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Abstract—Sorting is a key kernel in numerous big data appli-
cation including database operations, graphs and text analytics.
Due to low control overhead, parallel bitonic sorting networks
are usually employed for hardware implementations to accelerate
sorting. Although a typical implementation of merge sort network
can lead to low latency and small memory usage, it suffers
from low throughput due to the lack of parallelism in the final
stage. We analyze a pipelined merge sort network, showing its
theoretical limits in terms of latency, memory and, throughput.
To increase the throughput, we propose a merge sort based
hybrid design where the final few stages in the merge sort
network are replaced with “folded” bitonic merge networks.
In these “folded” networks, all the interconnection patterns are
realized by streaming permutation networks (SPN). We present a
theoretical analysis to quantify latency, memory and throughput
of our proposed design. Performance evaluations are performed
by experiments on Xilinx Virtex-7 FPGA with post place-and-
route results. We demonstrate that our implementation achieves
a throughput close to 10 GBps, outperforming state-of-the-art
implementation of sorting on the same hardware by 1.2x, while
preserving lower latency and higher memory efficiency.

I. INTRODUCTION

A fundamental kernel in many applications in database
operations, graphs, text analytics, signal processing, and bi-
ological computing is sorting [1], [2], [3], [4], [5]. Merge
sort and bitonic sort [2] have both been implemented on
parallel architectures. Merge sort can sort a list of N elements
using a merge tree of depth logN , however at the root of
the tree no parallelism can be exploited due to serial nature
of the algorithm. Bitonic sort, however, is a more practical
solution to exploit high parallelism [6], [7], [8], which can
sort N elements using log2 N stages in O(log2 N) time
using O(N log2 N) comparators. FPGAs offer a desirable
platform for implementation of sorting architectures due to
effective trade-off between energy and performance. The easy
reconfiguration capabilities of FPGAs has inspired several
sorting network architectures to be embedded in hardware [3],
[9], [6], [10], [11], [8] . However, as the problem size N
becomes large it becomes more difficult to realize the entire
network on hardware due to limited amount of resources
on FPGA. In the era of Big Data, due to ever-growing
problem size, streaming architectures have come into picture.
Therefore stream-oriented approach becomes necessary, which
are typically characterized by small stream payload, access to

small local memories and high data rate flow. Achieving a high
throughput in these architectures, and hence, high bandwidth
utilization is a primary goal along with low-latency, memory-
efficiency and energy-efficiency.

An implementation of merge sort on FPGA is done in
[12], where the acceleration of sorting is aimed to speed up
join operations in databases. It consists of pipelined stages,
where each of the earlier stages have access to two buffers. A
merge unit in each stage is responsible for reading p elements
from each buffer and output the first p sorted elements of 2p
elements. The throughput of a typical pipelined merge sort
implementation is bottlenecked by the throughput of of final
stage in the pipeline. To deal with this limitation, they use a
high bandwidth node at the final stages. They have shown 5.7x
improvement over software in terms of bandwidth utilization.
Although, high throughput is reported, there is no theoretical
guarantee of getting highest possible throughput. Recently,
an FPGA implementation of bitonic sort [13] was shown to
achieve a throughput of p for data parallelism p and problem
size N , while requiring memory 6N and latency 6N/p. The
design was built upon a fully pipelined streaming permutation
network folded to accommodate sorting problem size that is
larger than data parallelism. Inspired by [12] and [13], we set
forth to find a provably optimal architecture that will optimize
throughput, and provide theoretical guarantees of the efficiency
of our proposed solution.

Given N elements to be sorted coming in a streaming
fashion, and a data parallelism of p, we propose to sort these
elements using a hybrid design. Without loss of generality,
we assume both N and p are powers of 2. In this design the
earlier stages consist of serial merge units and final few stages
consist of bitonic merge unit. The hybrid design enables high
throughput due to the bitonic merge units while preserving
the low logic and memory consumption of serial merge. The
contributions of the paper are the following:
• We prove some fundamental limits of pipelined imple-

mentation of serial merge sort.
• We present an analysis of the proposed high throughput

hybrid design and find the optimal number of serial merge
and bitonic merge stages.

