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Abstract Popular social networking sites have revolution-

ized the way people interact on the Web, enabling rapid in-

formation dissemination and search. In an enterprise, under-

standing how information flows within and between orga-

nizational levels and business units is of great importance.

Despite numerous studies in information diffusion in online

social networks, little is known about factors that affect the

dynamics of technological adoption at the workplace. Here,

we address this problem, by examining the impact of or-

ganizational hierarchy in adopting new technologies in the

enterprise. Our study suggests that middle-level managers

are more successful in influencing employees into adopting

a new microblogging service. Further, we reveal two distinct

patterns of peer pressure, based on which employees are not

only more likely to adopt the service, but the rate at which

they do so quickens as the popularity of the new technol-

ogy increases. We integrate our findings into two intuitive,

realistic agent-based computational models that capture the

dynamics of adoption at both microscopic and macroscopic

levels. We evaluate our models in a real-world dataset we

collected from a multinational Fortune 500 company. Pre-

diction results show that our models provide great improve-

ments over commonly used diffusion models. Our findings

provide significant insights to managers seeking to realize
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the dynamics of adoption of new technologies in their com-

pany, and could assist in designing better strategies for rapid

and efficient technology adoption and information dissemi-

nation at the workplace.
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1 Introduction

The importance of social networks on information spread

has been well studied [28,11,6,4], emphasizing particularly

on information dissemination. Traditionally, diffusion and

cascading behavior have been formalized as transmission of

infectious agents in a population, where each individual is

either infected or susceptible, and infected nodes spread the

contagion along the edges of the network. There are, how-

ever, differences between the way information flows, and the

spread of viruses. While virus transmission is an indiscrimi-

nate process, information transmission is a selective process.

Information is passed by its host only to individuals the host

thinks would be interested in it. Diffusion models heavily

rely on the premise that contagion propagates over an im-

plicit network, the structure of which is assumed to be suf-

ficient to explain the observed behavior. However, the struc-

ture of the underlying network has to be learned [11] from a

plethora of historical evidence, i.e. cascades. Although dif-

fusion theory brings up the importance of friendship rela-

tions, adoption behavior is instead examined on the premises

of the behavior of the entire population [6].

In online social networks in particular, where individuals

tend to organize into groups based on their common activi-

ties and interests, it has been hypothesized that the network
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structure (friendship or interaction) affects the way informa-

tion spreads, and that adoption quickens as the number of

adopting friends increases [3]. However, many times a node

activation is not just a function of the social network but

also depends on many other factors like imitation [28]. This

has lead to the development of epidemiology models [14]

and computational approaches that are based on thresholds

models [12], deterministic or stochastic [24]. Each agent has

a threshold that, when exceeded, leads the agent to adopt an

activity. When the threshold is applied within a local neigh-

borhood [25,23], local models emerge [17]. Instead, global

diffusion models perform thresholding to the whole popula-

tion [6].

Unlike online social networks where users create links

to others who are similar to them (a phenomenon known

as homophily [20]), or whose contributions they find inter-

esting [27,19], in a corporate environment, employees form

“bonds” not because of similar “tastes” but due to tasks at

hand (i.e. a function to be completed or an organizational

need) or because of reporting-to relationships (i.e. team mem-

bers reporting to their supervisor). In this sense, there is no

explicit “social network”, however, formal structures such

us the organizational hierarchy may provide hints of influ-

ence at the workplace. As illustrated in Figure 1, the formal

organization structure may constrain influence patterns, but

informal communication outside the boundaries and restric-

tions of this formal “backbone” may also affect how users

behave and ultimately how the diffusion network changes

and grows.

The dynamics of information diffusion on a corporate

environment are yet unknown and may be entirely differ-

ent from online social networks. The interplay between for-

mal structure and information propagation at the enterprise

has been recently examined [26]. The authors found that so-

cial and organizational structure significantly impacts the

spreading process of emails, while at the same time indi-

cating context independence. In our study, on the contrary,

we do not know the chain of infections, i.e. we do not ob-

serve who influences whom (i.e., middle layer in Figure 1).

Instead, we empirically quantify the role of reporting-to re-

lationships and local behavior (teammates), as well as the

effect of global influence (overall popularity) in the spread

of technology adoption at the workplace. Prior work that

quantifies influential users within a social network includes

[10]. Influence models typically do not take the topology of

the network into account, and when they do, they make as-

sumptions about the details of the underlying dynamic pro-

cess taking place on the network. In our empirical study, we

characterize individual dynamics and influence, and exam-

ine the spread of adoption through the formal organizational

hierarchy.

Contrary to online social networks, microblogging ser-

vices for enterprises are primarily designed to improve intra-

Fig. 1 Technology adoption dynamics at the workplace. Dynamics on

and of the formal network structure are strongly coupled. The bottom

layer illustrates the formal organization hierarchy, where black arrows

represent “reporting-to” relationships between employees. The direc-

tionality of edges go from lower level employees up to the company

CEO. The middle layer depicts the flow of influence between people

in the same group (red arrows), top-down influence from supervisors

to team members (dashed, dark red arrows) and vice versa, bottom up

team members’ influence on their supervisors (dashed purple arrows).

The upper layer, depicts observed adoption dynamics, i.e., a potential

propagation tree.

firm transparency and knowledge sharing. However, the adop-

tion of such collaborative environments presents certain chal-

lenges to enterprises [13]. [30] provided a case study on the

perceived benefits of corporate microblogging and barriers

to adoption. Key factors influencing microblogging systems

adoption in the workplace include: privacy concerns, com-

munication benefits, perceptions regarding signal-to-noise

ratio, and codification effort, reputation, expected relation-

ships, and collaborative norms [13]. The work, closest to

ours, [26] examined email threads and the formal network

(e.g. hierarchical structure) imposed by a large technology

firm. They argued that the spreading process (to whom and

how fast people forward information) can be well captured

by a simple stochastic branching model. In our study, on the

contrary, we do not know the chain of infections (i.e. we do

not observe who influences whom). Instead, we use the out-

come of our empirical study to quantify influence as a result

of individual pressure from supervisors towards their team

members, as well as an effect of global popularity.

To characterize the adoption mechanism of new tech-

nologies at the workplace, we propose two simple and intu-

itive agent-based computational models with the least pos-

sible number of parameters. We emphasize on accurately

modeling the cumulative number of adoptions over time,

rather than trying to predict which node in the network will

infect which other nodes. In this sense, we not only model

the influence each node has on the diffusion (microscopic
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modeling), permitting user behavior to vary according to the

behavior of the general crowd, but we also provide a simple

mechanism by which adoption rate rises and decays over

time (macroscopic dynamics). For our study, we have ac-

quired the organizational hierarchy of a Fortune 500 multi-

national company. In addition, we gathered adoption logs of

the internal microblogging service, which resembles Twit-

ter, during the first two years of adoption of the service in the

enterprise. This dataset allows us to empirically characterize

individual dynamics and influence, and examine the spread

of adoption through the hierarchy. The company did not offi-

cially initiate usage of the microblogging service. Rather, it

was independently initiated by an employee, in the begging

of July, 2010. It was not promoted or even mentioned in any

formal corporate communications. Our dataset does not con-

tain information with respect to growth and invitations. We

can only speculate that growth was achieved through email

and word of mouth invitations.

