counting. We maintain

number of triangles associated with each vertex and

compute the cluster coefficient (CC) for each vertex using

the triangles associated with each vertex. Cluster coefficient

of a vertex can be calculated using following formula.

CC for vertex i = 2∗Ti

ki(ki−1)

Where Ti represents the number of triangles associated

with vertex i and ki the degree of vertices.

We developed an online distributed memory triangle

counting algorithm extending [3] using Floe. This algorithm

emits the changes in number of triangles associated with

each vertex if there is any changes in the current counts.

Then cluster coefficient is recalculated for these vertices.

Updated cluster coefficients are passed for processing and

current list of high cluster coefficient nodes are updated if

necessary.
Minimal the Seed Set. Identifying the minimal seed node

set to start an information cascade is a important problem

in viral marketing. These seed nodes can be used as early

adopters to start a full cascade.
We developed an incremental algorithm based on the

original algorithm presented in [7] and implement it in our

framework by using its distributed message passing model.

The static graph algorithm [7] is a communication heavy

algorithm which needs heavy communication. The proposed

incremental algorithm tries to perform local updates with

minimal communication across workers to maintain the min-

imal seed set. Details of the distributed memory incremental

algorithm is out of the scope of this paper.

D. Dynamic Graph Visualization
To visualize the real-time analytics we will rely on D3 [2],

that enables data driven visualization. It supports abstract

graph visualization with multi-level visualization that lets

the user zoom in and out to show more or less details of

the graph. Further, it supports advanced layering to visualize

the graph in the context of the domain specific layers (e.g.

twitter stream layered on top of geographical map). We

extend the D3 visualization tool [2] to support visualization

of evolving graphs that lets the user track various properties

of the graph in real-time. We also overlay the incremental

results obtained from the graph analytics that allows the user

to track the algorithm’s progress as well as partial results.

Figure 4 shows a sample snapshot with key nodes identified

for different connected communities in the South America

overlayed on top of the geographical map.

IV. DEMONSTRATION

Our demonstration of the online graph analytics and ap-

plications (available at http://tsangpo.usc.edu/realtimegraph)

will showcase the scalability and run time elasticity of

the proposed incremental graph analytics framework built

on top of an enhanced Floe engine. We will evaluate and

demonstrate scalability with respect to the following metrics:

• Application Level Metrics:

– Timeliness - i.e., time between the time that graph

update enters a system and the time system fin-

ish performing for that update. This is a latency

measure.



Figure 4. Visualization portal for Dynamic Graph and Incremental
analytics.

• System Level Metrics:

– Average queuing latency vs. data rate;

– Average output throughput vs. data rate;

– Scaling in/out latency (i.e. the amount of time

spent during message, graph and state migrations,

if required, during scaling operations);

– Resource utilization and distribution across the

cluster.

Streaming map reduce  

container container 
Mapper 

container container
Reducer 

Visualization  

Figure 5. Demonstration Setup

Figure 5 shows the architecture of the application and

setup. Twitter streams at full capacity (e.g., Firehose) will be

injected into the system, which is then converted into graph

update events such as vertex add/remove, edge add/remove,

etc. The graph analytics algorithm then incrementally iden-

tify and update the key nodes in the graph based on various

parameters such as geography, topics, hash tags etc. The

graph along with the analytics is finally consumed by the

visualization component that allows the user to interact with

the graph and obtain relevant information.

The demo application will be run on a hybrid cloud, with

a combination our local cluster called Tsangpo, which is

running the Eucalyptus v2 cloud fabric and the Amazon

AWS public cloud for additional resources. The Tsangpo

cloud infrastructure located at USC provides seventeen

nodes, each with 8-core AMD Opterons rated at 2 GHz

each and 16 GB RAM, for a total of 136 available cores.

Floe will scale out on this Cloud through on demand VM

resource acquisition and further scale out to 100s of VM on

Amazon in response to the system load. We will simulate

variable data rates for the twitter stream and study the system

response and scalability with respect to the metrics defined

earlier.
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