• We show that our design outperforms the state-of-the-
art [13] for all practically achievable data-parallelism in



terms of latency and memory consumption, and produces
the optimal throughput.

• We demonstrate through experiments that our design
produces a higher throughput, while utilizing fewer
BRAMs than state-of-the-art design, thus providing a
more memory-efficient solution at a lower latency.

II. ARCHITECTURE

Problem definition: The sorting problem consists of re-
ordering an N -element sequence. The input sequences are
stored in the external memory. With an available data par-
allelism of p (2 ≤ p ≤ N), p keys are fed into the design in
each clock cycle.

Before we propose our architecture, we explore the theoreti-
cal limitations of a simple merge sort network, that would later
assist us in making certain design decisions to engineer lower
latency, higher throughput, and memory-efficient design.

A. Serial Merge: Fundamental Limits

We start by presenting an analysis of an architecture for
serial merge sort for sorting n elements (for sorting the entire
sequence, n = N ) with data parallelism p. The logical view of
the merge sort architecture is shown in Figure 1. Every stage
has access to two memory buffers from where the elements are
read, sorted and written to the buffers at the lower stage. We
assume that a merge unit in each stage can read two sorted lists
and output the first p sorted elements of the merged list in f(p)
cycles. For the low throughput design in [12], f(p) = 1+log p
1. Also to start merging, “stage-0” provides p sorted elements
to the input buffers of stage-1. Assume that this is done in
g(p) clock cycles. For instance, if bitonic sort is used to sort
the p elements, then g(p) = (log p)2. We build our analysis
on the following lemma.

Lemma 1: The smallest p elements of two non-empty sorted
lists of which the first x and y elements are known, can be
found correctly if min{x, y} ≥ p.

Fig. 1. Overview of the merge sort tree, with each merge unit capable of
reading and writing p elements at a time.

1All logarithms in this paper are to the base 2.

In a hypothetical implementation, suppose we have a pro-
cessing element (PE) at every stage that can operate on one
merge unit at a time, traveling from left to right in the tree
reading and spitting sorted elements to be read by the next
stage. Consider a merge unit that is responsible for merging
two lists of size n/2 into a single list of size n. Since, the PE in
the previous stage is going from left to right, the merge unit in
the current stage cannot start while the left incoming neighbor
is not finished, as the right list would be empty (See Lemma
1). It follows from Lemma 1 that this merge unit can start as
soon as the right incoming unit outputs p elements. Therefore
main observation is that this merge unit starts to output the
first p elements f(p) cycles after the right incoming unit spits
its first p elements. Let TS(k, i) be the latency to output first p
elements by the ith merge unit from the left in the kth stage.
Then, it follows that TS(k, i) = TS(k − 1, 2i) + f(p).

Let K be the final stage. It is easy to see that K = log n
p .

We are interested in finding TS(K, 1).

TS(K, 1) = TS(K − 1, 2) + f(p)

= TS(K − 2, 4) + 2f(p) = TS(0, 2
K) +Kf(p) . (1)

Note that at stage-0, ith unit outputs p elements after i− 1
units are finished, and it has also sorted p elements. Since,
at this stage the sorting takes g(p) cycles for every set of p
elements, TS(0, i) = ig(p). Hence,

TS(0, 2
K) = 2Kg(p) =

n

p
g(p) . (2)

From Equations 1 and 2, we get

TS(K, 1) =
n

p
g(p) + f(p) log

n

p
. (3)

In fact, we can prove that the latency in Equation 3 is the
minimum in the merge sort architecture under our assump-
tions. Again, we invoke Lemma 1, and state that for any given
order of processing:

TS(k, i) = max{TS(k−1, 2i−1), TS(k−1, 2i)}+f(p) . (4)

Therefore,

TS(K, 1) = max{TS(K − 1, 2i− 1), TS(K − 1, 2i)}+ f(p)

= max{TS(K − 2, 4i− 3), T (K − 2, 4i− 2),

TS(K − 2, 4i− 1), TS(K − 2, 4i)}+ 2f(p)

=
2K

max
j−1
{TS(0, j)}+Kf(p) . (5)

max2
K

j−1{TS(0, j)} is the latency of that node where the merge
is performed last in stage-0, which is equivalent to Equation 2.
Hence, the latency given by Equation 3 is in fact the optimal.

