
Challenge
Online Time Series Clustering For Demand Response

A Theory to Break the ‘Curse of Dimensionality’

Ranjan Pal, Charalampos Chelmis, Saima Aman, Marc Frincu, Viktor Prasanna
Viterbi School of Engineering

University of Southern California
{rpal, chelmis, saman, frincu, prasanna}@usc.edu

ABSTRACT
The advent of smart meters and advanced communication infras-
tructures catalyzes numerous smart grid applications such as dy-
namic demand response, and paves the way to solve challenging
research problems in sustainable energy consumption. The space
of solution possibilities are restricted primarily by the huge amount
of generated data requiring considerable computational resources
and efficient algorithms. To overcome this Big Data challenge,
data clustering techniques have been proposed. Current approaches
however do not scale in the face of the “increasing dimensionality”
problem where a cluster point is represented by the entire customer
consumption time series. To overcome this aspect we first rethink
the way cluster points are created and designed, and then design an
efficient online clustering technique for demand response (DR) in
order to analyze high volume, high dimensional energy consump-
tion time series data at scale, and on the fly. Our online algorithm
is randomized in nature, and provides optimal performance guar-
antees in a computationally efficient manner. Unlike prior work
we (i) study the consumption properties of the whole population
simultaneously rather than developing individual models for each
customer separately, claiming it to be a ‘killer’ approach that breaks
the “curse of dimensionality” in online time series clustering, and
(ii) provide tight performance guarantees in theory to validate our
approach. Our insights are driven by the field of sociology, where
collective behavior often emerges as the result of individual pat-
terns and lifestyles.

Keywords
time series, clustering, demand response, online algorithm

1. INTRODUCTION
With the increased penetration of smart meters and advanced wire-
less network infrastructures, smart grids are becoming ubiquitous.
Numerous practical smart grid applications, including Demand Re-
sponse (DR) [15], are catalyzed by Advanced Metering Infrastruc-
ture. As a result, utilities need to dynamically adjust their DR
strategy; this leads to Dynamic DR (D2R) programs according to
which the target, duration, and depth of curtailment is a dynami-
cally changing function of customers’ responsiveness, particularly
in incentive-based DR programs. However, the capability of the
cyber-infrastructure to support such applications efficiently is pri-
marily limited by the Big Data deluge (i.e., high volume, velocity,
variety, and veracity) coming from sensors. The large amount of
high speed data coming from smart meters and other smart appli-
ances such as thermostats, luminosity sensors, etc., pose signifi-
cant challenges to real-time data processing and decision making
by impacting the efficiency and speed at which information can be

extracted from the data stream.

Traditional solutions for predicting energy consumption and cur-
tailment analyze either individual or groups of customers by ap-
plying prediction techniques on the historical energy consumption
time series. Individual customer predictions are challenging be-
cause different prediction methods give different results in terms of
accuracy for distinct consumption trends [7]. Predicting consump-
tion for each customer can become a computational bottleneck es-
pecially for large smart grids with millions of customers. i.e., the
response time for consumer data processing is on the order of a few
hours [7]. Clearly, such performance guarantees are inefficient for
D2R applications. In this regard, clustering techniques have the
advantage of making predictions easier by (a) reducing the noise in
the aggregate customer energy consumption time series [17], and
(b) reducing the customer prediction time complexity by not being
required to running prediction algorithms on individual customers.
A good customer clustering can provide utilities with an optimal
set of customers to target during D2R.

While customer clustering has its benefits it does not come without
a trade-off. Traditionally, each point in the cluster is represented by
the time series of a single customer. In an online scenario such as
D2R, where the time series grows linearly, clustering techniques
are faced with the problem of increasing dimensionality. Increas-
ing dimensionality is a major issue to the space-time performance
of existing time series clustering algorithms; such algorithms are
designed to perform well for fixed-dimensional data sets [13], and
give bad performance for online cases, where clustering needs to be
recomputed on the fly as the number of dimensions increase. While
one solution to the problem is to keep dimensionality constant by
disregarding stale data, this approach may not always work because
most consumption time series data show some periodicity, and that
might get lost by dropping older data points.