The rest of the paper is organized as follows. Sect. 2 pro-

vides an overview of the most relevant related work which

has been undertaken in this area. We describe our dataset in

Sect. 3. We study the impact of hierarchical structure on the

way adoption spreads in Sect. 5, and we examine employ-

ees behavior with respect to overall popularity of the mi-

croblogging service in Sect. 6. To capture the macroscopic,

temporal dynamics of adoption at the workplace, we pro-

pose two novel models that effectively model user behavior

with respect to the entire population and individual influence

in Sect. 4. In Sect. 7, we provide extended social simulation

results of our agent-based computational models of adop-

tion at the workplace. Finally, we discuss the findings of our

work and draw our conclusions in Sect. 8.

2 Related Work

The importance of social networks in information dissemi-

nation has been thoroughly investigated [11,4,6]. In online

social networks in particular, where individuals tend to orga-

nize into groups based on their common activities and inter-

ests (a phenomenon known as homophily [20]), it has been

hypothesized that the network structure (friendship or inter-

action) affects the way information spreads, and that adop-

tion quickens as the number of adopting friends increases

[3]. However, many times a node activation is not just a

function of the social network but also depends on many

other factors like imitation [28]. This has lead to the de-

velopment of epidemiology models [14] and computational

approaches that are based on thresholds models [12], deter-

ministic or stochastic [24]. Each agent has a threshold that,

when exceeded, leads the agent to adopt an activity. When

the threshold is applied within a local neighborhood [25,23],

local models emerge [17]. Instead, global diffusion models

perform thresholding to the whole population [6].

Diffusion models heavily rely on the premise that con-

tagion propagates over an implicit network, which has to

be learned from a plethora of historical evidence, i.e. cas-

cades. User characteristics such as topical or latent inter-

ests have to be considered in user-to-user content transfers,

whereas users’ homophily shapes the structure of the net-

work through which information flows. In a corporate en-

vironment, employees form “bonds” not because of similar

“tastes” but due to a task at hand (i.e. a function to be com-

pleted or an organizational need) or because of reporting-

to relationships (i.e. team members reporting to their su-

pervisor). [11] examined the problem of inferring the un-

observed directed network over which cascades propagate

in online social networks. Unlike their approach, which re-

quires traces of numerous different explicit cascades to be

given as inputs, we solely rely on one implicit sample to in-

fer influence between employees at the workplace. In fact,

many influence models have been proposed to rank actors

within a social network [10]. However, the underlying dy-

namic process occurring on the network may not be appli-

cable to the organizational hierarchy. Influence models typ-

ically do not take the topology of the network into account,

and when they do, they make assumptions about the details

of the underlying dynamic process tacking place on the net-

work. In our empirical study, we characterize individual dy-

namics and influence, and examine the spread of adoption

through the formal organizational hierarchy.

Even though most prior work has mainly focused on

publicly available online social networks, microblogging ca-

pabilities have penetrated the enterprise as well [30]. Con-

trary to online social networks, microblogging services for

enterprises are primarily designed to improve intra-firm trans-

parency and knowledge sharing. However, the adoption of

such collaborative environments presents certain challenges

to enterprises [13]. [30] provided a case study on the per-

ceived benefits of corporate microblogging and barriers to

adoption. Key factors influencing microblogging systems adop-

tion in the workplace include: privacy concerns, communi-

cation benefits, perceptions regarding signal-to-noise ratio,

and codification effort, reputation, expected relationships,

and collaborative norms [13]. The work, closest to ours, [26]

examined email threads and the formal network (e.g. hierar-

chical structure) imposed by a large technology firm. They

argued that the spreading process (to whom and how fast

people forward information) can be well captured by a sim-

ple stochastic branching model. In our study, on the con-

trary, we do not know the chain of infections (i.e. we do

not observe who influences whom). Instead, we use the out-

come of our empirical study to quantify influence as a result

of individual pressure from supervisors towards their team

members, as well as an effect of global popularity.
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Fig. 2 The organization hierarchy of the company we consider in our

experiments presents a tree like structure (CEO, the root of the tree, is

at the center).

3 Dataset

The company we studied is a Fortune 500 multinational com-

pany, which operates outside the IT-sector. Our dataset con-

sists of a snapshot of the organizational hierarchy, contain-

ing over 12000 employees. Figure 2 shows that the orga-

nization hierarchy of the company has a tree like structure.

Our dataset further contains employees’ join logs during the

first two years of adoption of a microblogging service from

the enterprise (July 2, 2010 to March 22, 2012). During this

time period, the number of employees who join the service

increases dramatically. Even though, not all employees have

joined the microblogging service by the time we obtained

the raw data for this paper, a broad spectrum of employees

(9,421 users) had joined the microblogging service (77.35%

of hierarchy dataset), sharing 19,371 status updates and ex-

changing 20,370 replies [8]. The functionality of the mi-

croblogging service resembles that of Twitter, imposing no

restrictions on the way people interact or who they chose to

follow. As in Twitter, users author messages in the enterprise

microblogging service, and form threaded discussions. The

main purpose of the corporate microblogging service is to

promote and enable collaboration and sharing within the en-

terprise. The ultimate goal of the corporate microblogging

service is to become the primary platform for asynchronous

collaboration and colleagues’ communication.

The company did not officially initiate usage of the mi-

croblogging service. Rather, it was independently initiated

by an employee, in the begining of July, 2010. It was not

promoted or even mentioned in any formal corporate com-

munications. Our dataset does not contain information with

respect to growth and invitations. We can only speculate that

growth was achieved through email and word of mouth invi-

tations. More details on the topological properties of the cor-

porate microblogging service, its dynamics and characteris-

tics, and the interplay between its social and topical compo-

nents, users’ homophily and activity, as well as latent topical

similarity and link probability can be found at [8].

4 Modeling Technology Adoption at the Workplace

What is the underlying hidden process that drives adoption

of new technologies at the workplace? Our goal here is to

find a generative model that generates the observed adoption

process of the new microblogging service at the enterprise

we are studying, given the organizational hierarchy. We aim

for simple and intuitive modeling with the least possible

number of parameters. Even though our model is applicable

to other social datasets which may exhibit different types of

enterprise hierarchies, we restrict our discussion to the set-

ting of microblogging adoption at the workplace, were we

track employees joining the service over a period of time.

Prior work on modeling complex networks in social, bi-

ological and technological domains has focused on repli-

cating one or more aggregate characteristics of real world

networks [21]. Here, we take a different approach. Instead

of having a target network to generate, we let individual

influence and peer pressure dynamics determine the diffu-

sion process of adoption of the new microblogging service

over the formal organization hierarchy. We formally intro-

duce two models that account for influence effects imposed

by the formal organizational structure. We compare our re-

sults to the true epidemic and we show that the estimates

produced by our models are consistent with the real obser-

vations (See Section 7).

