
Accelerating Large-Scale Single-Source
Shortest Path on FPGA

Shijie Zhou, Charalampos Chelmis, Viktor K. Prasanna
Ming Hsieh Dept. of Electrical Engineering

University of Southern California

Los Angeles, CA, USA

{shijiezh, chelmis, prasanna}@usc.edu

Abstract—Many real-world problems can be represented as
graphs and solved by graph traversal algorithms. Single-Source
Shortest Path (SSSP) is a fundamental graph algorithm. Today,
large-scale graphs involve millions or even billions of vertices,
making efficient parallel graph processing challenging. In this
paper, we propose a single-FPGA based design to accelerate
SSSP for massive graphs. We adopt the well-known Bellman-
Ford algorithm. In the proposed design, graph is stored in
external memory, which is more realistic for processing large-
scale graphs. Using the available external memory bandwidth, our
design achieves the maximum data parallelism to concurrently
process multiple edges in each clock cycle, regardless of data
dependencies. The performance of our design is independent of
the graph structure as well. We propose a optimized data layout
to enable efficient utilization of external memory bandwidth. We
prototype our design using a state-of-the-art FPGA. Experimental
results show that our design is capable of processing 1.6 billion
edges per second (GTEPS) using a single FPGA, while simulta-
neously achieving high clock rate of over 200 MHz. This would
place us in the 131st position of the Graph 500 benchmark list
of supercomputing systems for data intensive applications. Our
solution therefore provides comparable performance to state-of-
the-art systems.

I. INTRODUCTION

Graphs have become increasingly important to represent
real-world networked data, including the World Wide Web,
social networks, knowledge graphs, genome analysis and med-
ical informatics. The rapid growth of such highly intercon-
nected large-scale graph-structured data and their increased
use in machine learning and data mining applications has led
to the development of various graph computing systems in
recent years. Current graph processing systems are able to
scale to massive graphs by distributing the computation over
commodity clusters [1], utilizing supercomputers [2] or multi-
core systems [3], or by employing dedicated hardware such as
GPUs [4], [5] and FPGAs [6], [7], [8]. Increasing the number
of processing elements (PEs) to achieve high computational
performance has proved practical by the dominance of com-
puter clusters in the TOP500 supercomputer list and the Graph
500 List [2], [9]. However, high-end supercomputers often
entail steep prices and high power consumption. Similarly,
while distributed computational resources have become more
available (e.g. through the Cloud), developing distributed graph
algorithms still remains challenging [10], especially to non-

This work has been funded by U.S. National Science Foundation under
Grants No. 1018801 and No. 1320211. Equipment grant from Xilinx Inc. is
gratefully acknowledged.

experts. As graph problems grow larger in size and complex-
ity, an interesting question arises: is fast graph computation
possible on just a tiny FPGA?

FPGA technologies have become an attractive option for
solving graph problems, often achieving considerable speedups
compared to GPU/CPU systems [8], [11], [12]. State-of-the-
art FPGA devices provide dense logic units, large amounts
of on-chip memory and high-bandwidth interfaces for vari-
ous external memory technologies [13]. However, most ex-
isting FPGA-implementations accommodate on-chip memory
in order to store graphs [14]; this is not suitable for large-
scale graph problems. Recent FPGA-based platforms, such
as the Convey hybrid-core system [15], are known for their
high memory bandwidth and performance in computation-
intensive and memory-bound applications [16], [12], [8]. The
Convey hybrid-core system integrates Intel processors with
multiple FPGA-based coprocessors [15] which are connected
to memory controllers in a full crossbar fashion; the mem-
ory controllers connect to Convey-designed memory modules.
However, the bandwidth between the memory controller and
the memory modules becomes the bottleneck when different
coprocessors attempt to read from the same memory module
[15].