In this paper we challenge the use of traditional approaches towards
clustering consumption time series data for data continually com-
ing from a massive number of smart sensors. We instead propose a
novel clustering approach where we fix the dimensions to the num-
ber of customers. In our approach, each point denotes the energy
consumption values for all customers at a given point in time. This
enables the formation of clusters of points in time which encompass
the consumption values of all smart meters simultaneously. The
advantage of our proposed approach is two-fold. First, clustering
can be performed incrementally on “data-in-motion”, i.e., new data
points can be incrementally integrated as they arrive in a stream
allowing the clustering configuration to be computed once and up-
dated incrementally with the arrival of new observations. In con-

Figure 1: Classic vs. our proposed point representation.

trast, traditional approaches require clustering points (time series)
whose dimensionality increases with time; thus with increasing di-
mensions, clustering has to be recomputed from scratch. Second,
by co-integrating customers’ consumption values in a vector it is
possible for emerging patterns to be mined.

Figure 1 depicts the two approaches. The consumption value for
customer i at time j is denoted by cij . Our representation can be
naturally obtained by transposing the original collection of time
series. Instead of new columns been added with the arrival of new
data points, the matrix grows in the rows dimension in our repre-
sentation. The clustering goal and the advantages of our approach
in this context is depicted in Figure 2

We make the following research contributions in this paper.

• We propose an intuitive idea to the ‘dynamic customer time
series segmentation’ problem that is driven by the field of
sociology, where collective behavior emerges as a result of
individual patterns (see Section 2.).

• We model this problem as an online clustering of time series
data, which in turn is intractable, i.e., computationally expen-
sive (see Section 2.3.3.). To address this issue, we propose an
online approximation algorithm with provable performance
guarantees to dynamically cluster energy consumption data
points on the fly (see Section 3.1.). Based on our online ap-
proximation algorithm, we design an online randomized al-
gorithm with better provable performance guarantees to on-
line clustering compared to the pure approximation version
(Section 3.2.).

The rest of the paper is organized as follows: in Section 2, we de-
scribe the challenges and drawbacks of traditional clustering tech-
niques for consumption time series segmentation, and state our
model preliminaries that include problem formulation. We design
and analyze our online clustering algorithm in Section 3. We con-
clude our paper in Section 4.

2. PROBLEM SETTING AND BACKGROUND
In this section, we first state the importance of mining emerging be-
havior from individual consumer dynamics. We then describe our
problem setting, which is followed by a description of the model
preliminaries.

Figure 2: Advantage of our approach w.r.t clustering goal

2.1 Mining Emerging Behavior
Intuitively, energy consumption is expected to be periodic, as it is
governed by human activities that usually follow some schedule
(e.g., daily or weekly). For example, in workplace and even resi-
dential settings, it is very likely that people are at the same place on
Monday mornings, and therefore it is also likely that an emerging
behavior can be recorded. In this case the energy consumption of a
building will be similar on Monday mornings even if occupied by
multiple tenants with different schedules or hosts hundreds of office
spaces. As an example, we present daily consumption observations
over a course of a year for four buildings of different types in Fig-
ure 3. From Figure 3, it can is seen that, despite the differentiation
between consumption patterns among individual buildings, con-
sumption is relatively stable for each of the buildings individually
at a specific point in time over the course of a day throughout the
year. Some variation is to be expected depending on the function
of buildings (e.g., the second building from the left demonstrates a
significant drop in consumption during summer). Similarly, usage
is likely to differ by few half hours earlier or later due to natural ir-
regularities in behavior (e.g., someone returned home at 6:30 p.m.
instead of 6 p.m.). In our study, we are focusing on 15-minute in-
tervals which even though can provide fine details on consumption,
can be affected by small shifts in behavior (e.g., a tenant who over-
slept or worked at home on a Monday) can significantly impact the
expected periodicity. Our premise is that such patterns can be de-
tected and utilized efficiently both for consumer behavior analysis
and load prediction. Typically utilities develop personalized mod-
els for each customer or rely on customer segmentation techniques,
where individual models are made for each customer segment, to
reduce their modeling and prediction uncertainty. Our hypothesis
is that using our representation of time series can lead to signif-
icant insights about customers’ emerging behavior, and more im-
portantly, to efficient very-short-term and medium-term prediction
algorithms for electricity consumption forecasting.

