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ABSTRACT

As social media sites grow in popularity, tagging has nat-
urally emerged as a method of searching, categorizing and
filtering online information, especially multimedia content.
The unrestricted vocabulary users choose from to annotate
content however, has often lead to an explosion of the size of
space in which search is performed. This paper is concerned
with investigating generative models of social annotations,
and testing their efficiency with respect to two information
consumption oriented tasks. One task considers recommend-
ing new tags (similarly new resources) for new, previously
unknown users. We use perplexity as a standard measure for
estimating the generalization performance of a probabilistic
model. The second task is aimed at recommending new
users to connect with. In this task, we examine which users’
activity is most discriminative in predicting social ties: an-
notation (i.e. tags), resource usage (i.e. artists), or collective
annotation of resources altogether. For the second task, we
propose a framework to integrate the modeling of social an-
notations with network proximity. The proposed approach
consists of two steps: (1) discovering salient topics that char-
acterize users, resources and annotations; and (2) enhancing
the recommendation power of such models by incorporating
social clues from the immediate neighborhood of users. In
particular, we propose four classification schemes for social
link recommendation, which we evaluate on a real–world
dataset from Last.fm. Our results demonstrate significant
improvements over traditional approaches.

Categories and Subject Descriptors

G.3 [Probability and Statistics]: Probabilistic algorithms;
H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval; H.3.4 [Information Storage and
Retrieval]: Systems and Softwares—Performance evalua-
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1. INTRODUCTION
Users of social media sites involve in rich activities that re-

veal crucial information about their interests and tastes. Tri-
partite graphs [8] offer a mechanism to describe and capture
users’ behaviors and interests in terms of their interaction
with online content. For example, mining users’ listening
frequencies to artists and recording tags with which users
annotate artists they are mostly listening to in Last.fm1,
might reveal users’ music preferences, but also unveil a hid-
den structure of annotations and a natural categorization of
artists in music genres.

In Last.fm multiple users may listen, bookmark, share or
tag an artist. Even though each user performs this task in-
dividually, they collectively contribute to the characteriza-
tion of an artist (resource), resulting in a socially generated
set of metadata that describes it. Users annotate resources
by choosing tags from an uncontrolled vocabulary according
to their style and interests. Resources of the same nature
(i.e. topic) may be tagged with different keywords, which
may have similar meaning (e.g. synonyms) or with linguis-
tic variations of the same keyword (e.g. “lac” as opposed
to “laclippers”). Conversely, the same keyword can be used
to annotate resources of different nature due to polysemy.
For example, “apple”may be used to describe a story about
farmers market or about a new iPhone product.

In this work we explore the use of probabilistic models as
a mechanism to address such issues of synonymy, polysemy
and tag sparseness and effectively model tripartite graphs
in order to simultaneously unveil latent topics, users’ inter-
ests, and hidden structures of resources and tags in social
media. We evaluate three generative models for mining and
modeling social media data and assess their recommenda-
tion power, reporting our findings. We then show that latent
topics, integrated with structural features can be accurate
predictors of social ties.

The rest of this paper is organized as follows. Section 2
briefly describes the basic structure of tripartite graphs and

1http://www.last.fm



introduces three probabilistic models for tripartite graph
generation. Section 3 presents our four scalable social link
classification schemes, which combine latent semantics and
network proximity. Section 4 demonstrates the effectiveness
of our three generative models to capture the hidden struc-
ture of social bookmarking sites, as well as evaluates our
clustering schemes in the task of social tie recommendation
on a real-world dataset. Section 5 summarizes related work
and Section 6 concludes with a discussion of the implications
of our findings and directions of future work.

2. GENERATIVE MODELS OF COLLABO-

RATIVE ANNOTATIONS IN SOCIAL ME-

DIA
A tripartite graph is formed by three disjoint node sets: 1)

a set of actors (e.g. users) A = {a1, ..., aA}, 2) a set of con-
cepts (e.g. tags) C = {c1, ..., cC} and 3) a set of resources
(e.g. artists) R = {r1, ..., rR}, annotated by actors in A
with concepts from C. More complex hierarchical Bayesian
models can be designed by incorporating more types of re-
sources and concepts. The models we describe below can
be naturally extended to accommodate other resources and
annotation types, such as annotations of Flickr2 photos, or
descriptive text of Youtube3 videos.