Model Formulation. The underlying process of influencing

employees towards adopting the microblogging service is

unknown and non trivial. Here, we assume that when an

employee chooses to join the corporate microbloging ser-

vice, she then has some influence on the employees who di-

rectly report to her, according to the formal organizational

chart (as shown in Figure 1). Some of these employees will

choose to join, which will in turn influence some of their

team members into joining themselves and so on. Therefore,

we assume that an employee’s decision to join depends on:

1) direct influence by her manager, and 2) social influence

resulting from the overall popularity of the microblogging

service in the enterprise. Here, we assume that employees

are not susceptible to peer influence by their teammates (i.e.,

we assume independence between teammates’ choices). We

revisit this hypothesis in (Section 6.1).

We study the problem of progressive diffusion, where

the employees who adopt the microblogging service become
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“infected” and do not become “healthy” again (i.e. employ-

ees do not unsubsribe the service once they join). As time

progresses, employees become “infected” when they adopt

(join) the microblogging service. We only observe the time

tu when a particular employee joins the microblogging ser-

vice. We posit that manager u urges her team members to

join the microblogging service. A directed link e ju exists if

employee j directly reports to u according to the formal or-

ganizational hierarchy. If j joins the microblogging service

after u, we call her join an “influenced join”. One can think

of “influenced joins” as an implicit indicator of the underly-

ing “influence” network. We define nt as the number of em-

ployees that have joined the microblogging service by time

t, i.e., the number of infections at time t. We aim to fit the

number of infections over time.

A natural question is how to model the number of infec-

tions over time, nt , as a function of individual “influence”

functions due to reporting relationships, and general influ-

ence as a function of the service popularity. Next, we de-

scribe how we incorporate these dynamics into our model.

4.1 Complex Contagion Model

We begin by selecting a single node from the organization

hierarchy to start the infection. We chose the seed node to be

the exact employee that first registered to the microblogging

service according to our dataset. At each time step, the virus

can spread as follows. Each node that was infected at time

t−1 has n chances to infect the n employees that directly re-

port to her, each with probability p, at time t. Once a node is

infected, it cannot be infected again. An infected employee

is not allowed to infect her direct supervisor, so following

this strategy, the virus can only propagate towards the leaves

of the hierarchy tree. Once all infected nodes are examined,

healthy nodes have the chance to be “randomly” infected by

observing the general popularity of the microblogging ser-

vice up to time t − 1. For nt−1 total infected nodes at time

t −1, the probability of “random” infection at time t is rt−1.

Our model incorporates the following dynamics:

– Employees are influenced by their managers to join the

microblogging service.

– Employees have multiple chances to get infected (join).

Once an employee is infected, she cannot recover, i.e. an

employee does not unsubscribe from the service.

– As employees observe others adopting the microblog-

ging service, they are not only more likely to adopt the

service, but the rate at which they do so quickens as the

popularity of the service increases.

4.1.1 Mathematical Formulation

Next, we present an efficient procedure to estimate the ex-

pected outcome of the model, given probability p, a formula

Table 1 Notation

ui Employee at level i

ei Number of employees at level i

Nu Number of employees directly reporting to manager

u

N
j

u ≤ Nu Number of employees who directly report to man-

ager u and have joined the microblogging service

α(u)≤ N
j

u Number of employees that report to u and have

joined after her

q(u)≤ N
j

u Number of team members of u and have joined be-

fore her

ι(u) Influence score of manager u

ιλ Aggregated influence score of managers with λ team

members

ιi Aggregated influence score of level i

nt Number of infections at time t

p Probability of a manager infecting a team member at

any time t

rt Probability of random infection at time t +1

Ai,t Probability of employee ui getting infected at time t

Bi,t Probability of employee ui getting infected at or be-

fore time t

Ei,t Indicator function, which value is 1 if employee ui

is infected at or before time t

Si
m,τ Tuple representing the state of employees from mth

level to the ith level at time τ: (Em,τ ,Em+1,τ , . . . ,Ei,τ )
ζ i

m,τ State representing (Em,τ = 0,Em+1,τ = 0, . . . ,Ei,τ =
0)

Zi
m,τ Probability of the zero suffix state ζ i

m,τ

for the random infection rt and the initiator of the virus epi-

demic. Table 1 summarizes the notation used in our model-

ing.

Consider a hierarchy of employees U = (u1,u2, . . . ,ul),

where the subscript denotes the level of an employee, i.e., ui

reports to ui−1, and l is the bottom level. Let Ai,t denote the

probability of employee ui being infected at time t. Also, let

Bi,t be the probability of ui being infected at or before time

t. Then the following relation holds:

Bi,t =
t

∑
τ=0

Ai,τ . (1)

Suppose the probability of random infection at time t is

rt−1, where rt denotes the probability of random infection as

a function of number of infections at time t−1. Let Ei,τ be a

random variable, which is 1 if ui is infected at or before time

τ , and 0 otherwise. For a given level i, we define state Si
m,n =

(Em,τ ,Em+1,τ , . . . ,Ei,τ), for 1 ≤ m ≤ i. We use these states

to study the spread of infection and find the probability of

infection of ui. Note that,

Bi,t = P(Ei,t = 1) = 1−P(Ei,t = 0) = 1−P(Si
i,t = (0)) . (2)

The probability P(Ei,t = 0) of ui not being infected till

time t, depends on the state of infection of its manager at
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Fig. 3 Zero-Suffix State Transitions.

time t − 1. Intuitively, (Ei,t = 0) can be reached only from

states (Ei−1,t−1 = 0,Ei,t−1 = 0) and (Ei−1,t−1 = 1,Ei,t−1 =
0). Observe that,

P(Ei−1,t−1 = 1,Ei,t−1 = 0)

=P(Ei,t−1 = 0)−P(Ei−1,t−1 = 0,Ei,t−1 = 0)

=P(Si
i,t = (0))−P(Si

i−1,t−1 = (0,0)) . (3)

In order to find Bi,t , it is sufficient to look only at specific

states. We define these states below:

Definition 1 A Zero-Suffix State ζ i
m,τ is the state that repre-

sents (Em,τ = 0,Em+1,τ = 0, . . . ,Ei,τ = 0).

Zero-Suffix State ζ i
m,τ is reachable either from ζ i

m−1,τ−1

or from Si
m−1,τ−1 = (Em−1,τ−1 = 1,ζ i

m,τ−1), as demonstrated

in Figure 3. Particularly, we have the following transitions:

– From ζ i
m−1,τ−1 : All random infection attempts on em-

ployees {um, . . . ,ui} failed. This happens with probabil-

ity (1− rτ−1)
i−m+1.

– From (Em−1,τ−1 = 1,ζ i
m,τ−1): All random infection at-

tempts on employees {um, . . . ,ui} failed. The attempt of

um−1 to infect um also failed. This happens with proba-

bility (1− p)(1− rτ−1)
i−m+1.

