
Empowering Fast Incremental Computation over
Large Scale Dynamic Graphs

Charith Wickramaarachchi
Department of Computer Science
University of Southern California

Los Angeles CA 90089 USA
cwickram@usc.edu

Charalampos Chelmis and Viktor Prasanna
Department of Electrical Engineering

University of Southern California
Los Angeles CA 90089 USA
{chelmis,prasanna}@usc.edu

Abstract—Unprecedented growth in online social networks,
communication networks and internet of things have given birth
to large volume, fast changing datasets. Data generated from
such systems have an inherent graph structure in it. Updates in
staggering frequencies (e.g. edges created by message exchanges
in online social media) impose a fundamental requirement for
real-time processing of unruly yet highly interconnected data. As
a result, large-scale dynamic graph processing has become a new
research frontier in computer science.

In this paper, we present a new vertex-centric hierarchical
bulk synchronous parallel model for distributed dynamic graph
processing. Our model allows users to easily compose static
graph algorithms similar to the widely used vertex-centric model.
It also enables incremental processing of dynamic graphs by
automatically executing user composed static graph algorithms
in an incremental manner. We map widely used single source
shortest path and connected component algorithms to this model
and empirically analyze them on real-world graphs. Experimental
results show that our model improves the performance of both
static and dynamic graph computation compared to the vertex-
centric model by reducing the global synchronization overhead.

Keywords-graph processing; incremental computation; bulk
synchronous parallel;

I. INTRODUCTION

There has been a lot of interest in large-scale graph pro-
cessing, mainly thanks to the increasing popularity of online
social networks and communication networks. The ability to
mine large graphs has become critical for many real-world
applications due to the fact that data generated from such sys-
tems often have a graph structure in which data elements have
complex relationships among them. Irregular memory access
patterns of graph algorithms and the large volume of data,
make the processing of such data challenging. Particularly, in
graph applications, small compute to memory access ratio has
severe scalability problems as these applications hit an early
“memory wall” that limits their speedup.

The major technical challenges of scaling graph algo-
rithms and graph mining for massive datasets in the era
of Big Data has given rise to high-level, high-performance
programming models and graph programming frameworks.
With the introduction of Map Reduce [1], numerous systems
for process large-scale networked data on large commodity
clusters and clouds have been proposed. Specifically, as the
Map Reduce model is unsuitable for graph processing (data

inter-dependencies incur increased overhead due to continu-
ous data movement according to the graph structure from
mappers to reducers), other programming models tweaked
for graph algorithms have been proposed. The vertex-centric
(VC), message passing model introduced by Google [2], and
its open implementations including Apache Giraph [3] and
Apache Hama [4] have been widely adopted, mainly for
their simplicity and ease of use. Recent work on subgraph-
centric programming models [5], [6], [7] have reduced the
communication (number of messages) and synchronization
(number of iterations required to converge to a solution)
overhead of vertex-centric programming model.

Real-time graph processing is increasingly gaining momen-
tum as the preferred method for large-scale graph processing,
as many real-world applications operate on massive graphs
with hundreds of millions of vertices and edges, changing
attributes and evolving graph structure. The high velocity
at which changes occur imposes a fundamental requirement
for processing continuous graph data flows in real-time by
means of incremental processing. Existing research has so far
focused on static graph processing, while some have explored
computation over a sequence of updates to static graphs. Dy-
namic graphs are commonly condensed into a set of snapshots
of static graphs [8], [9], [2] because their static version is
much easier to handle. Naively adopting a system designed
for static graph processing to perform real-time incremental
computation over dynamic graphs is inefficient. Even though
research has been performed on large scale dynamic graph
processing [10], [8], developing incremental algorithms for
large-scale graphs can be a daunting programming task.

To address these challenges, we propose a graph processing
model that provides efficient incremental computation over
dynamic large-scale graphs, while at the same time hiding the
programming complexity from developers. Our vertex-centric
hierarchical bulk synchronous parallel model builds upon the
strengths of Google Pregel [2] and GraphInc [11] for efficient
incremental processing of massive graphs on commodity clus-
ters. Particularly, users develop static graph algorithms based
on the widely used vertex-centric programming model, which
our framework conveniently and transparently converts into in-
cremental algorithms that can be run in real-time over dynamic
graphs. We show that our novel hierarchical bulk synchronous



parallel model can significantly improve the performance of
vertex-centric programming abstraction by saving the state
across super-steps and automatically identifying opportunities
for computation reuse based on memorization [11], [12].
Specifically, our model requires minimal re-execution of com-
putations when changes in the graph occur, thus achieving low
latency on-line analysis for dynamic graph processing while
at the same time offering the same programming simplicity
that made vertex-centric programming prevalent. We map two
widely used algorithms: connected component labeling and
single source shortest path to this model. By empirically
evaluating these algorithms on real-world graph datasets, we
show that our model improves the performance of both static
and dynamic graph computation compared to the vertex-
centric model.