Processing large-scale graphs is a hard problem [10] as
real-world graphs pose formidable challenges. First, real-
world graph problems are characterized by massive datasets
which can easily overwhelm the computational and memory
capabilities of a conventional supercomputer. For example,
World Wide Web, now contains more than 50 billion web
pages and more than one trillion unique URLs [17]. Secondly,
graphs represent relationships which are usually irregular and
unstructured. The data intensive nature of large-scale graph
problems makes sequential graph algorithms impractical and
graph computations difficult to parallelize. Specifically, graph
algorithms exhibit poor locality of memory accesses resulting
in high data-access-to-computation ratio (i.e., the runtime is
dominated by memory fetches). [8] proposed a reconfigurable
architecture for parallel graph traversal on the Convey HC-
2 platform that contains four programmable Virtex5-LX330
FPGAs, each accessing external memory at peak bandwidth
of 20 GB/s. By spreading computation across multiple FPGAs
such solutions require inter-device synchronization mecha-
nisms, which result in increased latency. In graph-structured
computation, natural graphs with highly skewed power-law
degree distributions are commonly found in the real-world.
It is highly likely that different coprocessors need frequently

read and write data for the same vertex in designs involving
multiple FPGAs. This results in inefficient utilization of the
memory bandwidth.

Single-Source Shortest Path (SSSP) is a fundamental graph
algorithm, which finds the shortest paths from a source vertex
to all other vertices in the graph. Many applications, such as
VLSI computer-aided design and urban traffic simulation [18],
require high-speed SSSP computation. SSSP is also a key ker-
nel proposed by the Graph 500 committees for the Graph 500
List [9]. There are many well-established algorithms for SSSP
in the literature [19]. Among these algorithms, we consider
the Bellman-Ford algorithm [20], [21], [22] because of the
massive parallelism inherent in the algorithm. The Bellman-
Ford algorithm relaxes the weights of edges in an iterative
fashion until the shortest paths to all vertices in the graph are
computed. In the worst case, the computation complexity of the
algorithm is O(ve), where v and e are the number of vertices
and edges in the graph respectively. However, in practice, the
number of iterations can be reduced by applying optimization
techniques [23] such as early termination.

In this paper, we introduce a single-FPGA based design
to accelerate the Bellman-Ford algorithm for SSSP. Edges
are streamed into FPGA from external memory. After a
number of iterations, all shortest paths are computed. Our
architecture processes multiple edges in parallel on FPGA,
regardless of data dependencies between edges. By eliminating
such data dependencies, our streaming processing approach
enables memory utilization at peak bandwidth and achieves
the maximum data parallelism. The main contributions of our
work are:

• We propose a single-FPGA based design to accelerate
SSSP on large-scale graphs. Edges are streamed into
FPGA from external memory.

• With the available external memory bandwidth, our
design achieves the maximum data parallelism to pro-
cess input stream. In each clock cycle, multiple edges
are concurrently processed, regardless of dependencies
between edges and graph structure.

• We include an efficient data forwarding scheme to
handle the data hazards in the pipelined architecture.
The scheme ensures the correctness of the architecture
without stalling the pipeline.

• We propose an optimized data layout in the external
memory to enable efficient utilization of the external
memory bandwidth.

• We implement our design on a state-of-the-art Xilinx
Vertex-7 FPGA. The experimental results show that
our design achieves a high clock rate of over 200 MHz
for various values of data parallelism. This results in a
high throughput of 1.6 GTEPS using a single FPGA.

The rest of the paper is organized as follows: Section II
provides background and related works; Section III describes
the problem we address; Section IV details the architecture
of our proposed design; we discuss experimental results in
Section V; we conclude the paper in Section VI.

II. BACKGROUND AND RELATED WORK

A. Bellman-Ford Algorithm

In this section, we briefly introduce the Bellman-Ford
Algorithm [20]. Additional details can be found in [19]. The
Bellman-Ford algorithm is illustrated in Algorithm 11.

Algorithm 1 Bellman-Ford algorithm

Let G = (V,E) denote the graph that consists of a set of
vertices V and a set of edges E.
Let v denote the number of vertices
Let e denote the number of edges
Let edge(i, j) denote the edge from vertex i to vertex j
Let w(i, j) denote the weight of edge(i, j)
Let w(i) denote the weight of vertex i
Bellman-Ford(G(V,E))

1: for each vertex x in V do
2: if x is source then
3: w(x) = 0
4: else
5: w(x) = ∞
6: predecessor(x) = null
7: end if
8: end for
9: for i = 1 to v − 1 do

10: for each edge(i, j) in E do
11: if w(i) + w(i, j) < w(j) then
12: w(j) = w(i) + w(i, j)
13: predecessor(j) = i
14: end if
15: end for
16: end for

In Algorithm 1, each vertex maintains the weight of the
shortest path from the source vertex to itself and the vertex
which precedes it in the shortest path. In each iteration, all
edges are relaxed and the weight of each vertex is updated if
necessary. After the ith iteration (1 ≤ i ≤ v−1), the algorithm
finds all the shortest paths consisting of at most i edges. Since
the theoretically longest possible path has v − 1 edges, v − 1
iterations are required to ensure the shortest path has been
found for all the vertices. The computation complexity of this
algorithm is O(ve).