So, how does a utility go about uncovering such patterns for hun-
dreds of thousands or millions of customers? In this work, we are
venturing to address this question by appropriately arranging fine-
grained streaming energy data and examining it holistically. Our
approach is based on social theory, according to which individual
human behavior often results in emerging collective behavior. Our
assumption is that collective patterns should emerge as a result of
individual patterns (as shown in Figure 3).

2.2 Problem Setting
We consider a fixed large number of customers in a metropolitan
area, whose time series data of energy consumption for a given pe-

Figure 3: Smart meter data for four buildings of diverse functions, measured over a period of one year.

riod of each day (e.g., starting at 12 AM) and sampled every 15
minutes or less is known to the local utility. The utility wants to
make energy consumption predictions with the goal of achieving
consumption reduction during DR. As such, as a first step, the util-
ity adopts a time series clustering technique to group customers
together based on consumption trends. This not only lowers the
prediction error per cluster but also allows utilities to treat each
cluster independently by customizing the DR program. Traditional
clustering techniques require re-running the clustering every time
a new consumption data point is available. This is however time
consuming and unfeasible in a D2R scenario. As a result a clus-
tering technique that can update itself with the advent of new data
points for a given day without re-evaluating the segmentation from
scratch is preferred. The objective is to dynamically update the cus-
tomer clusters efficiently with respect to space (memory) and time
complexity. In this paper we propose an online time-series cluster-
ing approach with provable performance guarantees. Here, the term
“performance guarantee” refers to the quality of clustering with re-
spect to the optimal clustering possible on the data points available
currently.

2.2.1 Related Work in Brief
Several recent approaches have been proposed in the literature for
time series clustering related to human patterns on different activ-
ities. These are driven by different end goals, such as to summa-
rize information conveyed in temporal data, and to find represen-
tative consumption pattern for each cluster of time series. Chua et
al. [3] have performed segmentation and clustering of time series
of sensor data collected in smart homes for unsupervised learning
of human behaviors. Hino et al. [10] have clustered daily house-
hold electricity patterns to find representative customer patterns.
Martinez-Alvarez et al. [14] have performed time series clustering
using similarity of pattern sequences for prediction.

Regarding the mechanism behind time-series clustering, many dif-
ferent approaches have been used. These include approaches based
on Euclidean distance, Manhattan distance, shapelets, and dynamic
time warping (DTW), etc. For more detailed information on time
series clustering mechanims, see [13] [4]. All time series clustering
approaches require appropriate selection of numerous variables, for
e.g., the number of clusters, appropriate window length for time
series data,), are computationally expensive, etc., - but the com-
mon underlying properties characterizing all these approaches are
that they are (a) heuristics, and not provably optimal, (b) static in
nature, and (c) does not scale well to high dimensions (unless ac-
companied by dimensionality reduction techniques; one exception
being the approach in [4])

In this work, we derive time-series clustering approaches that are
provably optimal, dynamic, and suited for high-dimensional data.

2.2.2 Challenging a Conventional Mechanism
In this section, we first provide the rationale of why our given prob-
lem setting is subject to the ‘increasing dimensionality’ problem of
the conventional application of time series clustering algorithms.
We then provide a brief intuition of how this challenge can be re-
solved in an effective way so as to harness the power and simplicity
of clustering mechanisms.
Challenge: Assume a time series clustering algorithm exists to dy-
namically update groups of users for efficient D2R. Such an al-
gorithm would need to deal with data that is increasing in dimen-
sionality. Intuitively, the length of each vector c(i, :), ∀i (i.e., vec-
tor of consumption values for customer i in matrix C) increases
with time because new data points are added as they are recorded.
This strictly increasing dimensionality is a major road block to the
space-time performance of time series clustering algorithms; such
algorithms are designed to perform well for fixed-dimensional data
sets. Windowing techniques can be applied to keep dimensionality
constant, however this approach may lead to accuracy degradation;
as important consumption patterns might be overlooked in favor of
more recently added data points.
Solution Insight: Our main intuition behind solving the above-
mentioned challenge is to change the conventional view of looking
at time series data. More precisely, given a pre-specified number of
customers, instead of considering each consumption value in a time
series as a dimension, we fix the number of dimensions to be the
number of customers. Then for each time point, we have a vector
of consumption values of customers, where the length of the vector
equals the number of consumers (see Figure 1). We obtain a data
point which is not an increasing time series but a vector of fixed
dimension. Our goal is to efficiently cluster these data points in an
online fashion as they arrive with time.