For the memory requirement, we do not need as many
memory buffers for implementation in each stage as shown
in Figure 1. We note that a merge unit responsible of merging
two lists of size n/2 would require a memory of n/2 + p
(from Lemma 1). From the data streaming through the tree,
as soon as the merge unit observes these many elements it



can consume p, making room for p elements coming from
the previous stage. Therefore, stage-1 requires p+ p memory,
stage-2 requires 2p+p, and so on, until stage-K which requires
2K−1p+ p. Therefore, total memory requirement

MS(n, p) = (p+ p) + (2p+ p) + . . . (2K−1p+ p)

= p(1 + 2 + 4 + · · ·+ 2K−1) +Kp

= p(2K − 1) +Kp

= p(
n

p
− 1) + p log

n

p
= n+ p

(
log

n

p
− 1

)
(6)

Since each merge unit outputs p elements in every f(p)
clock cycles, the throughput is given by p

f(p) .
Now, if we utilize this merge-sort architecture to sort N

elements using data parallelism of p, the latency, memory and
throughput are approximately Ng(p)/p, N , and p/f(p), re-
spectively. While the design is memory efficient, the through-
put is low. To improve the throughput, we propose a hybrid
design in the following subsection.

(a) Replacing lower stages of serial merge with bitonic
merge

(b) Stages of bitonic merge

Fig. 2. The merge sort tree with a bitonic merge network in the lower stages.

B. Hybrid Network Design

The merge network has a low throughput (Equation ??),
compared to the data-parallelism p. To improve the throughput,
we propose to split the sequence in m parts and sort them in
parallel. This would require m PEs per stage. The outputs of
the merge subtrees can be fed to a bitonic merge network.
As p is the total data-parallelism, each of the subtrees has
a data-parallelism of p/m. Since each subtree delivers p/m

Fig. 3. An example of sorting a sequence of size N = 16 with data
parallelism p = 4 through Hybrid Design.

elements every f(p/m) clock cycles, the input to the bitonic
merge network is received at p/f(p/m) elements per cycles.
The input rate is maximized when p/m = 1 (and therefore
f(p/m) = 1 as it takes 1 cycle to find the maximum of
two elements). Therefore m = p. Each subtree requires
approximately N/m = N/p memory and has a latency of
N/m
p/m g(p/m) = N/p cycles. Memory required by p subtrees
is pN/p = N .

A bitonic merge unit that is responsible for merging two
sorted sequences of 2k has k+1 sub-stages, which for a naive
implementation would require (k+1)2k+1/p′, where p′ is the
data-parallelism available to that unit. However, with proper
pipe-lining, the latency can be reduced to 2k+1/p′ [13]. We
build the lower part of the network using these bitonic merge
units. The bitonic merge (BM) network has log p stages, of
which the first stage has p/2 BM units, second stage has p/4,
and the final stage has p/2log p = 1 unit. One BM unit which
has parallelism p/2k requires a memory of N

p/2k
and has a

latency of N/2k

p/2k
= N/p.