In practice, the number of vertices in any shortest path is
far less than v − 1 [6]. If no updates are performed during an
iteration, the algorithm can be immediately terminated since
subsequent iterations will not incur changes as well. With the
early termination technique, the algorithm requires less than
v−1 iterations to terminate, significantly reducing the runtime
[6].

B. Related Work

There have been many FPGA-based SSSP implementations
in the literature [24], [25], [6], [26]. An early approach to
solving graph problems on FPGAs is proposed by Babb et al.
[24]. They develop a compilation technique to store a specific
graph by building a circuit on FPGA. The circuit resembles
the graph by using logic units to represent vertices and wires

1Our design mainly targets the graphs with non-negative edges.

to represent edges. However, this approach lacks of flexibility
since any change in the graph will require recompilation and
reconfiguration. More recently, [25] adds more flexibility into
this method of circuit representation by storing the adjacency
matrix of the graph on FPGA. However, this approach can
only compute the shortest unit path, in which all the edges
have unit cost.

Dandalis et al. [6] develop a pipelined architecture which
is composed of a set of processing elements (PEs). Each PE
corresponds to a vertex. Edges are stored in external memory
and passed into FPGA iteratively. The FPGA does not need
to be reconfigured as long as the number of vertices does not
exceed the number of PEs. However, that design only processes
one edge in each clock cycle, resulting in a limited speedup.

The architecture proposed by Jagadeesh et al. [26] also
uses a PE for each vertex. In the preprocessing step, the
incoming edges of each vertex are stored in a RAM within the
corresponding PE. The design adopts Bellman-Ford algorithm.
By using a broadcast scheme, each iteration takes v+1 cycles
instead of e cycles. In the ith clock cycle of an iteration
(1 ≤ i ≤ v), the ith PE broadcasts its update to all the other
PEs. However, that work targets SSSP for small graph. The
maximum number of vertices reported in [26] is 128.

Previous works perform SSSP on-chip for small graphs. Ei-
ther the entire graph or the vertices of graph can be represented
by on-chip resources. Thus, these works can not be adopted to
accelerate SSSP for large-scale graphs due to lack of on-chip
resources. To the best of our knowledge, our design is the first
single-FPGA based work to accelerate the SSSP computation
for large-scale graphs.

III. PROBLEM STATEMENT

Our FPGA-based design aims to accelerate SSSP computa-
tion for large-scale graphs, which can not be represented only
by on-chip resources. We assume the entire graph is stored in
external memory. Given a certain amount of memory band-
width between external memory and FPGA, p memory words
for p edges are streamed into FPGA per clock cycle. After a
certain amount of time, the updates based on the first batch
of p memory words are written into external memory. With
continuous input data streams, updates are written into external
memory in each clock cycle. After running the Bellman-Ford
algorithm for a number of iterations, all the shortest paths are
computed and stored in external memory.

IV. ARCHITECTURE

In this section, we first introduce the architecture overview
of our design. Then we present each building block of the
architecture in details.

A. Architecture Overview

As depicted in Fig. 1, a DRAM where the entire graph is
stored connects to the FPGA. In each clock cycle, p memory
words each corresponding to an edge are streamed into the
FPGA from DRAM. We define p as the data parallelism of
the architecture. The p memory words are sorted in the sorting
block to ensure that each destination vertex of the p edges will
have only one valid update. The computation block determines

FPGA

Data Forwarding

Sorting
Block

Memory
 Read
Block

Computation
Block

Memory
Write
Block

Memor

DRAM
Storing Entire Graph

Fig. 1: Architecture overview

the destination vertices that need to be updated. Finally, the
valid updates are written into DRAM through the memory
write block. A data forwarding circuitry is added in order to
handle the data hazard.