2.3 Model Preliminaries
In this section we describe the principle behind our proposed clus-
tering mechanism, formulate our clustering problem, and comment
on its complexity.

2.3.1 Clustering Principle
Our clustering mechanism is based on the principle of Hierarchical
Agglomerative Clustering (HAC) [5] [18]. The basic idea is: ini-
tially assign n points to n distinct clusters; repeatedly merge pairs
of clusters until their number is sufficiently small. HAC computes
hierarchy trees of clusters whose leaves are individual points and
internal nodes correspond to clusters formed by merging clusters at
the children. The primary advantage of HAC-based algorithms is
that (i) in a dynamic setting (such as ours, where there is the advent
of new data points, and we need to update the clustering accord-
ingly in an efficient manner), it is desirable to retain the hierarchical
structure while ensuring efficient update and high-quality cluster-
ing, and (ii) experience shows that HAC performs extremely well

both in terms of efficiency and cluster quality [16] [19].

2.3.2 Problem Formulation
Assume a general arbitrary metric space M , e.g., Rm. Consider a
set of n1 points in M that have already been clustered into k clus-
ters so as to minimize the maximum cluster diameter. Here, each
point is a vector of energy consumption values for a consumer at a
particular time instant, the diameter of a cluster is defined to be the
maximum inter-point distance in it, and the the distance between
points in M is given by a distance function on the metric space,
e.g., l2 distance in Rm. Now consider a set of n2 points in M that
are yet to arrive. For each point arrival, we need to design an al-
gorithm (say A) that maintains a collection of k clusters such that
either the input point is assigned to one of the current k clusters, or
it starts off as a new cluster while two existing clusters are merged
into one. Clearly A in online in nature. We define the performance
ratio of A as the maximum over all update sequences of the ratio
of its maximum cluster diameter to that of the optimal clustering
for the input points. By formulating our problem in this way, we
enforce the requirement that at all times algorithm A will maintain
a HAC for the points presented up to that time. Our main objective
in this paper is to design A such that it is efficient in both compu-
tational time and space, and at the same time providing the best
performance guarantee.

We note here that it could have been the case that a newly arrived
point could start off from a new cluster and we could allow the
points of one old cluster to be re-distributed among the remaining
clusters, rather than two clusters to be merged together. The prob-
lem with such formulations is that they do not lead to HACs.

2.3.3 Problem Intractability
The static version of our clustering problem falls into the group of
problems known as pairwise clustering or k-center problems [2]
[11]. Both these problem types are NP-Hard in nature [8] [12], and
in fact hard to approximate to within factor 2 for arbitrary metric
spaces. Even if we consider the specific case of Euclidean metric
spaces, the problem types are NP-Hard for data point dimensional-
ity greater than or equal to 2 (such as in our case), and for arbitrary
distance metrics. It is evident that with the static clustering prob-
lem being hard, the online version is at least harder. Thus, in our
work we will look to design efficient approximation algorithms for
the online clustering problem. In this regard, we borrow techniques
from [6] [9] to come up with an algorithm whose time complexity
is solely a function of k.

3. ONLINE CLUSTERING ALGORITHM
In this section, we design our proposed online time series clustering
algorithm. As mentioned earlier, due to to the inherent intractabil-
ity of our clustering problem, we need to resort to the design of
efficient approximation algorithms. In order to ensure strong per-
formance guarantees, our final aim is to construct a randomized
online algorithm for our clustering problem, the structure of which
lies embedded in an approximation online algorithm we describe
next.