2.1 Modeling Users with Tags
The User-Concept model (UC) is an adaptation of the

original Latent Dirichlet Allocation (LDA) model [1], where
documents are replaced by users’ tag collections. LDA treats
documents as bags of words. Instead, we model users based
on their tag usage, treating tags as vocabulary terms and
aggregating annotations users assign to resources. In this
model, φ denotes the matrix of topic distributions, with a
multinomial distribution over N concepts for each of T top-
ics being drawn independently from a symmetric Dirichlet(β)
prior. θ is the matrix of user-specific mixture weights for
these T topics, being drawn independently from a symmet-
ric Dirichlet(α) prior. For each annotation, z denotes the
topic responsible for generating that concept, drawn from
the θ distribution for that user, and c is the concept, drawn
from the topic distribution φ corresponding to z. The gener-
ative process is shown in Figure 1a. While this modeling is
informative about users’ latent interests, it does not provide
explicit characterization of resources, nor does it capture
the social aspect of tagging, based on which multiple users
collectively annotate (similarly use, share, bookmark, etc.)
resources. It is thus unclear how the topics used to describe
users might be used to also describe resources and unveil
their hidden structure, if any.

2.2 Modeling Users with Resources
The User-Resource model (UR) is structurally equivalent

to LDA [1], however, according to UR, users are modeled
based on their interactions with resources. Tags users attach
to resources are ignored. In this model, φ denotes the ma-
trix of topic distributions, with a multinomial distribution
over R resources for each of T topics being drawn indepen-
dently from a symmetric Dirichlet(β) prior. The matrix of
user-specific mixture weights for these T topics, θ, is being

2http://www.flickr.com
3http://www.youtube.com

Figure 1: Generative models of collaborative tagging
in social media. (a) User-Concept model, (b) User-
Resource model, (c) User-Resource-Concept model.

drawn independently from a symmetric Dirichlet(α) prior.
Each resource r is drawn from the topic distribution φ cor-
responding to z, the topic responsible for generating that
resource, drawn from the θ distribution for that user.The
underlying graphical model is shown in Figure 1b. Similarly
to UC, this model also has limitations. First, UR ignores the
social aspect of the tagging process. Further, even though
this model captures users’ latent interests with respect to re-
sources, it does not provide explicit characterization of tags.

2.3 Joint Modeling of Users, Resources & Con-
cepts

We introduce User-Resource-Concept model (URT), a
probabilistic model [27], to model user’s interests based on
resources usage and annotation behavior, and capture the
collaboration aspect of tagging. Topics are hidden variables
representing categories that naturally split the corpus into
clusters of closely related resources. In Last.fm, topics are
equivalent to music genres. A group of users ar, which for
the purposes of estimation we assume is observed, collec-
tively annotate (similarly bookmark, share, etc.) resource r

with a set of concepts cr, of size Nr. A collection of R re-
sources is then represented as a concatenation of individual
concept vectors c, having N =

∑R

r=1
Nr concepts in total.

For each resource annotation a user x is chosen uniformly at
random from ar. Then, a topic is chosen from a distribution
over topics specific to that user, and the annotation is gen-
erated from the chosen topic. Each user is associated with
a distribution over latent topics θ, chosen from a symmetric
Dirichlet (α) prior. Assuming there are T latent topics, the
multinomial distribution over topics for each author can be
represented as a matrix Θ, of size T × A. Its elements θta
stand for the probability of assigning topic t to a concept
generated by user a. We use θa to denote the ath column of
the matrix. The mixture weights corresponding to the cho-
sen user are used to select topic z, and a concept is generated
according to the distribution φ corresponding to that topic,
drawn from a symmetric Dirichlet (β) prior. Matrix Φ, of
size C × T , denotes the multinomial distributions over tags
associated with each topic. φt represents the probability of



generating concepts from topic t. This generative process is
described in graphical form in Figure 1c.