II. MEMORIZATION ON GIRAPH

Cai et al proposed a technique for enabling incremental
computation using vertex-centric programming model [11]. In
this section we give an overview of this approach.

To understand the room for computation reuse in vertex
centric programming model simple vertex centric graph al-
gorithm with an updated graph can be used. Figure 1(b)
shows the execution of single source shortest path algorithm
for the sample graph shown in Figure 1(a) (using vertex 1
as the source vertex). Figure1(c) shows the re-execution of
single source shortest paths algorithm after removing edge
(1,5). Light dark colored vertices denote vertices that perform
exactly the same computation, while dotted lines highlight
repeated communication. We observe that a significant num-
ber of computations and messages are repeated when re-
computing the single source shortest paths algorithm on the
updated graph. Ideally, one would like to skip all repeated
computation and associated communication when the graph is
updated and the same analysis is to be iteratively performed.

GraphInc [11] proposed a technique to perform incremen-
tal computation using vertex-centric model for deterministic
graph algorithms by reusing the state of previous graph
computations. It assumes that in a vertex-centric program
vertex computation at any super-step only depends on input
messages and the vertex state at that point in time. Given
these assumptions, GraphInc executes a static vertex-centric
algorithm provided by the user in an incremental manner on
an updated graph by pruning out repeated computations and
communications when recomputing analysis. To avoid recom-
puting the analysis from scratch, GraphInc memorizes the
incoming messages and state for each vertex for each super-
step, and uses the memorized states to skip re-computation
appropriately.

Once a graph is updated, the framework marks some
vertices as affected; these vertices become candidates for re-
execution on the updated graph. Affected vertices need to be
potentially re-executed to get the correct results on the updated
graph. The procedure for identifying affected vertices when the
graph is updated is described in [11]. The framework starts the
execution on the updated graph by re-computing the state of

affected vertices from super-step 0. For each super-step i > 0
the framework decides to execute a vertex if at least one of the
following conditions are satisfied: 1) At least one incoming
message is different from the previous execution; 2) Vertex
state is different from previous execution; 3) Vertex is marked
as affected.

In all other cases, the framework avoids re-executing a
vertex. When the state of a vertex needs to be updated, its
memorized state (includes incoming messages and state at
each super-step) is updated so that memorized state can be
used in future computations.

III. VERTEX-CENTRIC HIERARCHICAL BULK
SYNCHRONOUS PARALLEL(HBSP) MODEL

We designed and implemented a vertex-centric hierarchical
bulk synchronous parallel (HBSP) model by extending Apache
Giraph software framework. In this model, BSP executions
happen at two levels. 1) Partition level (Local computation)
2) Cluster level (Global computation). Initially, the graph is
partitioned, and each partition is assigned to a worker machine
in the cluster in the data loading phase. Then, the vertex-
centric program provided by the user executes within each
partition locally following the vertex-centric BSP model. In
this step messages sent to vertices in other partitions (remote
vertices) are buffered so that they can be sent once the local
computation is completed. The global computation phase starts
once the local computation phase finishes its computations. In
a global computation step, each worker communicates with
each other using the buffered messages from the previous
local computation step. A global barrier synchronization step
follows. Once all workers finish communicating, local com-
putation starts again within each partition using the messages
received during the global computation step. These two BSP
stages are continued until all vertices vote to halt, similar to the
vertex-centric programming model, i.e, all vertices are inactive
with no incoming messages to process.

This model can be thought of as an extension to the sub-
graph/partition centric models proposed in [5], [6] where
local computation within the partition is executed using vertex
centric model. Vertices within partitions are executed in paral-
lel using the multiple cores in each worker machine. Each
core is responsible for executing a subset of vertices in a
graph partition. Users are also provided with a programming
abstraction to reduce the number of messages communicated
in global computation step by performing summarization when
possible (similar to combiners in the vertex-centric model). We
call iterations in the local computation step sub-super-steps
while iterations in global level super-steps.