Therefore the total latency and memory consumption of the
BM network is given by

TB =

log p∑
k=1

N

p
=

N

p
log p (7)

And MB =

log p∑
k=1

p/2k
N

p/2k
= N log p. (8)

As a result the total latency of our design is TS + TB = (1+
log p)N/p (from Equations 3 and 7) and memory consumption
is MS+MB = (1+log p)N (from Equations 6 and 8). Figure 3
demonstrates the sorting through this design for a sequence of
size N = 16 with data parallelism p = 4. The sequence is split
into four sub-sequences and each sub-sequence is fed into one
serial merge tree. The outputs of these serial merge trees are
received by lower stages of bitonic merge units (BMUs). The
data parallelism for each serial merge tree is 1, i.e., 1 per sub-
sequence. The penultimate stage has two BMUs each with



Fig. 4. Implementation of the streaming pipelined architecture on FPGA

data-parallelism 2 and the last stage has data-parallelism 4.
Once the inputs are available, the serial merge units have a
latency of 1 cycle, as they only compare two elements and
and output the larger one. Latency of penultimate stage is
8/2 = 4 cycles and that of the final stage is 16/4 = 4 cycles.
We emphasize again that for implementation, the whole tree is
not synthesized in hardware. The tree is folded so that every
stage has at most p merge units.

Table I compares our hybrid design with serial merge and
HT Design. Hybrid design is superior to the HT Design [13]
when

1 + log p ≤ 6 =⇒ p ≤ 32. (9)

In fact p ≥ 32 may be impractical. Assuming 32 64-bit
elements being delivered every clock cycle at a clock rate of
200 MHz would require a memory bandwidth of 47.68 GBps,
which is very high for existing architectures.

TABLE I
COMPARISON OF DESIGNS FOR SORTING N ELEMENTS WITH

DATA-PARALLELISM p

Design Serial Merge HT Design Hybrid
Latency Ng(p)/p 6N/p (1 + log p)N/p

Memory N 6N (1 + log p)N

Throughput p/f(p) to p p p

C. Architecture Implementation

The mapping of our architecture is shown in Figure 4. We
assume that the sequence of size N to be sorted resides in
the external memory. The merge tree in Fig 2 is folded to fit
the available data parallelism. This is possible because, in a
given time, at most p merge units are active with a combined
data parallelism of p . The sequence is fed to the FPGA in a
streaming fashion, p elements in a clock cycle. The period of a
clock cycle is determined by the implementation of the design.
Data parallelism p is limited by the number of pins on the
FPGA device. The actual throughput then depends on the p,
operating frequency and width of one element. The stages are
realized using “compare-and-swap” (CAS) units [13], which
are implemented to act as merge units using LUTs, and stages
are pipelined using flip-flops. Each of the stages has access to
a block in BRAM. All the interconnection patterns are realized
by streaming permutation networks (SPN) [13].

III. EXPERIMENTAL RESULTS AND ANALYSIS
A. Experimental Setup

We implemented our architecture on Virtex-7 FPGA
(XC7VX690T, speed grade -2L). This device has 2940
BRAMs (each 18 Kbits) and 108300 slices. The designs
were synthesized and place-and-routed by Vivado 2014.2 [14].
The data parallelism was set to p = 4, 8 and 16 respectively.
The problem size ranges from 27 to 217. The following
performance metrics were used
Throughput: The number of byte sorted per second (GBps).
Computed as the product of number of elements sorted per
second and data-width per element.
Memory consumption: Measure of number of BRAMs used.
Latency: Time until the first p sorted element are output.
Memory efficiency: The throughput achieved divided by the
amount of on-chip memory used by the design (in bits).
Evaluated using a plot of throughput vs memory consumption.
A point on the top left of memory-efficiency plot would be
considered favorable as it provides high throughput with low
memory consumption.
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Fig. 5. Comparison of our hybrid design with the baseline and HT Design
in terms of BRAM utilization.

B. Results

We compared the performance of our design with HT
Design, which implements bitonic sort network on the same
FPGA device. HT Design has been shown to be superior to
the previous state-of-the-art methods in terms of throughput
and several other performance metrics. Like our design, HT
Design also provides a guaranteed throughput of p elements
per clock cycle. It also claims to be a memory-efficient design.
We do not present any comparison with [12] as they have
performed their experiments on a more powerful platform,
and have not provided any theoretical analysis for a fair
comparison. For comparing our design with HT Design the
data parallelism was set to 4 and problem size was set to
1024, 4096 and 16384. Figure 5 shows the comparison in terms
of memory consumption. For N = 1024 and 4096, HT Design
is better. However, for N = 16384, hybrid design significantly
outperforms other designs. It can also be seen that BRAM
utilization of our design grows much slower than HT Design
making it more scalable for larger problem size N .

Figure 6 shows the memory-efficiency plot for the two
designs. The red triangles denote the points corresponding to
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our design while the blue squares are for HT Design for differ-
ent data-parallelism. Notice that points corresponding to our
design lie entirely on the top left, suggesting higher memory-
efficiency. Also notice that the best throughput obtained by
our design is higher than the one reported by HT Design.

Figure 7, 8, and 9 show the comparison in terms of latency
for data parallelism 4, 8, and 16, respectively. For all problem
sizes and data parallelism, the hybrid design achieves lower
latency than HT Design. The difference between their latency
diminishes as we increase p, which is expected from our
theoretical analysis (See Table I). While the dependence of
HT Design on p is approximately given by the factor 6/p,
for our design it is (1 + log p)/p. Therefore, ratio of their
latencies is 6 : (1 + log p). Hence, increasing p from 4 to 16
decreases the ratio. Since, we report the latency in ms rather
than cycles, this ratio can be different from the theoretical ratio
due to different clock rates of the designs.

We performed several experiments to study the throughput
obtained by our design with varying data parallelism. Fig-
ure 10(a) shows the results. The horizontal dotted line at 12.8
GBps represents the upper bound of throughput determined
by assuming 200 MHz clock rate for p = 16 32-bit elements.
Note that the optimal throughput is also restricted by the I/O
pins on the FPGA device bringing the upper bound lower than
12.8. Observe that the throughput remains approximately same
over all problem sizes for a given p. The slight decrement
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in throughput is due to the decrease in clock rate when the
resource utilization goes above a certain value. At p = 16
throughput is 9.54 GBps, which is 1.2x of the best throughput
obtained by HT Design (8 GBps).

We also measured the utilization of BRAMs in our design.
The results are shown in Figure 10(b). As expected, BRAM
utilization increases with problem size, however it remains
significantly low. We also explored the utilization of LUTs and
Registers in our design. It can be observed that the number of
LUTs and number of registers first drops and then increases.
The initial drop is due to the fact that when problem size is
small no BRAMs are used and more LUTs and registers are
utilized for memory. After the drop, the increment happens
very slowly with respect to the problem size. This suggests that
for a large sequence, the availability of LUTs and registers is
not the bottleneck, and the availability of BRAMs constraints
the size of the problem that can be sorted without making any
intermediate access to external memory.

IV. CONCLUSION

Sorting is a fundamental kernel of many Big Data appli-
cations. FPGAs provide energy-efficient solutions for imple-
menting such parallel pipelined architecture. Although merge
sort network is memory efficient, it poses a fundamental limit
on throughput because of the final node being the bottleneck.
Bitonic sort, on the other hand has the ability to provide high
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Fig. 10. Experimental results for varying data-parallelism.

throughput at the cost of more resources. We presented a
detailed analysis of merge network with pipelined stages, in
term of latency, memory, and throughput. Further, we show
that the throughput can be improved by replacing the final
log p stages with bitonic merge stages, and hence utilizing
the full data parallelism. The proposed design can be used
to achieve optimal throughput, and yet achieve high perfor-
mance in terms of latency and memory compared to state-
of-the-art design for all practical values of data parallelism.
The experiments demonstrate that our design outperforms the
state-of-the-art implementation of bitonic sorting on the same
device, in terms of throughput, memory consumption, latency,
and memory efficiency. In the future, we plan to improve the
implementation to incorporate other objectives such as inter-
connect complexity, logic consumption, and energy efficiency.
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