2.4 Parameter Estimation
The number of users, resources and tags in online social

media is in the order of millions, hence scalable inferencing
is necessary for the applicability of these models in a real
world scenario. We adopt collapsed Gibbs sampling [6] to
compute the posterior distribution on z (i.e. the probabil-
ity of topic mixtures of concepts P (z | c)), which captures
the hidden structure of topics, and then use the result to
infer matrices Φ (i.e. the probability of topics given con-
cepts P (Φ | c)) and Θ (i.e. the probability distribution over
topics for each user given concepts P (Θ | c)). The worst
case time complexity of each iteration of the Gibbs sampler
is O(V UmaxA), where A is the number of users, V denotes
vocabulary size, and Umax is the maximum number of users
that can be associated with a resource. As complexity is
linear in V , Gibbs sampling can be efficiently carried out
on large data sets [27]. Considerable speedup gains can be
achieved by optimizing Gibbs sampling and by successfully
incorporating recent advances in parallel and cloud comput-
ing [20].

3. RECOMMENDATION
All three models that we described above can be utilized

to address information needs that are currently overlooked
by online social media sites. Novel visualization capabilities
may enhance users’ experience by enabling social browsing
of users, resources and tags with respect to latent topics. Re-
sources mapped to a topic can benefit from tag recommenda-
tion to better describe them and improve search. Conversely,
tags may be automatically associated to resources that were
not originally linked to. Communities might emerge based
on users’ clustering with respect to common latent interests.
In the rest of this section, we propose four classification

schemes that utilize matrix Θ to learn how to recommend
appropriate links. Even though we focus on recommending
people, our approach can be extended to recommend other
“things” (i.e. resources and tags) as well. All classifiers are
generated as support vector machines (SVM) with Gaussian
radial basis function kernels [4]. We use Sequential Minimal
Optimization (SMO) to train our SVM classifiers, requiring
memory that grows linearly to the training set size, allowing
SMO to handle very large training sets [26]. In testing time,
we need to pass a user pair instance onto an SVM model
to find the hypothesis (i.e. existence of a link) with the
highest confidence. The last classification scheme exploits
all previous classifiers, building a hierarchical system.

3.1 Classification Based on Latent Interests
Given user u and her topic distribution Θ(:, u), we can

find similar users v that have a highly similar distribution,
hence similar“tastes”to u. The optimization criterion might
be based on a similarity metric or a distance measure. For
example, the similarity between two users’ topic distribu-
tions can be measured by applying either (symmetric) Kull-
back Leibler (KL) divergence, or cosine similarity between
the users, by assuming their corresponding topic probabil-
ities as feature vectors [25]. Here, we choose to compute
the point–wise squared distance between feature vectors of
users u and v. We do this because KL divergence and cosine
similarity produce a single feature per users’ pair. Instead,

using the point–wise squared distance for each pair of users,
we provide our classifier a finer grained characterization con-
stituting of T features. The feature vector for a user pair
(u, v) is therefore constructed as:

F (u, v) =
[

(Θ(1, u)−Θ(1, v))2, . . . , (Θ(T, u)−Θ(T, v))2
]

.

(1)
F (u, v) is zero when users u and v are completely aligned
with respect to their interests in the latent space, whereas
larger values indicate less common interests. The optimiza-
tion objective is to minimize the distance between users u

and v between whom a tie exists. Here we focus solely on
similarity of users’ interest, ignoring network effects. Con-
sidering this scheme we are able to test the hypothesis that
social links form on the basis of user homophily or conversely
if the social network also plays some role in link formation.

3.2 Models Expansion with Network Structure
Many social link recommendation approaches calculate

proximity scores based on graph oriented approaches [22],
asserting that the “closer” two users are in the social graph,
the more likely they are to become linked in the future. In-
tuitively, network proximity measures the likelihood of an
interaction between two users u and v, regardless of the ex-
istence of a path between u and v. Proximity metrics used in
prior work include neighborhood based methods and meth-
ods based on the ensemble of all paths [22]. In our work,
we consider network structure in conjunction to learned la-
tent interests of users. Said et al. [28] examined the impact
of social graph structure on users’ tastes. Instead, we take
a complimentary approach, where we examine the factors
that drive social tie creation. Furthermore, we differentiate
between local network proximity and similarity that stems
from global knowledge of the social graph. This effectively
enables us to test if knowledge about the global structure of
the network is essential to the recommendation process or
if, conversely, local knowledge of the network structure can
produce satisfactory recommendations.

3.2.1 Latent Topics & Local Structure

For simplicity and computational efficiency, we use the
number of common neighbors as feature in this scheme, in
order to exploit clues from users’ immediate neighborhood.
The number of common neighbors between users u and v

measures their corresponding neighborhood overlap. It is
defined as CN(u, v) = |Γ(u)

⋂

Γ(v)|, where Γ(u) is the set
of neighbors of user u in the network, and | · | denotes set
cardinality. To calculate CN , for each user u and all u’s
neighbors, we first search all u’s neighbors, and then lay
out the neighbors of each of u’s neighbors, respectively. The
time complexity to traverse the neighborhood of a node with
k neighbors in a sparse network is k ≪ A, hence the time
complexity for calculating CN is O(k2A).

To account for user homophily with respect to latent top-
ics, we consider column Θ(:, u) as a feature vector for user
u, and use the standard cosine similarity to compare the
feature vectors of two users u and v:

σ(u, v) =

∑

t
Θ(t, u)Θ(t, v)

√
∑

t
Θ(t, u)2

√
∑

t
Θ(t, v)2

. (2)

This quantity is 0 if u and v share no latent topics, and 1 if
they have exactly the same interests. The feature vector for



a user pair (u, v) is therefore constructed as:

F (u, v) = [σ(u, v), CN(u, v)] . (3)

Aggregation Strategy.
We found that when considering the above feature set,

the result is a non separable training sample due to the fact
that similarity values between pairs for both positive and
negative samples exhibit great variance. This in effect pro-
duces very inefficient classifiers, that are either unable to
separate the training samples altogether or preform poorly
in the recommendation task. To avoid this situation, as well
as to reduce the number of training samples provided to the
classifier (effectively achieving scalability), we average sim-
ilarity values over the number of common neighbors. We
characterize the average latent similarity of user pairs with
k common neighbors in the social network as follows:

avgσ(k) =
1

|p : kp = k|

∑

p:kp=k

σ(p), (4)

where p denotes a user pair (u, v) and kp denotes the number
of common neighbors for user pair p. This needs the com-
putation of all user pairs with k common neighbors, for each
value of k, and then averaging over all similarity values. We
begin by sorting CN by rows and columns in O(AlogA) time
(this step can be significantly sped up using better sorting
strategies). Searching for user pairs with k common neigh-
bors requires at most O(A + A) = O(A) steps, resulting in
O(K|SCNk

|A), where K is the number of unique values of
k, and |SCNk

| denotes the maximum cardinality of the set
S of user pairs with k common neighbors.

3.2.2 Latent Topics & Global Structure

Instead of using the number of common neighbors, we use
shortest distance to capture graph based similarity between
users u and v, denoted as SD(u, v). We find SD between
every pair of users using Johnson’s algorithm [14], resulting
in a time complexity of O(AlogA+AE). The feature vector
for a user pair (u, v) is therefore constructed as:

F (u, v) = [σ(u, v), SD(u, v)] . (5)

Because of the great variance of similarity values, we train
this classifier using the average latent similarity of user pairs
with shortest distance k in the social network, using Equa-
tion (4), with the difference that in this case kp denotes the
shortest distance value for user pair p.

3.3 Ensemble Classification Scheme
We combine the predictions of each of the classifiers we de-

scribed above, using a consensus mechanism. Each classifier
is treated as an expert, providing a vote on whether there
is a link between a pair of users or not. We set ensemble
weights to have equal values and normalize them such that
3
∑

i=1

λCli = 1. The consensus function we use is a weighted

binary vote. For a pair of users p = (u, v) and classifier Cli
we define a prediction function ξCli(p) such that:

ξCli(p) =

{

1, ∃ e(u, v)
0, otherwise

, (6)

where e(u, v) denotes a directed edge between users u and v.

We compute the consensus score for p as
3
∑

i=1

λCliξCli(p). We

Table 1: Dataset description
Number of unique users 1,892
Number of unique artists 17,632
Number of unique tags 11,946

Directed user-user relations 25,434
User-artist relations 92,834

Annotations (user-artist-tag relations) 186,479

could have learned different weights for each classifier, indi-
cating our confidence in its predictions. However, this pro-
cedure imposes another round of supervised training phase,
which would unnecessarily increase the complexity of our ap-
proach. In our evaluation section, we show that the major-
ity voting scheme is quite effective in producing high quality
recommendations.