To demonstrate the effectiveness of our HBSP model, we
provide a sample application that finds the maximum value
in a connected graph. Algorithm 1 presents the algorithm.
Figure 2 shows the execution of this algorithm on a simple
graph. We note that only two super-steps are required to
complete the algorithm. For reference, the traditional vertex-
centric algorithm requires four super-steps. This translates to



1 2 3 4 5 6

(a)

S0 S4S2S1 S3

1

2

3

4

5

6

1

1

2

2

2

2

2

3

3

3

3

3

v=0

v=INF

v=INF

v=INF

v=INF

v=INF

v=0 v=0 v=0 v=0

v=1

v=INF

v=INF

v=INF

v=1

v=1 v=1 v=1

v=2 v=2 v=2

v=2

v=1

v=2

v=2

v=1 v=1

v=2

v=2 v=2

(b)

S0 S4S2S1 S3

1

2

3

4

5

6

1
2

2

2

3

3

v=0

v=INF

v=INF

v=INF

v=INF

v=INF

v=0 v=0 v=0 v=0

v=1

v=INF

v=INF

v=INF

v=INF

v=1 v=1 v=1

v=2 v=2 v=2

v=INF

v=2

v=INF

v=3

v=2 v=2

v=3

v=3 v=3

3

3 4

4

4

(c)

Figure 1: Figure (a) shows the initial graph that we want to find single source shortest path from source vertex 1. Figure (b)
shows the execution steps of vertex centric single source shortest path algorithm on the initial graph and Figure (c) shows
the execution of vertex centric single source shortest path algorithm on the updated graph after removing edge (1,5) from the
initial graph

a 50% reduction in the number of supersteps in this simple
example.

We further extended our HBSP model to support memo-
rization by extending the technique described in Section II.
In our model we try to avoid re-computation both at partition
and vertex level using memorized states kept for each super-
step and sub-super-step. This approach not only reduces the
number of super-steps required for incremental computation
compared to vertex centric model, but also enables the pruning
of computation both at partition and vertex levels which
can potentially reduce the added overhead (computation time
required to process memorized state before pruning out re-
computations) imposed by memoization.

Algorithm 1 Max Vertex Using HBSP
1: procedure COMPUTE(Vertex v, Iterator<Messages> msgs)
2: if super-step == 0 and sub-super-step == 0 then
3: BROADCASTGREATESTNEIGHBOR(v) . Find the

greatest vertex id m from the neighborhood set (including self),
set m as the current value, and sent it to all neighbors

4: return
5: end if
6: changed ← false
7: maxId ← v.value
8: while msgs.hasNext do
9: m = msgs.next

10: if maxId < m.value then
11: maxId ← m.value
12: change ← true
13: end if
14: end while
15: if changed then
16: v.value ← maxId
17: BROADCASTUPDATE(v) . Send the vertex value to all

neighbors of v
18: end if
19: end procedure

1 2 3 4 5

2 3 3 5 5

3 3 3

3 3 5

3 5 5

5 5 5

5 5

5
3

1

2

Partition-1 Partition-2

SS

SS

Figure 2: Execution of Alg 1 in HBSP model.

IV. EXPERIMENTAL RESULTS

A. Implementation

We implemented our HBSP model by extending the latest
released version of Apache Giraph 1 [3] (1.1.0). In-memory
data-structures (semaphores) were used to implement local
barriers. In our implementation, all internal communication
between vertices within partitions are performed using in-
memory data structures. During local computation process
each machine initially assigns a fix number of threads equal to
the number of processors in the system, for vertex processing.
Vertices are assigned to processors at the start of each super-
step. To avoid unbalanced execution, we have implemented
a work-stealing mechanism to re-balance the work across
workers in the presence of stranglers.

Our implementation allows users to use any partitioning
strategy when loading initial partitions. This was implemented
by extending the Mapping Store feature 2 of Apache Giraph.
Users can this way assign vertices to partitions; this informa-

1http://giraph.apache.org/
2https://issues.apache.org/jira/browse/GIRAPH-908



tion is used for mapping vertices to worker machines in the
cluster.

We implemented both our HBSP model and the vertex-
centric model with memoization, since the original implemen-
tation of GraphInc [11] is not publicly available. Memorized
states were stored in-memory data structures at the partition
level. While we implementing the core functionality of the
aforementioned models we refrained from performing low
level engineering optimizations. Since such optimizations can
play a major role in the overall system performance of
a runtime system, we avoid reporting execution time as a
representative metric in our experiments for fair comparison.

B. Experimental Setup

We conducted a series of experiments to evaluate the
advantage of our approach for both static and dynamic graph
computation. All experiments were conducted in an cluster
of 15 nodes. Each node consists of 8-core Intel Xeon CPU
with 16GB RAM. All Giraph jobs were executed on 12
workers. 14GB of RAM was allocated per each worker. All
the applications were executed on Java 7 runtime environment
on 64 bit Linux environment (CentOS).

Two real-world datasets from the Stanford Large Network
Dataset Collection [13] were used in our experiments: (i)
California road network and (ii) Slashdot social network from
2009. Table I summarizes the number of vertices and edges
in each dataset. We used two applications for evaluation
purposes: (i) Connected component (CC) labeling (same as
Algorithm 1) and (ii) Single Source Shortest Paths (SSSP) (See
Algorithm 2).We experimented with two partitioning strategies
for our HBSP model. Specifically, we used (i) a random vertex
assignment strategy and (ii) Metis graph partitioning tool [14]
to partition the graph during pre-processing.

Algorithm 2 SSSP Using HBSP
1: procedure COMPUTE(Vertex v, Iterator<Messages> msgs)
2: if super-step == 0 and sub-super-step == 0 then
3: v.value ← +inf
4: end if
5: minDist = IS SOURCE(v) ? 0 : +inf;
6: while msgs.hasNext do
7: m ← msgs.next
8: if midDist > m.value then
9: midDist ← m.value

10: end if
11: end while
12: if minDist < v.value then
13: v.value ← minDist
14: BROADCASTDISTANCE(v) . Send the distance through

this vertex to all its neighbours
15: end if
16: end procedure

To evaluate the impact of HBSP model on memorization, we
generated two sets of updated graphs for each data set, for VC
and HBSP models by adding 100 random edges and deleting
30 random edges from each data set. Same applications (CC
and SSSP) were executed incrementally on updated graphs

Dataset # Vertices # Edges
SlashDot (SD) 82,168 948,464
Road Network - CA (RN) 1,965,206 2,766,607

Table I: High level statistics of the two datasets used for
evaluation.

using memorization (see Section II. We logged the number of
vertices executed when re-computing without memorization
(re) and when using memorization (me). We then calculated
the fraction of computations saved as re−me

re
.

C. Results and Analysis

As explain in Section III, our HBSP model can improve the
performance of traditional vertex centric model by reducing
the number of global synchronization steps. We compared
vertex centric model (VC) with our model using random
(HBSP-R) and Metis (HBSP-M) partitioning schemes. As
shown in Figures 3 and 4 a reduction in number of super-
steps when using the HBSP model can be observed. The
number of super-steps required to converge to a solution were
reduced drastically when Metis partitioning scheme was used.
A significant difference in the number of super-steps required
for RN and SD datasets can also be observed. This is mainly
due to the difference in the diameter of two graphs; RN has
a large diameter compared to SD network which exhibits
small-world characteristics. As a result, both applications take
large number of super-steps in VC model for converging to a
solution on RN dataset. Contrarily, the number of super-steps
is significantly reduced when Metis partitioning scheme is
employed. This signifies the importance of graph partitioning
schemes for partition-centric graph computation models.

As shown in Figures 6 and 7, similar reduction in the
number of super-steps can be observed when HBSP model is
used in conjunction to memorization. Also, our experimental
results (Figure 5) suggest that HBSP model does not dras-
tically reduce the number of saved computations when used
for incremental computation. Given the above observations we
conclude that vertex-centric memorization model benefits from
our HBSP model, and building upon the strengths of subgraph-
centric computing , significantly improves the performance
of static graph computation and more importantly that of
incremental computation over dynamic graphs.

V. RELATED WORK

Large scale dynamic graph processing has recently become
a very active research area in computer science. Several
systems has been proposed and presented for large scale
dynamic graph processing in last few years. We summarize
here the most relevant to our work.