Therefore,

P(ζ i
m,τ) = P(ζ i

m,τ |ζ i
m−1,τ−1)P(ζ

i
m−1,τ−1)+

P(ζ i
m,τ |(Em−1,τ−1 = 1,ζ i

m,τ−1))P((Em−1,τ−1 = 1,ζ i
m,τ−1)) .

(4)

Let Zi
m,τ = P(ζ i

m,τ). Then, Equation 4 becomes

Zi
m,τ =Zi

m−1,τ−1(1− rτ−1)
i−m+1+

(Zm,τ−1 −Zm−1,τ−1)(1− p)(1− rτ−1)
i−m+1 . (5)

Equation 5 is valid for n > 1. However, the same equa-

tion applies for Zi
0,τ , such that Zi

0,τ = Zi
1,τ . Finally,

Bi,t = 1−Zi
i,t . (6)

To calculate Bi,t for all i, we recursively evaluate Zi
i,t us-

ing Equation 5. Then rt is updated based on Bi,t values, after

which we can proceed for time t +1, and so on.

One important observation is that the same set of equa-

tions apply to all top-down paths (u1,u2, . . . ,ul) in the em-

ployee hierarchy. Assuming that all paths have the same ini-

tial conditions, all employees at a given level are equivalent.

Let ei denote the number of employees at level i. Then the

number of infections at time t is given by the following for-

mula:

nt = ∑
i

eiBi,t . (7)

Recall, that the probability of random infection rt , is a

function of the number of infections at time t −1.

4.1.2 Initial Conditions

A difference in Bi,t values can arise for two different paths,

which have different initial conditions. The following cases

are possible depending on who is infected at t = 0: (i) no

infection at all, (ii) the employee at the topmost level (root)

is infected, or (iii) a non-root employee is infected. Next, we

elaborate on each case.

Infection at the topmost level (root). If the root of the tree is

infected, then all paths share the same initial condition, i.e.,

B1,0 = 1 and Bi,0 = 0,∀i 6= 1. This is due to the fact that the

root is the first node in every top-down path (u1,u2, . . . ,ul).

Therefore, in this case, all employees at level i are governed

by the same probability of infection. Hence, ∀i,

Zi
1,0 = 0, and Zi

k,0 = 1,∀k such that 2 ≤ k ≤ i .

No infection. If no employee is infected at the beginning,

the same initial condition applies to every top-down path,

i.e., Bi,0 = 0,∀i. Hence, the probability of infection of any

employee is dependent only on the level. Therefore, ∀i,

Zi
k,0 = 1,∀k such that 1 ≤ k ≤ i .



Computational Models of Technology Adoption at the Workplace 7

Fig. 4 When the initiator is not at the root, we break the tree into two

trees that we know how to deal with.

A non-root employee is infected. In this case two differ-

ent paths can have different initial conditions depending on

whether the path contains the infected employee or not. Since

the infected employee can no longer be infected by her man-

ager, we cut the link between this employee and her manager

to get two trees T1 and T2 (See Figure 4), which resemble

the previous two conditions (i.e., infection at the topmost

level, and no infection). Tree T1 is rooted at the original root,

whereas T2 is rooted at the infected employee. Our analyti-

cal model applies to each tree, hence, we compute the model

in parallel for each tree, i.e., solve Equation 5 for both trees

at time t. Note that we calculate rt−1 based on the total num-

ber of infections in both trees. To summarize, the following

formulas hold for each tree:

T1 :

(Zi
1,0)1 = 0,(Zi

k,0)1 = 1,∀k,2 ≤ k ≤ i

T2 :

(Zi
1,0)2 = 0,(Zi

k,0)2 = 1,∀k,1 ≤ k ≤ i

, where (·)1 and (·)2 denote quantities calculated over

trees T1 and T2 respectively.

For initial conditions (i) and (ii), the number of infected

nodes at time t is given by Equation 7. In this case how-

ever, because of the differentiation between the two trees,

the number of infected nodes at time t is calculated using

the following formula:

nt =
maxdepth(T1)

∑
i=1

(ei)1(Bi,t)1 +
maxdepth(T2)

∑
i=1

(ei)2(Bi,t)2 (8)

4.2 Complex Cascade Model

The Complex Contagion model spreads the adoption of the

microblogging service over the formal organization hierar-

chy as a virus, which leaves a trail whenever employees are

infected by their supervisors (i.e., local influence), or when

employees are influenced by the overall popularity of the

microblogging service (See Section 4.1). To model this we

used parameter p, which measures how infectious managers

are, and parameter rt , which controls the effect of overall

growing popularity of the microblogging service over time.

Here we take an alternate approach based on which, nodes

“choose” to become infected after examining their imme-

diate neighborhood (which includes both the manger and

employees directly reporting to them) or after examining

the overall growing popularity of the microblogging service

over time.

We start with the organization hierarchy, and two colors.

Let red represent employees who have joined the microblog-

ging service and blue those that have not. We choose a single

node to be the seed user, i.e. have color red. All other users

are painted blue. As before, we chose the seed node to be

the exact employee that first registered to the microblogging

service according to our dataset. At each time step, nodes

painted blue (not infected), calculate the payoff of picking

the color red over blue, and decide their color f (color) as

follows:

f (color) =

{

red, α nred
n

> β nblue
n

blue, otherwise
, (9)

where nblue denotes the number of blue neighbors, nred

denotes the number of red neighbors and n = nblue + nred

is total number of neighbors. Parameters α and β = 1−α

denote the rewards for choosing red and blue accordingly.

Once a node is painted red, it cannot change color again. Fi-

nally, nodes have the chance to be “randomly” infected by

observing the general popularity of the microblogging ser-

vice up to time t − 1. As in our contagion model, for nt−1

infected nodes at time t −1, the probability of “random” in-

fection at time t is rt−1.

5 Influence Estimation

Let Nu be the total number of employees directly reporting

to manager u. Among these N employees, let K be the num-

ber of employees who joined the microblogging service af-

ter their manager u, and k be the total number of employ-

ees who joined the microblogging service after their man-

ager u within the first ‘n draws’. We counted the number

of employees who joined the microblogging service after

their manager and found that there are three classes of em-

ployees: (i) employees who did not join the microblogging

service even if their manager did (10.94%), (ii) employees

who did join the microblogging service before their manager

(36.04%), and (iii) employees who did join the microblog-

ging service after their manager (53.01%).

The stochastic process according to which employees di-

rectly reporting to u choose to join the microblogging ser-

vice is described by the “urn model” [10], in which n balls

are drawn without replacement from an urn containing N
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Fig. 5 Average number k of employees that joined the microblogging

service after their manager, within the first n samples vs the total num-

ber K of employees that joined the microblogging service after their

manager, and approximation.

balls in total, of which K are white. The probability P(X =

k|K,N,n) that k of the first n employees reporting to man-

ager u, joined the microblogging service after their manager

purely by chance is equivalent to the probability that k of the

n balls drawn from the urn are white. We set n = 8, calcu-

lating the number of employees that joined the microblog-

ging service after their manager within the first 8 draws. This

probability is given by the hypergeometric distribution:

P(X = k|K,N,n) =

(

K
k

)(

N−K
n−k

)

(

N
n

) . (10)

We plot the average number of employees that joined the

microblogging service after their manager during the first

n samples as a function of the number of employees that

joined the microblogging service after their manager. Fig-

ure 5 shows the result. The scatter plot is approximatedby

the Weibull cumulative distribution (k̂ = 24(1−e−(0.02K)0.84
)

[10]. We use this expression to estimate the expected num-

ber k̂ of employees to join the microblogging service after

their manager within the first n joins for a manager with K

employees reporting to her that joined the microblogging

service after her. Using Equation 10, we calculate the prob-

ability that k̂ employees joined after their manager purely by

chance. We found that for K > 3, this probability is exceed-

ingly small. Since it is exceedingly highly unlikely for em-

ployees to adopt the microblogging service after their man-

ager purely by chance, we conclude that the number of em-

ployees who joined after their manager u is a prominent in-

dicator of u’s influence.

5.1 Influence Score

Let N
j

u denote the number of employees who directly re-

port to u and have joined the microblogging service. Let

α(u) ≤ N
j

u be the number of employees that report to u

and have joined the microblogging service after u, and let

q(u) ≤ N
j

u be the number of employees that report to u and

have joined the microblogging service before u. While a

high number of employees reporting to u that have joined

the microblogging service after u implies that u has high

influence, a high q value is an indicator that one lacks in-

fluence. We propose an adaptation of the z-score [29], as a

measure that combines the number of employees that have

joined before and after their supervisor. Influence score (“ι-

score”) measures how different this behavior is from a user

with “random” influence, i.e. a manager the employees re-

porting to whom join after him with probability p = 0.5 and

before him with probability (1− p) = 0.5. We would ex-

pect such a random influencer to have N
j

u ∗ p = N
j

u/2 team-

members who joined after their supervisor with a standard

deviation of

√

N
j

u ∗ p∗ (1− p) =

√

N
j

u/2 [29]. The ι-score

measures how many standard deviations above or below the

expected “random” value a manager u lies:

ι(u) =
α −N

j
u/2

√

N
j

u/2

=
α(u)−q(u)
√

α(u)+q(u)
. (11)

If the employees reporting to manager u have joined the

microblogging service after u about half of the time, u’s ι-

score will be close to 0. If they join after u more often than

not, u’s ι-score will be positive, otherwise, negative. We also

calculate the time-independent ι-score of employees using

Equation 11, with the difference that α(u)≤ N
j

u is the num-

ber of employees that have joined the microblogging ser-

vice (irrespective of time) and q(u) ≤ N
j

u is the number of

employees that have not joined the microblogging service.

Above, we measured influence at the level of individual em-

ployees, assuming that influence scores are fixed in time,

but that they differ from employee to employee. A more so-

phisticated model of influence might include some small in-

crease (similarly for decrease) in influence score as a func-

tion of time. We stick to the simpler model for simplicity,

and because our fundamental result is not sensitive to such

details (see Section 7).

Next, we examine the correlation between ι-score of man-

agers and the number of employees reporting to them (team

size), hoping to get a clearer picture of the relationship be-

tween the two quantities.

Definition 2 We define the average ι-score of managers with

λ employees reporting to them as

ιλ =
1

|u : λu = λ | ∑
u:λu=λ

ι(u), (12)
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where ι(u) is the influence score of manager u.

We now turn our attention to the impact of organiza-

tional levels. Here, we assume that influence scores are char-

acteristic of a particular level at the organization hierarchy

tree, are fixed in time, and are the same for all employees at

that particular level. To compute the average influence score

for hierarchy level i, we first find employees m that belong

to level i. We then find the total number of employees N that

directly report to managers in level i. Quantities α and q are

defined as before, with the difference that they now operate

on the total number of employees N that directly report to

managers in El . Finally, we use Equation 11 to calculate the

influence score for each level.

Definition 3 We define the average ι-score of managers at

level i as

ιi =
∑level(u)=i(α(u)−q(u))
√

∑level(u)=i(α(u)+q(u))
. (13)

Levels are ascending from the CEO (level 1) to lower

levels. Level 13, which represents bottom level employees

in our dataset, contains employees with no team members

reporting to them.

5.1.1 Relation to Complex Contagion Model

The probability of a randomly selected team member v being

infected after her manager u is ∑k P(v infected at time t >
k|u infected at time t = k)P(u infected at time t = k). Assum-

ing that all employees are equivalent, i.e., they are described

by the same probabilities Ai,t , and applying our mathemati-

cal formalism for the team members of u, we get:

α(u) = Nu ∑
k2>k1

Ai,k1
Ai+1,k2

. (14)

Similarly, for q(u), we get:

q(u) = Nu ∑
k1>k2

Ai,k1
Ai+1,k2

. (15)

The above formulas are valid only when there is no ini-

tial infection, or if the initiator is the root (see Section 4.1.2).

When the initiator is not the root, we cut the link between

the initiator and its manager, thus splitting the tree into two

trees. The α(u) and q(u) values for each node are then cal-

culated separately for both trees.

It is straightforward to show that,

α(u)

Nu

= ∑
k

Ai,k(Bi+1,T −Bi+1,k) , (16)

and

q(u)

Nu

= ∑
k

Ai,kBi+1,k−1 , (17)

where T is the total time. Hence, the influence score of

employee u only depends on u’s level i and the number of

u’s team members. This is shown in Equation 18, where the

fraction in the right hand side depends only on level i (see

Equation 16 and Equation 17), and so we denote it by f (i):

ι(u) =
α(u)−q(u)
√

α(u)+q(u)
=
√

Nu

(α(u)−q(u))/Nu
√

(α(u)+q(u))/Nu

=
√

Nu f (i) . (18)

The average influence score of managers with λ employ-

ees reporting to them is then computed as follows:

ιλ =
1

|{u : Nu = λ}| ∑
u:Nu=λ

ι(u)

=
1

|{u : Nu = λ}| ∑i
∑

level(u)=i,
Nu=λ

√
λ f (i)

=
√

λ
∑i Ni,λ f (i)

∑i Ni,λ
, (19)

, where Ni,λ denotes the number of employees at level

i who manage λ employees. Finally, the average influence

score of managers at level i is given by the following for-

mula:

ιi =





√

∑
level(u)=i

Nu



 f (i) =

(

√

∑
λ

λNi,λ

)

f (i) . (20)

5.1.2 Empirical Estimation of Influence

Figure 6(a) shows the average ι-score of managers with λ

employees reporting to them, that have joined the microblog-

ging service. Here, we focus on managers that have them-

selves joined the microblogging service, so that a time com-

parison of joining times is meaningful. A clear increasing

trend is evident, providing a supporting evidence on top-

down influential flow through the formal organizational hi-

erarchy. Figure 6(b) shows the average time-independent ι-

score of managers with λ employees reporting to them. Fig-

ure 6(b) further shows different plots of the average time-

independent ι-score of managers based on the premise that

they have joined the microblogging service themselves or

not. The average time-independent ι-score of managers that

have not joined the microblogging service exhibits more fluc-

tuations due to greater data sparsity. In every case, the aver-

age time-independent ι-score of managers that have joined

the microblogging service is slightly higher than for man-

agers that have not joined the service. Even though we can-

not at the time explain the reasons why this effect appears,

the average time-independent ι-score increases for both classes
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Fig. 6 (a) Average ι-score of managers with λ team members that have

joined the microblogging service. (b) Average time-invariant influence

of managers, who have themselves joined the microblogging service

(similarly for those who have not joined), with λ team members.

as the team size λ increases, clearly indicating a strong cor-

relation between the two quantities. We explain this trend as

a prominent indicator of influence imposed by managers to

employees reporting directly to them.