4. EXPERIMENTAL ANALYSIS
We conduct several experiments to evaluate the ability of

the three generative models (see Section 2) to capture social
interactions and uncover the subliminal collective knowledge
about online content organization. We further evaluate the
performance of our classifiers and compare it to state–of–
the–art techniques on a real–world dataset from Last.fm.
We performed our experiments on a 2.4 GHz Intel Core 2
Duo, with 2 GB of memory, running Windows 7. All algo-
rithms were implemented in Matlab.

4.1 Dataset
For our experiments we consider hetrec2011−lastfm−2k,

a real–world dataset of 2K users from Last.fm online music
system [2] (see Table 1). The dataset includes friend rela-
tionships (i.e. user–user) and user–listened to artist relations
(i.e. <user,artist,listening count> tuples). The dataset fur-
ther includes 12K unique tags, used in about 186K anno-
tations (i.e. <user,artist,tag> tuples) of 18K artists. This
leads to a vocabulary size of R = 17, 632 in UR model, and
C = 11, 946 in UC and URC models for this dataset.

4.2 Sample Topics
Figure 2 shows 4 topics (out of 50) learned by the three

models. Each topic is illustrated with the top 10 tags (or
artists in the case of UR) most likely to be generated condi-
tioned on the topic. Learned topics capture Last.fm’s music
taxonomy from user-generated annotations. Particularly for
the UR model, the top 10 most likely artists in each topic
are well-known artists in terms of popularity and fame, and
representative samples of the music genres they belong to.
Notably, URC topics on the right, match surprisingly well
UC rightmost topics. Finally, while most of the topics in our
models semantically capture music genres, some topics illus-
trate some other types of themes discovered. For instance,
the left–topmost UC topic captures users preferences in the
form of explicitly stated feelings and/or opinions with re-
spect to specific artists.

4.3 Predictive Power
We compare the quality of hidden topics uncovered by the

three generative models with respect to perplexity [27]. We
divide our dataset into two disjoint sets, such that we retain
90% of the data for training, and the rest for testing. Fig-
ure 3 shows the results. URC yields lower perplexity than



Figure 2: Clouds of top tags and artists for 4 topics
(out of 50) learned by the UC, UR and URC models.
Size indicates higher probability.

the other two models on the Last.fm dataset. UC slightly
outperforms URC for 100 topics. Intuitively, URC captures
more of the hidden structure of users’ annotation activity
in Last.fm. UC also captures the essence of tagging behav-
ior through statistical categorization of tags in latent topics.
Contrary, classification of artists based on users’ annotation
seems to be of inferior quality, probably due to noisy human-
provided metadata, which are in their nature, unrestricted,
uncontrolled and highly susceptible to personal taste. We
conjecture that annotation metadata can be extremely use-
ful in capturing collective knowledge about a domain, such
as music genres and artists categorization in Last.fm.

4.4 Recommendation of Social Ties
In this section, we test the effectiveness of our four clas-

sification schemes: a) Scheme A (Latent Topics & Common
Neighbors); b) Scheme B (Latent Topics & Shortest Dis-
tance); c) Scheme C (Latent Topics); and d) Scheme D (En-
semble Classification). We randomly split our dataset into
two disjoint sets, such that we retain 10%, 25%, 50%, and
75% of the data for training, and the rest for testing. We
train UR, UC, and URC models for TUR = 20, TUC = 20,
and TURC = 50 hidden topics respectively. The evaluation
consists of selecting pairs of users, computing their simi-
larity, and adding links between users in decreasing order
of their topical similarity. The pairs of users with highest
similarity are those we predict to be most likely tied. We
randomly sample 12, 716 pairs of users, out of which 50%
are true links and 50% are negative samples. For each pre-
dicted social link, we check the actual social network to see if
the prediction is correct. We consider Precision, Recall, and
the trade–off between them (F–measure) as our performance
evaluation metrics.
Figure 4 shows the performance achieved by our classifi-
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Figure 3: Perplexity for different numbers of hidden
topics, for the UR, UC, and URC models.

cation schemes under our three models with respect to Pre-
cision and Recall. We found Scheme B to be the least effec-
tive, hence we refrain from discussing its performance any
further, even though Scheme B is included in Scheme D, in-
fluencing its performance. Scheme B aggregates users’ latent
similarity with respect to shortest distance, which in effect
results in aggregating all training similarity values for true
links (i.e. existing social ties) in a single training point in the
distance–similarity space. To this extend, the aggregation
methodology is non-linear to the preprocessing of true pos-
itives and true negatives samples, resulting in considerable
loss of information in exchange of scalability gain.

The ensemble achieves the best precision (up to 89.8%
under the UR model), due to its ability to alleviate bad
choices made by some of the“expert”classifiers. Even though
Scheme D’s recall is lower when compared to the rest of the
schemes, it is comparable (up to 86.83% under the UC
model) when the training dataset size is small (10%), which
would be the case in a real life social network with millions
of users. Overall, precision increases or stays constant for
dataset size up to 50%, after which point over-fitting occurs.
On the other hand, recall drops as a function of dataset
size, indicating that small but discriminatory training sam-
ples can lead to good performance overall. Ultimately, the
trade-off between precision and recall (F-measure) has to
be considered for the optimal choice of model, scheme and
training dataset size. Of course, different datasets may yield
best results for different combinations. The nature and fo-
cus of the social network under consideration as well as user-
generated content type in this context has to be considered
when making this selection.

Support Vector Machines tend to classify every sample to
the dominant class under high class imbalance situations,
such as in social media, caused by sparsity. To address this
problem, we test the performance achieved by our classi-
fiers when calculated separately for the positive and nega-
tive classes. Figure 5 shows the results. Intuitively, true
negatives are easier to classify correctly under most mod-
els, in most cases. Overall, we see a degradation in perfor-
mance with respect to true positives (which are the hard-
est to predict) due to over-fitting and noisy observations as
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Figure 4: Precision and Recall as a function of train-
ing data size. X-axis: Training set size as percentage
of complete dataset; Y-axis: Precision/Recall.

the training dataset size increases. Nevertheless, all of our
schemes yield reasonable results for practical purposes, for
reasonably small training dataset sizes (≤ 20% of complete
dataset in all cases).

4.4.1 Comparisons

We compare our schemes with two tag-based similarity
metrics, a) Cosine Similarity (CS) and b) Maximal Infor-
mation Path (MIP) [29], which have shown superior per-
formance in the content-based network reconstruction task.
Scheme D produces class labels, without assigning score val-
ues to them, hence we exclude it from our comparison. We
have also argued about Scheme B’s performance. This leaves
us with two Schemes, A and C. We present results in the
form of the area under the receiver-operating characteristic
curve (AUC). For the calculation of AUC values for the two
baselines, we use the complete dataset instead of splitting it
into disjoint training and testing sets. This is a conservative
strategy which biases the evaluation in favor of the base-
lines, which have a complete view of the dataset for their
similarity calculations.
Figure 6 reports the performance lift of Schemes A and

C on the link recommendation task for varying training
set size. Lift is defined as % change over best perform-
ing baseline, MIP. Positive % change signifies improvement,
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Figure 5: F-measure (calculated for positive & neg-
ative classes separately) achieved by classification
schemes as a function of training data size. X-axis:
Training set size as percentage of complete dataset;
Y-axis: F-measure.

whereas negative % change indicates superiority of the base-
line. The baselines CS and MIP attain AUC values of 0.6087
and 0.6256 respectively. Not all schemes can beat the base-
line: our classifiers under the UR and UC model fail to beat
the performance of MIP (which is however trained to the
complete dataset) when 10% of the data are available for
training. In this case the AUC lost from the considerable
limitation of training data is minimal, i.e. in the order of
10% or less. The most lift, i.e., % improvement over base-
line, is consistently attained by Scheme A, which integrates
latent topics with local structural information, under the
URC model in all four cases. When 25% or more of the
complete dataset are used for training however, both classi-
fiers under any model outperform the baselines.

5. RELATED WORK
Online social tagging systems have been well studied, lead-

ing to a vast literature around this area [7]. Halpin et al.
[8] proposed a collaborative tagging model based on pref-
erential attachment and informational value, studying the
basic dynamics behind tagging in the social bookmarking
site del.icio.us4. Others [3, 12] studied personalized tag rec-
ommendation and proposed solutions based on relationships
between tags and documents. We instead take a probabilis-
tic, generative approach that accurately models the collab-
orative nature of annotation process overall, generalizing to
resources of any type, and annotations.