STINGER3 focuses on large-scale dynamic graph process-
ing on massively multi-threaded shared-memory machines
where our work focus on distributed cluster environments.
It provides a shared memory data structure [10] for large

3http://www.stingergraph.com/



0

2

4

6

8

10

12

14

CC SSSP

Su
p

er
-s

te
p

s 

VC HBSP-R HBSP-M

Figure 3: Super step comparison for CC and SSSP applications
on Slashdot social network dataset

0

100

200

300

400

500

600

700

CC SSSP

Su
p

er
-s

te
p

s 

VC HBSP-R HBSP-M

Figure 4: Super step comparison for CC and SSSP applications
on California road network dataset

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

CC SSSP CC SSSP

RN SD

VC HBSP-R HBSP-M

Figure 5: Comparison of fraction of computations saved for
CC and SSSP applications on California road network dataset
(RN) and Slashdot dataset (SN)

dynamic graph processing. A series of dynamic graph algo-
rithms have been developed using this data structure [15],
[16]. However, developing dynamic graph algorithms using

0

2

4

6

8

10

12

CC SSSP

Su
p

e
r-

st
ep

s 

VC HBSP-R HBSP-M

Figure 6: Super step comparison for CC and SSSP applications
using memorization on Slashdot dataset

0

100

200

300

400

500

600

700

CC SSSP

Su
p

e
r-

st
ep

s 

VC HBSP-R HBSP-M

Figure 7: Super step comparison for CC and SSSP applications
using memorization on California road network dataset

STINGER can be non trivial, requiring significant skills in
algorithmic design and programming. Similarly, Cheng et al
presented a system (Kineograph) for real-time dynamic graph
analysis [8]. While Kineograph enables online incremental
computation on fast changing dynamic graphs, Kineograph’s
programming abstraction leaves to users the responsibility to
develop incremental graph algorithms, which can be a non-
trivial task. Instead, our HBSP model takes the burden of
developing dynamic graph algorithms while at the same time
offering a simple programming abstraction, much similar to
the widely adopted vertex-centric programming model.

Simmhan et al [9] presented a set of programming patterns
that can be used for distributed processing of time series
graphs. This work mainly focused on processing series of
snapshots of temporal graphs that are stored in the disk.
Unlike our work, their programming model does not provide
native support for incremental graph computation. Since our
approach can be used to perform incremental computation on
graph snapshots, we believe that combining our approach with
these proposed programming models can be used to enable low
latency analysis over time series graphs. We intent to explore



this lead in future work.
Cai et al. [11] exploited memorization for incremental graph

computation (GraphInc) based on the vertex-centric model.
In our paper, we showed that our hierarchical BSP model,
when augmented with memorization can significantly outper-
form GraphInc. While memorization is applicable to recently
proposed sub-graph or partition-centric models presented in
[5], [6], [7], since these models do not exert control at the
vertex level, fine graph computation reuse cannot be achieved.

VI. CONCLUSION AND FUTURE WORK

We introduced a vertex-centric hierarchical bulk syn-
chronous parallel model for distributed incremental graph
computation. While keeping the simplicity and scalability
of widely used vertex-centric model, our approach can be
used to improve the performance of vertex-centric model by
reducing its global synchronization overhead. Using a proof
of concept system implementation on Apache Giraph, we
empirically showed that our model improves the performance
of both static and dynamic graph computation, reducing the
global synchronization overhead by up to 128x for connected
component algorithm and up to 55x for single source shortest
path algorithm.

One major issue with memorization [11] is the overhead of
additional computation power required to prune computations.
We believe that memorization model is much suitable when
per vertex computation is comparatively larger than the com-
putation overhead of memorization. This opens up space for
new future research directions including strategies to enable
bulk pruning strategies which can identify maximum com-
putation reuse opportunities with less additional computation
overhead.

Our experimental results shows that graph partitioning plays
major role when it comes to performance. This observation is
consistent with slimier observations reported in other studies
[5]. A major research challenge is to come up with dynamic
graph partitioning techniques to maintain work balance be-
tween workers while keeping highly modular partitions. In a
real-world online environment where graph is changing fast,
dynamic graph partitioning schemes must be implemented in
order to maintain performance benefits of our approach.

We plan to further evaluate this model on different types
of graphs and partitioning schemes to better understand per-
formance behavior in the future. Our proof of concept imple-
mentation gives us further opportunities to peruse those future
research directions.

ACKNOWLEDGMENT

This work was partially supported by a the US NSF under
grand NSF:1355377 and a research grant from the DARPA
XDATA grant no. FA8750-12-2-0319. Authors would like to
thank Alok Kumbhare for his feedback.

REFERENCES

[1] J. Dean and S. Ghemawat, “Mapreduce: simplified data processing on
large clusters,” Communications of the ACM, vol. 51, no. 1, pp. 107–113,
2008.

[2] G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert, I. Horn, N. Leiser,
and G. Czajkowski, “Pregel: a system for large-scale graph processing,”
in Proceedings of the 2010 ACM SIGMOD International Conference on
Management of data. ACM, 2010, pp. 135–146.

[3] C. Avery, “Giraph: Large-scale graph processing infrastructure on
hadoop,” Proceedings of the Hadoop Summit. Santa Clara, 2011.
[Online]. Available: http://giraph.apache.org/

[4] S. Seo, E. J. Yoon, J. Kim, S. Jin, J.-S. Kim, and S. Maeng, “Hama: An
efficient matrix computation with the mapreduce framework,” in Cloud
Computing Technology and Science (CloudCom), 2010 IEEE Second
International Conference on. IEEE, 2010, pp. 721–726.

[5] Y. Simmhan, A. Kumbhare, C. Wickramaarachchi, S. Nagarkar, S. Ravi,
C. Raghavendra, and V. Prasanna, “Goffish: A sub-graph centric frame-
work for large-scale graph analytics,” arXiv preprint arXiv:1311.5949,
2013.

[6] Y. Tian, A. Balmin, S. A. Corsten, S. Tatikonda, and J. McPherson,
“From think like a vertex to think like a graph,” Proceedings of the
VLDB Endowment, vol. 7, no. 3, 2013.

[7] A. Quamar, A. Deshpande, and J. Lin, “Nscale: Neighborhood-centric
analytics on large graphs,,” Proceedings of the VLDB Endowment, vol. 7,
no. 13, 2014.

[8] R. Cheng, J. Hong, A. Kyrola, Y. Miao, X. Weng, M. Wu, F. Yang,
L. Zhou, F. Zhao, and E. Chen, “Kineograph: taking the pulse of a
fast-changing and connected world,” in ACM european conference on
Computer Systems (EuroSys), 2012.

[9] Y. Simmhan, C. Wickramaarachchi, A. G. Kumbhare, M. Frı̂ncu,
S. Nagarkar, S. Ravi, C. S. Raghavendra, and V. K. Prasanna, “Scalable
analytics over distributed time-series graphs using goffish,” CoRR, vol.
abs/1406.5975, 2014. [Online]. Available: http://arxiv.org/abs/1406.5975

[10] D. Ediger, R. McColl, J. Riedy, and D. A. Bader, “Stinger: High
performance data structure for streaming graphs,” in High Performance
Extreme Computing (HPEC), 2012 IEEE Conference on. IEEE, 2012,
pp. 1–5.

[11] Z. Cai, D. Logothetis, and G. Siganos, “Facilitating real-time graph
mining,” in Proceedings of the fourth international workshop on Cloud
data management. ACM, 2012, pp. 1–8.

[12] P. Bhatotia, A. Wieder, R. Rodrigues, U. A. Acar, and R. Pasquin,
“Incoop: Mapreduce for incremental computations,” in Proceedings
of the 2Nd ACM Symposium on Cloud Computing, ser. SOCC ’11.
New York, NY, USA: ACM, 2011, pp. 7:1–7:14. [Online]. Available:
http://doi.acm.org/10.1145/2038916.2038923

[13] J. Leskovec and A. Krevl, “SNAP Datasets: Stanford large network
dataset collection,” http://snap.stanford.edu/data, Jun. 2014.

[14] G. Karypis and V. Kumar, “Metis-unstructured graph partitioning and
sparse matrix ordering system, version 2.0,” University of Minnesota,
Tech. Rep., 1995.

[15] D. Ediger, R. McColl, J. Poovey, and D. Campbell, “Scalable infras-
tructures for data in motion,” in Cluster, Cloud and Grid Computing
(CCGrid), 2014 14th IEEE/ACM International Symposium on. IEEE,
2014, pp. 875–882.

[16] D. E. S. A. E. Briscoe and R. M. J. Poovey, “Real-time streaming
intelligence: Integrating graph and nlp analytics.”