3.1 Approximation Algorithm Design
Our approximation online algorithm is mainly based on two pa-
rameters, α and β (to be described later), and thus we will term
it as the ‘(α, β) - online time series clustering algorithm’, or sim-
ply (α, β) - OTSC. The algorithm works in phases: at the start of
phase i, it has a collection of k+ 1 clusters C1, C2,, Ck+1 and

a lower bound di on the optimal clustering’s diameter (denoted as
OPT). Each cluster Ci has a center ci which is one of the points in
the cluster. The following algorithm invariants are assumed at the
start of phase i: (a) for each cluster Cj , the radius of Cj defined as
maxp εCjd(cj , p) is at most αdi; (b) for each pair of clusters Cj
and Cl, the inter-center distance d(cj , cl) ≥ di; and (c) di ≤ OPT.

Algorithm 1: (α, β)-OTSC finds a time series clustering
Input: (a) Dynamic point set S ⊂ Rn of consumer energy

consumption data at time instants. Let n = |N | - number
of consumers, (b) Number of desired clusters, k, (c) Given
dynamic set T of k clusters of currently observed data
points, each cluster having at least one point, (d) Given
(α, β) pair such that α

α−1
≤ β, and (e) d - smallest

interpoint distance in T .
Output: A k clustering configuration, T

1 Repeat forever
2 while |T | ≤ k do
3 Get new point x; S ← S ∪ {x}
4 if D(x, T) > βd then
5 T ← T ∪ {x}

6 T ′ ← {}
7 while ∃z εT such that D(z, T ′) > βd do
8 T ′ ← T ′ ∪ {z}
9 T ← T ′

10 d← βd
11 return T

Each phase consists of two stages: the first is the merging stage
in which the algorithm reduces the number of clusters by merging
certain pairs; the second is the update stage in which the algorithm
accepts new updates and tries to maintain at most k clusters without
increasing the radius of the clusters or violating the invariants. A
phase ends when the number of clusters again exceeds k. We now
explain in detail the merging and update stages of our algorithm.

3.1.1 Merging Stage
The merging stage works as follows: Define di+1 = βdi, and
let G be the di+1 - margin graph on the k + 1 cluster centers,
c1, c2, ..., ck+1. We define a d-margin graph on a set of points P =
{p1, p2,, pn} as the graph G = (P,E) such that (pi, pj) εE if
and only if d(pi, pj) ≤ d. The graphG is used to merge clusters by
repeatedly performing the following steps while the graph is non-
empty: pick an arbitrary cluster Ci in G and merge all neighbors
into it; make ci the new cluster’s center; and remove Ci and its
neighbors from G. Let C′1, C′2,, C′m be the new clusters at the
end of the merging stage. Note that it is possible that m = k + 1
when the graph G has no edges, in which case the algorithm will
be forced to declare the end of phase i without going through the
update stage. We have the following lemma regarding the merging
stage, the proof of which is in the Appendix.

LEMMA 1. The pairwise distance between the cluster centers
after the merging stage of phase i is at least di+1, and the radius
of the clusters after the merging stage of phase i is at most di+1 +
αdi ≤ αdi+1.

3.1.2 Update Stage
The update stage continues while the number of clusters is at most
k. When a new data point arrives, the algorithm attempts to place

it in one of the current clusters without exceeding the radius bound
αdi+1: otherwise a new cluster is formed with the update as the
cluster center. When the number of clusters reaches k + 1, phase i
ends and the current set of k +1 clusters along with di+1 are used
for the (i+1)th phase. We have the following lemma on the invari-
ant preservation after every phase of our deterministic clustering
algorithm. The proof of the lemma is in the Appendix.

LEMMA 2. The k + 1 clusters at the end of the ith phase satisfy
the following conditions: (i) the radius of the clusters is at most
αdi+1, (ii) the pairwise distance between cluster centers is at least
di+1, and (iii) di+1 ≤ OPT, where OPT is the diameter of the
optimal clustering for the current set of points.

Algorithm 1 provides our algorithmic steps. We have the following
theorem regarding the computational complexity of (α, β)-OTSC,
the proof of which is in the Appendix.