The architecture is fully pipelined to maintain a high clock
rate. Assuming the external memory bandwidth is sufficient to
support the maximum data parallelism of p, the architecture
can concurrently process p edges per clock cycle. The details
of the design for each building block are presented in the
following sections.

B. Sorting Block

The input to the sorting block is p memory words. Each
memory word consists of the weight of the edge w(i, j), the
weight of the source vertex w(i) and the associated indices i
and j of the edge. There are chances that more than one edges
target the same destination vertex but produce different update
values. For example, memory word < w(10, 2) = 8, w(10) =
3 > and memory word with < w(6, 2) = 2, w(6) = 4 > both
target vertex 2, but the possible update values for vertex 2
based on them are 11 and 6, respectively. For each destination
vertex, only the minimum update value should be considered
(6 in this example). The sorting block is used to identify the
possible minimum update value for each destination vertex.

We adopt bitonic sorting algorithm [27] to sort the p
memory words using O((logp)2) pipeline stages. When p is a
power of 2, the sorting block contains (1+logp)logp/2 pipeline
stages. Each pipeline stage has p

2 comparators working in
parallel. Fig. 2 depicts the sorting block for p = 4.

In the sorting block, each comparator is based on Algo-
rithm 2 to determine the comparison result. We introduce a
1-bit update signal for each memory word. The update signal
is used to indicate whether the memory word results in a valid
update. An update signal set to 1 indicates a valid update and
0 indicates an invalid update. Initially, the update signals for
the p memory words are all set to 1. Each comparator first
checks the update signals of the input memory words. The
memory word with update signal of 1 is smaller than the

Comp.

Comp.

Comp.

Comp.

Comp.

Comp.

Fig. 2: Sorting block for p = 4

memory word with update signal of 0. If both update signals
are 1, the destination vertex with a smaller index is determined
to be smaller. If both update signals are 1 and the destination
vertices are the same, the comparator compares the update
values, w(i, j) +w(i), of the memory words. In this case, the
comparator also sets the update signal of the memory word
with the larger update value to 0. Thus, after the sorting block,
each destination vertex involved by the p memory words only
has one valid update signal.

Algorithm 2 Comparator for the sorting block

Let jk denote the destination vertex of Memory wordp (k =
0, 1)
Let Wk denote the update value of Memory wordp (k = 0, 1)
Let Uk denote the update signal of Memory wordp (k = 0, 1)
Compare(Memory word0,Memory word1)
1: if U0 = U1 = 1 then
2: if j0 = j1 then
3: if W0 < W1 then
4: Memory word0 < Memory word1
5: else
6: Memory word0 > Memory word1
7: end if
8: else
9: if j0 < j1 then

10: Memory word0 < Memory word1
11: else
12: Memory word0 > Memory word1
13: end if
14: end if
15: else if U0 �= U1 then
16: if U0 = 1 then
17: Memory word0 < Memory word1
18: else
19: Memory word0 > Memory word1
20: end if
21: else
22: Default: Memory word0 < Memory word1
23: end if

C. Memory Read Block

The memory read block fetches the current weight of the
destination vertex w(j) for each memory word with update
signal of 1 from external memory. The w(j) for the memory
word with update signal of 0 is set to a default value. Assuming
there are d (1 ≤ d ≤ p) memory words with update signal of
1, d weights need to be read from external memory.

D. Computation Block

After the memory read block, each input memory word to
the computation block contains the update value w(i)+w(i, j),
indices i and j, current weight w(j) of the destination vertex,
and the update signal. The computation block compares the
update value with the current weight of the destination vertex
to determine the final update signal. If w(i) + w(i, j) is less
than w(j), the final update signal is set to 1; 0 otherwise.
There are p comparison modules in the computation block.
Each comparison module is responsible for one memory word.
We show the structure of the comparison module in Fig. 3.

M
U

X

Computation Block

…

Module

Module

<

AN
D

Fig. 3: Comparison Module

E. Memory Write block

The memory write block is responsible for writing the
update values into external memory. For memory words with
update signal of 1, the updated weight and the predecessor
vertex of the corresponding destination vertex are written into
external memory. The memory write block also checks the
early termination condition. When a new iteration starts, a 1-bit
signal set to 1 is used to indicate a new iteration. The memory
write block keeps track of whether there is any valid update
in each clock cycle. If there is no valid update for e

p clock

cycles2 since a new iteration starts, the SSSP computation can
be safely terminated.

In order to handle possible data hazard, the memory write

2One iteration takes e
p

clock cycles.

block forwards p memory words to the memory read block and
the computation block through a data forwarding circuitry.

F. Data Forwarding Unit

Although the Bellman-Ford algorithm does not require
using up-to-date weights of vertices when relaxing edges [20],
[21], [22], data hazard can occur when the same vertex is
updated in two consecutive clock cycles. This may result in
increasing the weight of vertex. For example, as shown in Fig.
4, two memory words of two consecutive clock cycles have
the same destination vertex; the memory word of the former
clock cycle has w(10, 6) = 3 and w(10) = 12; the memory
word of the latter clock cycle has w(8, 6) = 6 and w(8) = 11;
currently, w(6) is 20 in the memory. The former memory word
will produce a valid update to change w(6) into 15 since the
corresponding update value is smaller than the current w(6).
However, when the latter memory word is in the memory read
block, w(6) is still 20 since the update resulted by the former
memory word has not been written into memory. Thus, the
latter memory word will also produce a valid update to change
w(6) into 17. Finally, the value of w(6) in memory is 17
instead of 15.

Memory Read
Block

Computation
Block

Memory Write
Block

Time

Fig. 4: Example of Data Hazard

One simple solution to handle such data hazard would
be to stall the pipeline during each read from memory, to
ensure that the most up-to-date value is written into memory.
However, stalling the pipeline would reduce throughput. This
is problematic when processing large-scale graphs. To handle
these data hazards, we implement a data forwarding scheme
to avoid the need for stalling the pipeline. The memory write
block forwards up-to-date values to the memory read block
and the computation block. In the memory read block and
the computation block, each input memory word will compare
its own destination vertex against the destination vertices of
the p forwarded memory words. If a match is found and the
corresponding forwarded word has a valid update signal, the
input memory word replaces the weight of the destination
vertex read from memory using the weight of the forwarded
word. The correctness of such data forwarding scheme has
been proved in [28]. Using the data forwarding scheme to
handle the data hazard of Fig. 4 is depicted in Fig. 5. The

algorithm of using the data forwarding scheme to select up-
to-date values is illustrated in Algorithm 3. The computation
complexity of the data forwarding scheme is O(p2).

Memory Read
Block

Computation
Block

Memory Write
Block

Time

Fig. 5: Data Forwarding Scheme

Algorithm 3 Data Forwarding Scheme

Let Memory wordk denote the kth input memory word (k =
1, .., p)
Let Forward wordk denote the kth forwarded memory word
(k = 1, .., p)
Let M jk denote the destination vertex of Memory wordk
Let M Wk denote the weight of M jk
Let M Uk denote the update signal of Memory wordk
Let F jk denote the destination vertex of Forward wordk
Let F Wk denote the weight of F jk
Let F Uk denote the update signal of Forward wordk
Data Forwarding(Memory word1, ...,Memory wordp,
Forward word1, ..., Forward wordp)

1: for m = 1 to p do
2: for n = 1 to p do
3: if M jm = F jn and M Um = F Un = 1 then
4: M Wm = F Wn

5: end if
6: end for
7: end for

G. Data Layout in External Memory

Our design does not require a particular data layout in
external memory. However, a proper data layout can lead to a
more efficient utilization of external memory bandwidth. We
use DDR3 DRAM as an example to illustrate our ideas. The
same analysis can be extended to other types of DRAM. A
DRAM chip is organized in multiple banks, each composed of
a large array of rows and columns. A fixed number of data bits
(the bus width) are located at any valid [bank, row, column]
address. The following major parameters define the DDR3
DRAM access performance with various activation scenarios
[29], [30]:

• tRCD: open/active a specific row, ≈ 15 ns

• tCCD: minimum time between successive accesses to
the same bank and row, ≈ 5 ns

• tRRD: minimum time between successive activate
commands to different banks, ≈ 8 ns

• tRC : minimum time between issuing two successive
activate commands in a single bank, ≈ 40 ns

• tRP : precharge the long wires before switching to the
next, ≈ 15 ns

Intuitively, tRC is much larger than tCCD. Every time a new
row in a memory bank is accessed, the row must be precharged.
Such DRAM row activation is very expensive and results in
extra delay. Thus, it is desirable to minimize the number of
row activations. We propose to arrange the edges based on an
ascending order of the destination vertices in external memory.
Edges with the same destination vertex are stored in contiguous
locations in the same row. Fig. 6 shows an example of the
proposed data layout.

1 2

5
3

4

3
3

1 21

3

3

4

2

3
6

Memory Bank

66

5

 . . .

Fig. 6: Proposed Data Layout

There are two major advantages of such data layout:

• When memory words are streamed into FPGA from
external memory, the number of row activations is sig-
nificantly reduced, since edges are stored continuously
in the same row.

• In the memory read block and the memory write
block, it is highly likely that the number of vertices
that need to be updated is much smaller than p.
This is a direct result of many edges having the
same destination vertex. Thus, the external memory
bandwidth requirement between FPGA and external
memory can be reduced.

V. IMPLEMENTATION AND PERFORMANCE

A. Experimental Setup

We conduct all of our experiments on a state-of-the-art
Xilinx Virtex 7 XC7VX980 with -2L speed grade. The target
platform has 303,600 logic slices, 850 I/O pins, 36 Mb BRAMs
and up to 16 Mb distributed RAMs. The performance is
evaluated using Xilinx Vivado 2014.3 development tools. We
use the following performance metrics:

• Clock rate sustained by the design

• Utilization of FPGA resources

We represent the weight of each edge using a x-bit number,
the weight of each vertex using a y-bit number and the index
of each vertex using a z-bit number. Since the weight of vertex
is the sum of weights of multiple edges, y is larger than x. In
each clock cycle, FPGA needs to read p(x+2y+2z) bits from
external memory and write p(y+z) bits into external memory.
We assume that the external memory bandwidth of the target
platform is sufficient to support the above requirement.

B. Varying the data parallelism

In this section, we vary the data parallelism p. We fix x,
y and z at 4, 8 and 10, respectively. Fig. 7 and Fig. 8 depict
the clock rate and the resource utilization for various p. We
observe that:

• The clock rate decreases as the data parallelism in-
creases. The deterioration is mainly caused by a more
complex data forwarding scheme.

• The resource usage increases linearly with the data
parallelism p. The increase is due to more comparison
modules for the computation block and more pipeline
stages for the sorting block.

0

100

200

300

2 4 8 16

Cl
oc

k
Ra

te
 (M

Hz
)

Fig. 7: Clock rate for various p

C. Varying the graph size

In this section, we vary the graph size by varying parameter
z. In these experiments, we fix x, y and p at 4, 10 and
8, respectively. Fig. 9 and Fig. 10 show the clock rate and
the resource utilization for various values of z. The key
observations are:

U
til

iza
tio

n
(%

)

0

10

20

2 4 8 16

Slice LUTs

Slice Registers

Fig. 8: Resource utilization for various p

• The clock rate drops slowly as the graph size in-
creases. This is due to higher routing complexity as a
result of the larger data width.

• The slice LUT utilization and slice register utilization
do not increase substantially.

0

100

200

300

8 12 16 20

Cl
oc

k
Ra

te
 (M

Hz
)

Fig. 9: Clock rate for various z

Ut
ili

za
tio

n
(%

)

0

10

20

8 12 16 20

Slice LUTs

Slice RegestersSlice Registers

Slice LUTs

Fig. 10: Resource utilization for various z

D. Comparison with Previous Works

We compare our design with [6] and [26]. The comparison
results are summarized in Table I.

TABLE I: Summary of comparison

Approach
Clock cycles Dependent on
per iteration graph size

[6] e Yes
[26] v + 1 Yes

Our design e/p No

Both [6] and [26] target small graphs, all the vertices
of which can be represented by on-chip resources. [6] only
processes one edge per clock cycle, resulting in a limited
speedup. By using a broadcast scheme, each iteration in [26]
takes O(v) cycles, but [26] requires each vertex to store a
sorted list of incoming edges in on-chip memory. Sorting
the incoming edges for each vertex introduces significant
overhead. Compared with [6] and [26], our design has the
following advantages:

• Our design is independent of the size of graph.

• Our design does not introduce extra preprocessing
overhead.

• Our design can process multiple edges per cycle
regardless of dependencies between edges.

We also compare the performance of our design with [8]
and [12], which use the Convey HC platform [15]. [8] and [12]
study the breadth-first search (BFS) algorithm, which is also
a fundamental ‘search’ graph operation [2]. The comparison
is based on the throughput in billions of edges traversed per
second (GTEPS). For fair comparison, assuming the clock
rate sustained by each design is 200 MHz and each FPGA
can access external memory at a peak bandwidth of 20 GB/s.
The comparison results are summarized in Table II. It can be
observed that our design achieves more than 2x performance
per FPGA. Note that the memory word needed for each edge
is larger for SSSP than BFS.

TABLE II: Performance comparison

Approach
Graph size No. of GTEPS per

v FPGAs FPGA

[8] 220 4 0.5

[12] 220 4 0.6

Our design 220 1 1.6

VI. CONCLUSION

In this paper we presented a high-performance pipelined
architecture on FPGA to accelerate SSSP for large-scale
graphs. We assumed that the entire graph was stored in external
memory. We proposed an optimized data layout for storing
edges in external memory based on an accurate model of
DRAM access. By effectively using the available external
memory bandwidth, our design achieved the maximum data

parallelism to continuously process the input edge stream, re-
gardless of graph structure or dependencies between edges. We
evaluated our design using a state-of-the-art Virtex 7 FPGA.
Experimental results showed that the proposed architecture
achieved a high clock rate of over 200 MHz for various
data parallelism. This corresponded to a high throughput of
traversing 1.6 billion edges per second (GTEPS), which could
rank 131 in the Graph 500 List.

In the future, we will explore to accelerate other key graph
algorithms such as BFS using FPGA. We will also compare
the performance of our design with other accelerators such as
GPU and multi-core systems.

REFERENCES

[1] G. Malewicz, M. H. Austern, A. J. C. Bik, J. C. Dehnert, I. Horn, N.
Leiser, and G. Czajkowski “Pregel: a system for large-scale graph pro-
cessing.” in Proc of the 2010 ACM SIGMOD International Conference
on Management of data. ACM, 2010.

[2] “The Graph 500 List,”
http://www.graph500.org/.

[3] V. Agarwal, F. Petrini, D. Pasetto, and D. A. Bader, “Scalable graph
exploration on multicore processors,” in Proceedings of the 2010
ACM/IEEE International Conference for High Performance Computing,
Networking, Storage and Analysis, ser. SC10. IEEE Computer Society,
pp. 1-11, 2010.

[4] Pawan Harish and P. J. Narayanan, “Accelerating large graph algorithms
on the GPU using CUDA,” In Proc. of the 14th International Conference
on High Performance Computing, pp 197-208, 2007.

[5] G. J. Katz and J. T. Kider Jr, “All-pairs shortest-paths for large graphs
on the GPU” In Proc. of the 23rd ACM SIGGRAPH/EUROGRAPHICS
Symposium on Graphics Hard- ware, pp. 47-55, 2008.

[6] A. Dandalis, A. Mei, V. K. Prasanna, “Domain specific mapping
for solving graph problems on reconfigurable devices,” Parallel and
Distributed Processing, vol. 1586, pp 652-660, 1999.

[7] S. Hong, Tayo O. and Kunle O., “Efficient parallel graph exploration on
multi-core CPU and GPU,” in Proc of the 2011 International Conference
on Parallel Architectures and Compilation Techniques (PACT), pp. 78-
88, 2011.

[8] O. G. Attia, T. Johnson, K. Townsend, P. Jones and J. Zambreno,
“CyGraph: A Reconfigurable Architecture for Parallel Breadth-First
Search,” in Proc of the 2014 IEEE International Parallel & Distributed
Processing Symposium Workshops, pp. 228-235, 2014.

[9] R. C. Murphy, K. B. Wheeler, B. W. Barrett, and J. A. Ang, “Introducing
the Graph 500,” Cray User’s Group, May 2010.

[10] A. Lumsdaine, D. Gregor, B. Hendrickson, and J. Berry, “Challenges
in parallel graph processing,” in Parallel Processing Letters, vol. 17, no.
01, 2007, pp. 520.

[11] B. Betkaoui, D. B. Thomas, W. Luk and N. Przulj, “A Framework for
FPGA Acceleration of Large Graph Problems: Graphlet Counting Case
Study,” International Conference on Field-Programmable Technology,
pp. 1-8, 2011.

[12] B. Betkaoui, Y. Wang, D. B. Thomas and W. Luk, “A Reconfigurable
Computing Approach for Efficient and Scalable Parallel Graph Ex-
ploration,” International Conference on Application-Specific Systems,
Architectures and Processors, pp. 8-15, 2012.

[13] “Virtex-7 FPGA Family,”
http://www.xilinx.com/products/silicon-devices/fpga/virtex-7/.

[14] Q. Wang, W. Jiang, Y. Xia, and V. Prasanna, “A message-passing
multisoftcore architecture on FPGA for Breadth-first Search,” in Proc of
the International Conference on Field-Programmable Technology (FPT),
Dec. 2010, pp. 70-77.

[15] J. D. Bakos, “High-Performance Heterogeneous Computing with the
Convey HC-1,” Computing in Science and Engineering, vol. 12, iss. 6,
pp. 80-87, 2010.

[16] B. Betkaoui, Y. Wang, D. B. Thomas, and W. Luk, “Parallel FPGA-
based all pairs shortest paths for sparse networks: A human brain
connectome case study,” in Proc of the International Conference on
Field Programmable Logic and Applications (FPL), 2012, pp. 99-104.

[17] “The size of the World Wide Web,”
http://www.worldwidewebsize.com/.

[18] D. Z. Chen, “Developing algorithms and software for geometric path
planning problems,” ACM Computing Surveys (CSUR), vol. 28 , no.
18, 1996.

[19] B. V. Cherkassky, A. V. Goldberg and T. Radzik, “Shortest paths
algorithms: Theory and experimental evaluation,” Mathematical Pro-
gramming 31, vol. 73, iss. 2, pp. 129-174, 1996.

[20] R. E. Bellman, “On a Routing Problem,” Quart. Applied Math, vol. 16,
pp. 87-90, 1958.

[21] L. R. Ford, Jr. and D. R. Fulkeison, “Flows in Networks,” Princeton
Univ. Press, Princeton, NJ, 1962.

[22] E. F. Moore, “The Shortest Path Through a Maze,” In Proc. of the Int.
Symp. on the Theory of Switching, pp. 285-292. Harward University
Press, 1959.

[23] J. Y. Yen, “An Algorithm for Finding Shortest Routes from All Source
Nodes to a Given Destination in General Networks,” Quart. Applied
Math, vol. 27, pp. 526-530, 1970.

[24] J. W. Babb, M. Frank, and A. Agarwal, “Solving Graph Problems with
Dynamic Computation Structures,” High-Speed Computing, Digital
Signal Processing, and Filtering Using Reconfigurable Logic, vol. 2914,
no. 1, pp. 225-236, 1996.

[25] L. Huelsbergen, “A Representation for Dynamic Graphs in Recon-
figurable Hardware and Its Application to Fundamental Graph Algo-
rithms,” in Proc. of Field Programmable Gate Arrays, pp. 105-115,
2000.

[26] G.R. Jagadeesh, T. Srikanthan and C.M. Lim, “Field programmable gate
array-based acceleration of shortest-path computation,” IET Computers
and Digital Techniques, vol. 5, iss. 4, pp. 231-237, 2011.

[27] K. E. Batcher, “Sorting Networks and Their Applications”, in AFIPS
Proc. of Spring Joint Computer Conference, vol. 32, pp 307-314, 1968.

[28] D. Tong and V. K. Prasanna, “Dynamically Configurable Online Statis-
tical Flow Feature Extractor on FPGA,” in Proc. of High Performance
Extreme Computing Conference (HPEC), pp. 1-6, 2013.

[29] “DDR3 SDRAM MT41J128M16 - 16 Meg × 16 × 8 Banks,”
http://www.micron.com/products/dram/ddr3-sdram, Micron Technol-
ogy, 2006.

[30] G. Yuan and T. Aamodt, “A Hybrid Analytical DRAM Performance
Model,” in Proc of the 36th annual international symposium on Com-
puter architecture, 2009.