The organizational levels impact is shown in Figure 7.

Level 13 has no influence score, thus it does not appear

in Figure 7. Most levels exhibit positive influence scores,

with the exception of higher levels, that are closest to the

CEO. Particularly, level 3, exhibits negative influence on

average. As before, we measured influence at the granu-

larity of hierarchical levels, assuming that influence scores

are fixed in time, but that they differ from level to level. A

more sophisticated model of influence might include some

small increase (similarly for decrease) in influence score

as a function of time, and also introduce a balancing fac-

tor based on the number of total employees at a level and
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Fig. 7 Average influence score as a function of hierarchy level.

the number of total employees reporting to them. While it

is intuitive to assume that higher levels in the organization

would have higher impact due to the report-to relationships

involved, our study suggests that middle levels are more suc-

cessful in influencing employees lying lower in the hierar-

chy. Even though we do not have supporting evidence from

other use-cases, we conjecture that middle-level managers

are the most influential with respect to “convincing” others

to adopt new technologies (in this case the new microblog-

ging service). This assumption can be further supported with

evidence from other datasets. We intend to experiment with

more datasets in future work.

6 Accounting for Peer Pressure

So far, we have assumed that an employee can be infected

either by her direct supervisor or randomly, as a result of the

overall popularity of the microblogging service in the en-

terprise. Classic models of social and biological contagion

(e.g. [12,22]) and observational studies of online contagion

[2,3,7,18] predict that the likelihood of infection increases

with the number of infected contacts. However, recent stud-

ies suggest that this correlation can have multiple causes that

might be unrelated to social influence processes [4]. In our

observational study of microblogging service adoption at the

workplace, this assumption suggests two alternative model-

ing scenarios. According to the first scenario, an employee

is more likely to adopt the microblogging service if more

of her teammates join the service (Section 6.1). According

to the second scenario, an employee is more likely to adopt

the microblogging service as its popularity increases (Sec-

tion 6.2). Our goal in this section is to estimate the probabil-

ity of adoption for each user given the actions of their team-

mates (local neighborhood) or overall popularity (global in-

fluence).
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6.1 Independent Cascade Model

Influence of friends is generally modeled to be additive. For

instance, the independent cascade model (ICM) [17] states

that a node has n independent chances to become infected,

where n is the number of infected “friends”. In our case,

every node can be infected only once, and once infected, it

stays infected. Because of the structure of the organizational

hierarchy, employee u’s “friends” may include either (i) her

teammates alone, or (ii) her teammates and her direct super-

visor. Starting with a single employee who has joined the

microblogging service, employees susceptible to infection,

decide to join the microblogging service with some proba-

bility that depends on the number of their infected “friends”.

We model the influence employees receive by their “friends”

as multiple exposures to an infection according to ICM [17]

as pICM = 1− (1−λ )n.

We measured this quantity on our dataset, by isolating

the employees in two classes: a) those who had exactly n

“friends” joining the microblogging service and did not join,

and b) those who had exactly n “friends” joining the mi-

croblogging service before they themselves joined. We found

that the likelihood of adoption when no “friends” have joined

is remarkably high (0.7581 when considering teammates only

and 0.6807 when the supervisor is also considered). In both

cases, the likelihood of adoption becomes 1 when at least

one “friend” has joined the service. We conclude that the re-

lationship between the number of “friends” that have joined

and likelihood of joining most probably reflects heteroge-

neous popularity of the microblogging service across teams

[4]. Therefore, the naive conditional probability does not di-

rectly give the probability increase due to influence via mul-

tiple joining “friends” [4].

6.2 Exponential Growth Model

We studied earlier the effect of multiple teammates and neigh-

bors of an employee u on the probability of u to join the

microblogging service. Even though we discovered a pos-

itive correlation, we argued that this correlation might be

an effect of multiple causes. We hypothesized that the more

popular the microblogging service is for a team, the more

likely it is for multiple team members to adopt it. Further,

as employees observe others adopting the microbloggig ser-

vice, they may not only be more likely to adopt the service,

but the rate at which they do so may quicken as the popular-

ity of the service increases. Here, we explore this hypothesis

further.

We start by splitting the employee population in two

pools: those who have already joined the microblogging ser-

vice and those who have not. Assuming an exponential growth

model, the rate at which employees join the service should

follow an increasing trend. Intuitively, as more people adopt
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Fig. 8 Probability (calculated empirically from our dataset) an em-

ployee joins the microblogging service given that n employees have

adopted the service before. Solid lines depict probability estimates cal-

culated with the exponential growth model.

the microblogging service, a certain “buzz” around the ser-

vice begins to unfold, increasing the probability of others

joining the service as well. Figure 8 shows the probability

that an employee will join the microblogging service as a

function of the service popularity. Interestingly, Figure 8

reveals that the probability of employees joining the mi-

croblogging service is in fact neither constant nor monotoni-

cally increasing (similarly decreasing). Instead it exhibits in-

creasing and decreasing regimes over time. This observation

suggests that more complex dynamics take place over the or-

ganizational hierarchy. One possible explanation of this phe-

nomenon is that whenever influential managers join the mi-

croblogging service, a period of “influenced joins” follows

(Section 4). In essence, this provides a hint that the adop-

tion mechanism follows a snowball effect propagating the

epidemic in a top to bottom fashion, followed by a random

infection that exposes new portions of the population.

Since, the probability of joining given the number of to-

tal infections incorporates the probability of an “influenced

join”, we fit three exponential growth models. The first model

(blue line) provides an “optimistic” expected probability of

adoption. Contrary, the “pessimistic” model (red line) yields

a probability of adoption that increases marginally as the to-

tal number of people who join the service increases over

time. Finally, the average fit (green line) shows how the

probability of adoption follows on average an increasing

trend as a function of previous adoptions.

7 Experiments

In this section, we validate our models by extensive numer-

ical simulations. We begin with the organization hierarchy
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of 12,170 employees, and infect the true initiator of the epi-

demic (the employee who first joined the microblogging ser-

vice). Each time step represents a day. We let our models

run for 600 steps, or until all employees are infected. We

compare the obtained epidemics against the real cumulative

number of adoptions extracted from our dataset. We exper-

imented with various values of infection probability for our

contagion model and parameters α and β for our cascade

model. In the end, we decided to use p = 0.023 for our

contagion model, and α = 0.82 and β = 0.18 in our cas-

cade model. We simulated our models 10 times and report

our findings. We compare three properties of the simulated

epidemics as opposed to the true number of adoptions over

time: (i) overall number of infections, (ii) cumulative num-

ber of infections over time, and (iii) total time required to

infect N employees. We find that our models’ estimates are

consistent with the real observations.

7.1 Baselines

We compare our proposed models’ ability to approximate

the true cumulative distribution of infected users with three

models, which have shown superior performance in the task

of information and innovation diffusion in social networks.

Particularly, we consider the Susceptible-Infected Model [15],

the Independent Cascade Model [17], and the Diffusion Model

proposed by [1,5,9].

– Susceptible-Infected Model (SI) [15]: According to the

SI model, each node can infect her neighbors, each with

probability pSI . We considered the Susceptible-Infected-

Susceptible (SIS) and Susceptible-Infected-Resistant (SIR)

models [14], as well as the Susceptible-Infected-Dead

(SID) model [16] as alternatives to model social con-

tagion, as these models are widely used in prior work.

These models however do not appropriately capture the

semantics of adoption, according to which, an employee

that joins the microblogging service does not unsubscribe,

thus returning to the susceptible state, or becoming resis-

tant. Further, our analysis did not provide any supporting

evidence for the hypothesis that infected employees do

not infect others, thus modeling them as “dead” is not

appropriate in this case.

– Independent Cascade Model [17] (see Section 6).

– Diffusion Model (DM) [1,5,9]: Each individual’s will-

ingness to adopt the microblogging service at time t, U t
u,

is modeled by three main elements: the service’s stand-

alone benefit, network effects, and the idiosyncratic reser-

vation utility. Formally, U t
u = Qu + γN

(t−1)
u −Ru, where,

Qu represents the service’s intrinsic value perceived by

employee u, which is not affected by whether other peo-

ple adopt it or not. N
(t−1)
u represents the proportion of

adopters in u’s neighborhood at time t − 1, and γ de-

notes the relative importance against stand-alone bene-

fits. Ru indicates u’s inherent reluctance or reservation

about adopting the new service.

7.2 Empirical Evaluation

First, we study simulation results produced by the baselines,

i.e. the SI, ICM and DM models. Figure 9(a) shows the true

user adoption curve, compared to simulation results pro-

duced by the SI model, for varying infection probability val-

ues. We notice that simulation models do not fit the real

cumulative number of adoptions over time. High infection

probability values result in sudden outbreaks, whereas very

small probability values result in smooth cumulative distri-

butions that do not exhibit the statistical properties of the

true cumulative number of infected users. The total number

of infections and the time required to infect the whole body

of employees is also inconsistent with the observed adoption

curve.

Figure 9(b) shows simulation results produced by the

ICM model, for varying infection probability values. Clearly,

the simulation results do not fit the real cumulative number

of adoptions over time. In fact, this model results in sudden

epidemics, which also fail to cover the entire population, and

eventually come to a halt. No new infections are achieved

due to the fact that each exposure has a single chance of

success. If the result of an exposure is no infection, that con-

nection is not examined again. Hence if the root of a subtree

is not infected, the infection cannot proceed further down

the subtree. The simulation results corroborate our conjec-

ture that the naive conditional probability does not directly

give the probability increase due to influence via multiple

joining “friends” [4] (see Section 6.1).

Figure 9(c) shows simulation results produced by the

DM model, for varying numbers of initial adopters. When

the first true adopter is selected to start the infection, the

epidemic progresses slowly. Instead, when five true adopters

are used, the epidemic is substantially speeded up. When the

seed set contains seven of the true adopters, the simulation

result adequately fits the observed adoption curve, without

however exhibiting the statistical properties of the true cu-

mulative number of infected users. Overall, this model too

fails to capture the hidden dynamics of technology adoption

at the workplace.

Next, we show the outcome of ten runs of our complex

contagion model (see Section 4.1) in Figure 9(d). The figure

also shows the average of the ten runs. Notice a very good

alignment between the reality and simulated epidemics in all

cases. Not all runs result in the total number of true infec-

tions by the time threshold. Further, a few runs overestimate

the cumulative number of infections, resulting in rapid epi-

demics. Unlike the baselines, our complex contagion model
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Fig. 9 True and predicted cumulative number of employees who have adopted the microblogging service (i.e. infected users). Time is measured in

days. Solid line curves represent the outcome of (a) the SI model for various probabilities of infection, (b) the ICM model for various probabilities

of infection, (c) the DM model for various numbers of initial adopters, (d) ten runs of our complex contagion model (see Section 4.1), and (e) ten

runs of our complex cascade model (see Section 4.2).

fits more naturally the true cumulative number of infected

users in all cases. Particularly, the simulation results remark-

ably follow the speedups and slowdowns of adoption over

time, exhibiting non-linear characteristics as the true adop-

tion curve. Some runs diverge from the true curve after about

400 days. However, running the model numerous times and

averaging the results seems to adequately approximate the

statistical properties of the true cumulative number of in-

fected users. We conclude that this is a direct result of the

asymmetric contagion due to the hierarchical influence to

adoption and the integration of peer pressure due to growing

popularity of the microblogging service at the enterprise.

Finally, we present the outcome of ten runs of our com-

plex cascade model (see Section 4.2), and their average, in

Figure 9(e). In this case too, simulated epidemics match

the reality very well. Similar to the epidemics produced by

our contagion model, not all runs result in the total num-

ber of true infections by the time threshold. Further, smooth

regimes of adoption, speedups and slowdowns of the accep-

tance of the microblogging service from employees is appar-

ent. Unlike our contagion model, this model slightly over-

estimates the cumulative number of infections. In all cases

however, we find that this model too fits rather closely to

the true cumulative number of infected users, replicating the

statistical properties of the empirical epidemic.

7.3 Analysis

Using our complex contagion mathematical formulation, we

now study the expected behavior of the model. Our goal is to

provide insights on the model and the expected average be-

havior of a technological adoption “epidemic” at the work-

place. In Figure 10, we compare the average of 50 simu-

lations results produced by our model in NetLogo, with our

theoretical expected outcome. To cover the three cases stated

in Section 4.1.2, we do the comparisons with three different

initial conditions: initiator at the topmost level (Figure 10(a)),

no initiator (Figure 10(b)), and non-root initiator (Figure 10(c)).

Note how the theoretically predicted behavior matches the

simulation results in all the three cases. When the initiator is

at the topmost level, the number of infections rises quickly.

On the other hand, when the initiator is at level 5, the adop-

tion curve seems to be very similar to the case of no initiator.

This is due to the fact that the adoption caused by the initia-
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(a) The tree structure
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(b) Adoption curve for the toy example

Fig. 11 An example where infecting the CEO may not lead to the

fastest adoption. The parameters are p = 0.01 and rt = exp(0.001nt −
5). Here, due to a small value of p, if one starts from the level 1, it takes

some time to reach level 2. On the other hand node ‘2’ at level 2 has

many children (team members), and so it is more likely to infect one

of its children.

tor propagates only in her social capital, i.e., her subtree in

the hierarchy. The size of the subtree of the initiator at level

5 is very small compared to the total size of the organiza-

tion (∼ 5.6%), and hence the behavior is very similar to the

case of no iniatator. However, this does not necessary im-

ply that starting with the CEO will always lead to the fastest

adoption in the organization. Figure 11 shows a toy example

where initiating the infection through CEO may not lead to

the fastest adoption.

Figure 12 compares the true number of infections over

time with the epidemic predicted in theory (p = 0.023, rt =
exp( 0.000247nt −8.792)). In the theoretical framework the

original initiator is infected at t = 0. Unlike the baselines

(see Section 7.2), our theoretical complex contagion model

nicely fits, on average, the true cumulative number of infec-

tions over time. We also compare the probability of adoption

given n people have already joined (Figure 13). The curve

from the data has noticeable peaks which are determined by

the specific employee who got infected. These peaks could

have occured anywhere else depending on the actual adop-

tion sequence. Since our formulation captures the average
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Fig. 12 True vs. expected number of infections.
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Fig. 13 Probability of infection when n employees are already in-

fected.

behavior, the curve obtained by the theory lacks these peaks,

but is still able to capture the general increasing trend.

To study the initiator’s effect on the spread of infection

we fixed parameters p and rt and varied the first infected

individual. In our “what-if” analysis, we selected for each

level the employee with the greatest social capital, i.e., the

node with the largest subtree, as the most prominent node

to have the greatest effect with respect to influence. Figure

14 shows the result. As expected, starting from the topmost

level leads to the fastest spread of infection. This is because

apart from the random infection, which is equally likely to

infect any employee at a given time, an infected node can

influence only its subtree. The effect of level of initiator is

not very prominent at the lower levels. The adoption curves,

when the initiators are in level 6 through level11 (not shown

in the figure), all lie in the small region between the adoption

curves of level 5 and level 12 initiator.
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(a) Initiator at the topmost level

0 100 200 300 400 500 600
0

2000

4000

6000

8000

10000

12000

Time

N
u

m
b

er
 o

f 
in

fe
ct

io
n

s

 

 

Theory

Simulation

(b) No initiator

0 100 200 300 400 500 600
0

2000

4000

6000

8000

10000

12000

Time

N
u

m
b

er
 o

f 
in

fe
ct

io
n

s

 

 

Theory

Simulation

(c) Initiator at level 5

Fig. 10 Comparison of Complex Contagion Model simulation results (averaged over 50 runs), with theoretically predicted outcome.
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Fig. 14 Effect of level of initiator on the number of infections over

time.

Next, we study the effects of parameters p and rt on the

spread of infections. First, we varied the value of param-

eter p, while calculating rt according to the formula rt =

exp( 0.000247nt −8.792). Then, we varied rt while keeping

the value of p constant (p = 0.023). The difference in in-

fection for varying p is most pronounced when the initiator

is at level 1. However, for the case of varying rt , it is least

prominent when the initiator is at level 1. This shows that if

the CEO is the initiator, the influence is more important, in

the sense that it causes faster infection spread. Otherwise if

the initiator is at lower level, random infection is more im-

portant. This behavior is expected because if we have a high

value of p with the CEO being the initiator, the infection

will reach all the employees very quickly. But if the initiator

is at a lower level it can affect only its subtree irrespective

of the value of p, and further adoption relies on the random

infection.

As we explained above, the level of initiator plays an

important role in the spread of infection. Therefore, it is nat-

ural to wonder if it also affects the influence of a node (man-

ager). The intuition behind this claim is that if the topmost

level employee is infected initially, due to top-down nature

of influence in our model (parameter p), many nodes may

get positive ι−scores. On the other hand, if the initiator is

at the lowest level of the hierarchy, it will not be able to di-

rectly influence anyone. Since there are many nodes in the

middle levels, the random infection is more likely to infect

them first, resulting in negative ι−scores for the top and low

levels.

Figure 17 shows the effect that the level of the initiator

has on the aggregate influence scores ιi and ιλ . We find that

less levels exhibit positive influence scores as the level of the

first infected individual increases. It is also clear that mid

level managers are more influential in all cases. The level

with the maximum influence sifts slightly as the level of the

first infected individual increases, but overall, levels 4 to 8

are the most successful in achieving “influenced joins” in all

cases. Finally, the influence scores show an increasing trend

on average, as the number of team members increases. This

result is consistent with our observations based on the true

data (see Figure 6(b) and Figure 7 in Section 5.1.2).

8 Conclusion

In this paper, we studied the effect of the formal organiza-

tional structure, to the adoption mechanism of a microblog-

ging service at the enterprise. We addressed the factors that

govern the process of adoption at both microscopic and macro-

scopic levels. We found, microscopically, that employees’

tendency towards adopting the new microblogging service

is influenced by their direct supervisors (dependency on the

network structure). We proposed ι-score as a prominent in-

dicator of influence imposed by managers on their teams and

we demonstrated that middle level managers are on aver-

age more successful in promoting the adoption of the new

service. Further, we empirically measured employees’ like-

lihood of adopting the new microblogging service with re-

spect to the behavior of the general crowd. We revealed two

distinct patterns, that capture the adoption likelihood incre-
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(c) Initiator at level 5

Fig. 15 Effect of parameter p on the number of infections over time.
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(c) Initiator at level 5

Fig. 16 Effect of parameter rt on the number of infections over time.
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Fig. 17 Average ι-score with different levels of initiator.

ment as a function of the overall service popularity among

the employee population. We incorporated our findings into

two intuitive and simple adoption mechanisms, which cap-

ture both the local and global influence, accurately repro-

ducing the adoption process at the macroscopic level. Pre-

diction results show that our models provide great improve-

ments over commonly used diffusion models. Our findings

have important implications to enterprises’ understanding of

the mechanisms driving adoption of new technologies, and

could assist in designing better strategies for rapid and ef-

ficient technology adoption and information dissemination

within the corporation.

A limitation of our study is that we estimate causal ef-

fects only within the formal organizational chart, due to the

fact that we are unable to observe the actual adoption “cas-

cade” (i.e. who really influences whom). We are planning to

further evaluate our results with extended surveys and tar-

geted interviews, as well as incorporate more datasets in fu-

ture work. In future work, we plan to enhance our model

in various dimensions. First, in the real world topologies
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other than tree structure may exist. We therefore plan to ad-

dress the more general problem of influence over an arbi-

trary graph. Second, we plan to extend our models to allow

for influence scores to vary over time, as well as incorpo-

rate different roles individual assume in the adoption pro-

cess, accounting for influence variations as a function of em-

ployees’ level in the organization hierarchy. Third, we would

like to investigate the effect of network evolution (e.g. lay-

offs, or new hires) on influence, since one’s influence may

intuitively increase with seniority in the company. Finally,

it would be interesting to study adoption dynamics in the

presence of competing technologies.
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