Recommendation systems based on LDA–like models have
been proposed [16, 10, 9]. Instead of treating each recom-
mendation type separately, our models can be effectively
used to jointly recommend users, resources, tags and latent
topics. Lu et al. [21] proposed a model that represents users,
documents, words, and tags, and latent topics and user per-
spectives in a unified model, but does not capture users’
interests. Other models [17, 18] ignore the social aspect of
tagging. Instead, by allowing a mixture of users to collab-

4https://delicious.com
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Figure 6: Area under the ROC curve lift achieved
by schemes A and C with respect to UR, UC and
URC models on the link recommendation task in the
Last.fm data set. Lift is defined as % change over
MIP baseline.

oratively contribute to the annotation process, we offer a
more general solution to a more difficult problem.
The problem of link recommendation for social networks,

has been thoroughly investigated. We summarize here the
work that is most related to ours. Latent feature based
models [11, 23] consider link recommendation as a matrix
completion problem and employ latent matrix factorization
to learn latent factors for each object, and make predictions.
However, such models disregard the local network structure.
The URC model (similarly for UR and UC), as an adapta-
tion of the author-topic model, is closely related to methods
based on matrix factorization [27]. For applications where
models with n-ary relations with n > 3 need to be consid-
ered, tensor factorization techniques are required [15]. Un-
fortunately, the straightforward application of higher-order
tensor models becomes problematic, due to computational
requirements and data sparsity.
Taskar et al. [30] proposed a relational Markov network

framework to define a joint probabilistic model over the
entire link graph-entity attributes and links, assuming a
Markov dependency assumption (the label of one node de-
pends on its neighbors’ labels). In contrast to our work, their
discriminative model only explains social ties conditioned on
the observed variables. Jamali et al. [13] introduced a gen-
eralized stochastic block model to predict item ratings and
link creation, assuming that a rating network is provided.
Topic-link model [19] performed topic modeling and author
community discovery in a unified framework, but did not
provide reasonable results in the task of link prediction. Pen-
nacchiotti et al. [25] applied LDA for social link recommen-
dation, modeling social media users’ streams as documents,
represented by words that they emit in the social media. Di-
etz [5] proposed a generative model that explains artists by
tastes that listeners share with their friends. In contrast to
our work, their focus was to learn shared topics of interest
among friends. Perhaps the work closest to ours is that of
Parimi et al. [24]. Their hierarchical system exploits latent
user interests based on user profiles, treating users as doc-

uments. In this sense, our work is a generalization of their
approach, while at the same time requiring significantly less
amount of training data to achieve high precision and re-
call, effectively addressing the high imbalance problem. We
further address scalability issues, considering thousands of
users who may be arbitrarily connected, resulting in million
potential friendship relationships.

6. CONCLUSIONS
In this paper, we investigated three generative probabilis-

tic models of online social tagging systems as a principled
way of reducing the dimensionality of this data, capturing
at the same time the dynamics of collaborative annotation
process. The three models we explored represent users’ la-
tent interests over resources and rich metadata describing
them. Even though these probabilistic models ignore sev-
eral aspects of real-world annotation process, such as topic
correlation and user interaction, they nonetheless provide a
principled and efficient way of understanding user-resource-
tag dynamics in very large, online social tagging systems.
We showed that in the task of social tie recommendation,
a recommendation system that solely considers the topic
distribution learned for each user can be outperformed by
systems that integrate latent topics and local network struc-
tural features. Particularly, we examined four classification
schemes in the online music social media site Last.fm, show-
ing how to achieve high recommendation performance. To
improve our classifiers’ scalability we proposed an aggrega-
tion strategy that significantly reduces the number of train-
ing samples. In addition to tags, news stories and music
artists, there exist other types of resources, metadata and
user activities that can be used to further improve recom-
mendation quality. In our future work, we plan to address
the challenge of combining multiple heterogeneous informa-
tion sources within a unified approach. We also plan to
establish a mechanism which will automatically identify the
most discriminative latent topics and will discard uninfor-
mative resources and metadata.

Our results have important implications for the design of
social media sites. Our classification schemes can be di-
rectly applied to assist users in discovering friends with sim-
ilar tastes, and form interests groups that are semantically
enabled by considering users’ latent topical interests, rather
than relying on syntactical or frequency-based approaches.
Other potential applications not discussed here include, but
are not limited to, recommendation of resources and tags to
users based on latent semantics, trending topic analysis and
trending analysis of users’ latent interests, and categoriza-
tion, classification, and filtering of online information.
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