THEOREM 1. Algorithm (α, β)-OTSC has an optimal perfor-
mance ratio of 8 in any metric space when both α = β equals 2,
and can be implemented to run in O(k log k) amortized time per
update.

As mentioned above, the performance ratio of (α, β)-OTSC is 8,
but we can do significantly better if we use this algorithm as the
backbone to design a randomized algorithm, as shown next.

3.2 Randomized Algorithm Design
The randomized algorithm remains essentially the same as the de-
terministic one, the main change being the value of d1, which is
the lower bound for phase 1. In the deterministic case we choose
d1 to be the minimum pairwise distance of the first k + 1 points,
say x. We will now choose a random value r from the closed inter-
val [1

e
, 1] according to the probability density function 1

r
. We will

also set d1 to rx, redefine β = e, and force α to be equal to e
e−1

.
We now state our randomized algorithm that we name as (α, β) -
ROTSC.

The following theorem regarding the computational complexity of
(α, β)-ROTSC, the proof of which is in the Appendix.

THEOREM 2. Algorithm (α, β)-ROTSC has an optimal perfor-
mance ratio of 2e, i.e., approximately a factor of 5.43, in any metric
space with (α, β) = (e

e−1
, e), and can be implemented to run in

O(k log k) amortized time per update.

3.2.1 Initial Results.
To test the performance our proposed randomized algorithm, we
ran a simple test on a synthetic dynamic time-series data set gener-
ated using techniques in [1]. We compared the clustering efficiency
result with the results obtained by re-running existing static clus-
tering techniques (k-means with l2 metric, and DTW) with every
new data point arrival. Compared to k-means and DTW, our algo-
rithm performed at least 20 times faster, and at least 15% better in
terms of clustering performance as measured by normalized mutual
information, for a given value of k. We plan to run more tests as
part of future work.

Algorithm 2: (α, β)-ROTSC finds a time series clustering
Input: (a) Dynamic point set S ⊂ Rn of consumer energy

consumption data at time instants. Let n = |N | - number
of consumers, (b) Number of desired clusters, k, (c) Given
dynamic set T of k clusters of currently observed data
points, each cluster having at least one point, (d) Given
(α = e

e−1
, β = e) pair such that α

α−1
≤ β, and (e) d - r×

smallest interpoint distance in T , where r is a random value
chosen from [1

e
, 1] with probability density function 1

r
.

Output: A k clustering configuration, T
1 Repeat forever
2 while |T | ≤ k do
3 Get new point x; S ← S ∪ {x}
4 if D(x, T) > βd then
5 T ← T ∪ {x}

6 T ′ ← {}
7 while ∃z εT such that D(z, T ′) > βd do
8 T ′ ← T ′ ∪ {z}
9 T ← T ′

10 d← βd
11 return T

4. CONCLUSION AND FUTURE WORK
In this paper, we studied the problem of dynamically clustering
consumer energy consumption data for demand response purposes,
as it arrives over time in a stream. Given that time series data is
high dimensional, it is a big challenge in the Smart Grid to dynam-
ically cluster consumer energy usage on the fly, with the continu-
ous increase in streaming data dimensions. We resolve this chal-
lenge with an idea stemming from the field of sociology: collec-
tive behavior often emerges as the result of individual patterns and
lifestyles. This idea motivated us to look at the time series cluster-
ing problem in an inverted manner, where each data point is a fixed
dimensional vector of the energy consumption of all the consumers
in the system, at a particular time instant. As a result the cluster-
ing problem is reduced to an online task of dynamically clustering
points of fixed dimensions. In this regard, we designed an online
algorithm that is randomized in nature, and provides optimal per-
formance guarantees in a computationally efficient manner. Un-
like prior work, (i) we studied the consumption properties of the
whole population simultaneously rather than developing individual
models for each customer separately, claiming it to be a ‘killer’ ap-
proach that breaks the ‘curse of dimensionality’ in online time se-
ries clustering, and (ii) we provided tight performance guarantees
for the quality of our approach.

As part of future work, we plan to use our insights for develop-
ing a single predictive model for all customers in unison instead of
learning individual models for each customer in isolation. Specif-
ically, we plan to leverage our clustering methodology to perform
both short-term and long-term prediction for the entire population
of consumers using real-world smart grid data.

5. REFERENCES
[1] R. J. Alcock and Y. Manolopoulos. Time-series similarity

queries employing a feature-based approach. In Hellenic
Conference on Informatics, 1999.

[2] M. Bern and D. Eppstein. Approximation Algorithms for
Geometric Problems. PWS Publishing Company, 1996.

[3] S-L. Chua, S. Marsland, and H. Guesgen. Unsupervised

learning of human behaviors. In AAAI, 2011.
[4] R. Ding, Q. Wang, Y. Dang, Q. Fu, H. Zhang, and D. Zhang.

Yading: Fast clustering of large-scale time series data. In
VLDB, 2015.

[5] B. Everitt. Cluster Analysis. Heinemann Educational, 1974.
[6] T. Feder and D. H. Greene. Optimal algorithms for

approximate clustering. In STOC, 1988.
[7] Marc Frincu, Charalampos Chelmis, Muhammad Usman

Noor, and Viktor K. Prasanna. Accurate and efficient
selection of the best consumption prediction method in smart
grids. In Proc. IEEE International Conference on Big Data,
page in print. IEEE, 2014.

[8] M. R. Garey and D. Johnson. Computers and Intractability:
A Guide to the Theory of NP-Completeness. W. H. Freeman
and Company, 1979.

[9] T. E. Gonzalez. Clustering to minimize the maximum
inter-cluster distance. Theoretical Computer Science, 38,
1985.

[10] H. Hino, H. Shen, N. Murata, S. Wakao, and Y. Hayashi. A
versatile clustering method for electricity consumption
pattern analysis in households. IEEE Transactions on Smart
Grid, 2013.

[11] D. Hochbaum. Various Notions of Approximations: Good,
Better, Best, and More. PWS Publishing Company, 1996.

[12] O. Kariv and S. L. Hakimi. An algorithmic approach to
network location problems. SIAM Journal of Applied
Mathematics, 37, 1979.

[13] T. Warren Liao. Clustering of time series data - a survey.
Pattern Recognition, 38(11), 2005.

[14] F. Martinez-Alvarez, A. Troncoso, J. C. Riquelme, and J. S.
Ruiz. Energy time series forecasting based on pattern
similarity. IEEE Transactions on Knowledge ad Data
Engineering, 2011.

[15] Farrokh Rahimi and Ali Ipakchi. Demand response as a
market resource under the smart grid paradigm. Smart Grid,
IEEE Transactions on, 1(1):82–88, 2010.

[16] G. Salton and M. J. Gill. Introduction to Modern Information
Retrieval. McGraw-Hill Book Compnay, 1983.

[17] Y. Simmhan and M.U. Noor. Scalable prediction of energy
consumption using incremental time series clustering. In Big
Data, 2013 IEEE International Conference on, pages 29–36,
Oct 2013.

[18] C. J. van Rijsbergen. Information Retrieval. Buttersworth,
1979.

[19] P. Willet. Recent trends in hierarchical document clustering:
A critical review. Information Processing and Management,
24, 1988.

6. APPENDIX
In this section, we provide detailed proofs of the lemmas and theorems proposed in
Section 3.

Proof of Lemma 1. Prior to merging, the distance between two clusters which are ad-
jacent in the margin graph is at most di+1, and their radius is at most αdi. Therefore,
the radius of the merged cluster is at most

di+1 + αdi ≤ (1 +
α

β
)di+1 ≤ αdi+1,

where the last inequality follows from our assumption choice that α
α−1 ≤ β. Now

the distance between the cluster centers after the merging stage is di+1, and a new
cluster is created only if a request point is at least di+1 away from all current clusters.
Therefore the cluster centers have pairwise distance at least di+1. Thus, we have
proved Lemma 1. �

Proof of Lemma 2. We have k + 1 clusters at the end of the phase since that is the
terminating condition. From Lemma 1, the radius of the clusters after the merging
stage is at most αdi+1, and from the definition of the update stage this bound is not
violated by the insertion of new points. Now the distance between the cluster centers
after the merging stage is di+1, and a new cluster is created only if a request point is at
least di+1 away from all current clusters. Therefore the cluster centers have pairwise
distance at least di+1. Since at the end of the phase we have k + 1 cluster centers
that are di+1 apart, the optimal clustering is forced to put at least two of them in the
same cluster. It follows that di+1 ≤ OPT. Thus, we have proved Lemma 2. �

Proof of Theorem 1. Based on Lemmas 1 and 2, the algorithm (α, β)- OTSC ensures
the invariant that di ≤ OPT at the start of phase i. The radius of the cluster during
phase i is at most αdi+1. Thus, the performance ratio at any time during phase i is at

most
2αdi+1
OPT ≤ 2αβ

OPT ≤ 2αβ. Now the values of α, β that minimize 2αβ and at
the same time satisfies the condition α

α−1 ≤ β, are α = 2, β = 2. Thus, algorithm
(α, β)- OTSC has a performance ratio of 8 in any metric space, and the ratio is tight.

Regarding the computational complexity of the algorithm, we first assume that there
is a black-box for computing the distance between two points in the metric space, in
unit time, and this is a reasonable assumption. We maintain the edge lengths of the
complete graph induced by the current cluster centers in a heap. Since there are at most
k clusters, the space requirement is O(k2). When a new point arrives, we compute
the distance of this point to each of the current cluster centers, which requires O(k)
time. If the point is added to one of the current clusters, we are done. If, on the other
hand the new point initiates a new cluster, we insert into the heap edges labeled with
the distances between this new center and the existing cluster centers. This step takes
O(k log k) time. For accounting purposes in the amortized analysis, we associate
log k credits with each inserted edge. We will show that it is possible to charge the
cost of implementing the merging stage of the algorithm to the credits associated with
the edges. This implies the desired time bound.

We assume without loss of generality that the merging stage merges at least two clus-
ters. Let d be the margin used during the phase. The algorithm extracts all the edges
from the heap which have length less than d. Let m be the number of edges deleted
from the heap. This deletion step costsO(m log k) time. The d-margin graph on the
cluster centers is exactly the graph induced by thesem edges. It is evident that finding
new cluster centers usign the margin graph takes tie linear in the number of edges of
the graph, assuming the edges are given in the form of an adjacency list. Forming the
adjacency list from the edges takes linear time. Thus, the total cost of the merging
phase is bounded by O(m log k +m) = O(m log k) time. The credit of log k is
placed with each edge when it is inserted into the heap accounts for this cost. Thus,
we have proved Theorem 1. �

Proof of Theorem 2. Let σ be the sequence of updates, and let the optimal cluster
diameter for σ be γx, where x is the minimum pairwise distance of the first k + 1
points. The optimal value is at least x, so γ ≥ 1. Now suppose we choose d1 = rx
for some r ε (1

e , 1]. Let ρr be the maximum radius of the clusters created for σ with
this value of r. Using arguments similar to those in the proof of Theorem 1, we can

show that ρr is at most di+1 + αdi = ei+1d1
e−1 , where i is the largest integer such

that

di = e
i−1

d1 = e
i−1

rx ≤ OPT = γx.

Let i∗ be the integer such that ei
∗−1 ≤ γ < ei

∗
, and δ = γ

ei
∗ . Then we have

ρr ≤
rexγ

(e− 1)δ
; r > δ,

and

ρr ≤
re2xγ

(e− 1)δ
; r ≤ δ.

Let X−
r and X+

r be the indicator variables for the events [r ≤ δ] and [r > δ]
respectively. We claim that the expected value of ρr is bounded by

E[ρr] ≤
∫ 1

1
e

reγx(eX−
r +X+

r)

δr(e− 1)
dr,

or

E[ρr] ≤
eOPT

δ(e− 1)

∫ 1

1
e

(eX
−
r +X

+
r)dr,

or

E[ρr ≤
eOPTδ(e− 1)

δ(e− 1)
= eOPT.

Therefore, the expected diameter is at most 2eOPT . Thus, we have proved Theorem
2. �

