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Abstract Understanding how information flows in online

social networks is of great importance. It is generally dif-

ficult to obtain accurate prediction results of cascades over

such networks, therefore a variety of diffusion models have

been proposed in the literature to simulate diffusion pro-

cesses instead. We argue that such models require exten-

sive simulation results to produce good estimates of future

spreads, while at the same time requiring training over ob-

served data to learn the parameters that they incorporate into

the various influence mechanisms that drive diffusion. In

this work, we take a complimentary approach. We present a

generalized, analytical model of influence in social networks

that captures social influence at various levels of granularity,

ranging from pairwise influence, to local neighborhood, to

the general population, and external events, therefore captur-

ing the complex dynamics of human behavior. We demon-

strate that our model can integrate a variety of diffusion

models. Particularly, we show that commonly used diffu-

sion models in social networks can be reduced to special

cases of our model, by carefully defining their parameters.

Our goal is to provide a closed-form expression for the prob-

ability of infection for every node in an arbitrary, directed

network at any time t. However prior work in the literature

has shown that exact computation of infection probabilities

is #P-hard. We make an independence assumption about the

infection events of a node’s incoming neighbors, which re-

sults in our formula being an approximation. We quantita-

tively evaluate the approximation quality of our analytical
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solution as compared to numerous popular diffusion models

on real-world datasets and a series of synthetic networks.

We then develop an efficient method for influence maxi-

mization, where unlike most present approaches, we assume

that diffusion spreads not only via the edges of the underly-

ing network, but also through temporal functions of external

out-of-network processes. We empirically evaluate our ap-

proach and compare it against state of the art approaches on

real-world large-scale networks.

Keywords Analytical framework · Computational models ·
Diffusion models · Dynamical systems · Evolutionary

models · Information cascades · Influence maximization

1 Introduction

With the proliferation of online social networks, researchers

have tried to model, understand and make predictions of dif-

fusion processes [9,6,3,16], such as the diffusion of innova-

tions [34,7] and word-of-mouth recommendations [21]. Ex-

isting models of spreading processes in networks attempt to

model diffusion as a result of social influence, i.e., the more

influential a user is the wider the spread [31]. Diffusion is

modeled using a network structure with static or dynamic

edge probabilities [21,22], which are estimated from past

observational data [6]. According to such models, each node

independently infects its neighbors with some probability,

and each infected node then propagates the infection in the

network. Even though this process captures individual influ-

ence (i.e., node-to-node), it ignores social influence effects

which appear as a result of neighborhood or global pressure

[7]. [31] proposed to mediate this problem by incorporating

the notion of social capital to characterize the network effect

in the influence process, whereas [7] presented agent-based

computational models, which quantified pairwise influence
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and global dynamics in the spread of technology adoption at

the workplace.

Two of the most widely used diffusion models are the

Linear Threshold Model (LTM) [15], and the Independent

Cascade Model (ICM) [21]. LTM assumes that a node gets

infected when the number of its infected neighbors exceeds

a threshold. According to ICM, each node has n independent

chances to become infected; n being the number of its in-

fected neighbors. ICM is closely related to the Susceptible-

Infected-Susceptible (SIS) and Susceptible-Infected-Removed

(SIR) models [18,17,19]. Furthermore, it was recently shown

that ICM and LTM are special cases of the Genetic Algo-

rithm Diffusion Model (GADM) [23]. GADM emulates so-

cial interactions through a tail-swap cross-over interaction

[16], assuming that social interactions are always pairwise.

In our work, we propose a model to capture not only pair-

wise influence, but also local neighborhood effects, aggre-

gate social behavior, and external factors, or a combination

of them.

Typically proposed methodologies for influence calcu-

lation and models of diffusion need extensive simulation re-

sults to be evaluated, usually by means of statistical analysis.

Instead, we devise a novel formulation of progressive diffu-

sion with minimum computational complexity. We provide

a generalized, analytical solution to the diffusion mecha-

nism that comprises of two processes unfolding over the net-

work simultaneously: (a) pairwise influence, and (b) pres-

sure from collective dynamics, which can be a result of lo-

cal social pressure, global influence, or external forces, or

a combination of the above. Our methodology is vertex-

centric, i.e., models each user separately, offering great flexi-

bility in terms of modeling personalized influence functions,

and allows for the use of time-dependent influence func-

tions. Note, that in this work, we are not concerned with

learning the parameters that drive the spread of infection

from observational data. While this aspect is important, it is

outside of the scope of this paper. To the best of our knowl-

edge, our work is the first to (a) enable analytical computa-

tion of complex, non-linear phenomena like influence, while

(b) considering multiple factors that can change over time,

without requiring extensive simulation runs to estimate the

propagation probabilities at the steady state. Our formula

explicitly and formally unites a rich class of popular diffu-

sion processes in social networks [34,21,22,6,7] as special

cases.

As an application of diffusion processes and propaga-

tion dynamics, we consider the problem of finding the small-

est possible set of k vertices of maximum total influence in

a given directed network under an infection spread model

M. This problem is primarily motivated by applications to

viral marketing, where the goal is to select individuals to

target as part of a marketing intervention strategy in order

to maximize subsequent cascade of product adoption [21].

Other applications include finding inoculation targets in epi-

demiology [28], opinion maximization [12,20] and efficient

gateway-finding in large-scale graphs [33]. The problem is

known to be NP-hard, so approximation algorithms must be

used [21,29]. Unlike most present approaches for influence

maximization in networks, we assume that diffusion spreads

not only from node to node via the edges of the underlying

network like an epidemic, but also through influence of ex-

ternal out-of-network processes such as mass media (e.g.,

newspapers, TV stations and online news sites). To address

the problem of influence maximization we propose a greedy

solution, which we empirically evaluate against state of the

art approaches on real-world large-scale networks. Our ex-

periments demonstrate the efficiency and practical utility of

our proposed algorithm.

The rest of the paper is organized as follows: Sect. 2 pro-

vides an overview of the most relevant related work which

has been undertaken in this area. We formally describe our

unified influence model in Section 3. We show how our model

can be reduced into popular models for influence propaga-

tion in Section 4. We verify our model’s generality by com-

paring it against extensive simulation results of other diffu-

sion models using a real life dataset and a series of synthetic

data. We present our quantitative evaluation results in Sec-

tion 5. In Sect. 6 we propose a greedy seed set selection algo-

rithm to maximize influence in social networks and evaluate

its performance against state of the art influence maximiza-

tion approaches. Finally, we discuss the findings of our work

and draw our conclusions in Sect. 7.

2 Related Work

In prior work, we presented a generalized, analytical model

of influence in social networks [30]. We argued that our

closed-form expression for the probability of infection for

every node in an arbitrary, directed network at any time t

captures social influence at various levels of granularity, rang-

ing from pairwise influence, to local neighborhood, to the

general population, and external events, therefore captur-

ing the complex dynamics of human behavior. The present

paper expands on our prior work both in breadth and in

depth. Particularly, we extend the analysis of our unified

model of influence in both real-world large scale social net-

work datasets as well as synthetic random networks. We

closely study the estimates produced by our analytical so-

lution and compare them against several popular diffusion

models. Subsequently, we perform a thorough and sound

analysis of our unified model with the purpose of charac-

terizing the quality of our approximation as a function of

network properties and model parameters, and we empiri-

cally confirm that the approximation error of our solution is

small and invariant of the topological and statistical proper-

ties of the undelying network. We apply our unified model
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to the problem of seed set selection with the goal of max-

imizing influence in social networks. We propose a greedy

solution based on our analytical solution and demonstrate

significant improvements in the total number of infections

with increasing seed-set sizes.

Information dissemination in online social networks has

been thoroughly studied [1,24,3,19,35,6]. Epidemic mod-

els [17] and computational approaches, such as threshold

models [15], deterministic or stochastic models [18,16], and

genetic algorithms [23] have been proposed. Out of the most

widely used diffusion models, the General Threshold Model

[21], the Linear Threshold Model [15], and the Independent

Cascade Model [21], have been shown to be equivalent [21].

Independent Cascade Model is also closely related to the

Susceptible-Infected-Susceptible and Susceptible-Infected-

Removed models [18,17,19].

Nearly all prior work attempts to model the diffusion

process over a network structure, with static or dynamic edge

probabilities, which are estimated from past observations.

Social influence models to quantify users’ influence in a so-

cial network have been proposed [2,27,31]. The role of net-

work structure in information dissemination, and diffusion

as a result of social influence was studied in [3]. [32] pro-

posed a model of topical affinity propagation to measure

influence at the topic level on large networks. Such prior

works assume that influence probabilities are given. [14]

proposed models to capture and learn influence in online

social networks, whereas [13] developed an approximation

algorithm for inferring networks of diffusion and influence.

External influence in networks has been considered in [27],

but in that case all nodes share the same probability of ex-

ternal influence. Furthermore, the focus of that study was to

infer the number of exposures incurred by external sources

and learn the exposure curve. In this regard, our work in-

troduces an important dimension to the diffusion process,

which in our case explicitly encompasses pairwise influence,

local neighborhood effects, aggregate social behavior and

external factors.

It has been shown that exact computation of infection

probabilities is #P-hard [8]. [10] proposed a randomized al-

gorithm for influence estimation in continuous-time diffu-

sion networks. [5] proposed several heuristics to calculate

the a posteriori infection probabilities for all nodes in a graph

for which all edge infection probabilities are given. Their

work fits the Independent Cascade model, which we show

to be a special case of our framework.

3 Analytical Model of Influence

In this section, we provide the description and mathematical

formulation of our proposed unification model of influence

in social networks. We model the social network as a di-

rected graph G = (V,E), where a node v ∈ V represents an

individual, and edge (v,u) ∈ E exists if v interacts with u (in

our context v influences u). For every node v, we define the

set of incoming neighbors Ni(v) = {u|(u,v)∈E}, and the set

of outgoing neighbors No(v) = {u|(v,u)∈ E}. Our goal is to

model the probability of infection for every node in the net-

work at any time t. Typically, in a diffusion process, a node

can exist in one of two states at a given time - infected or

susceptible. Here, we study the problem of progressive dif-

fusion, where nodes that are infected do not become healthy

again, i.e., they do not return to the susceptible state. Hence,

every node can be infected once, and once infected stays in-

fected. Healthy nodes cannot infect others.

3.1 Unified Model of Influence

We start with a seed set S ⊂ V of infected nodes at time

t = 0. The infection process proceeds in discrete time steps,

in which two types of influence unfold over the network

[7]. According to the first process, each infected node v at-

tempts to infect its neighbors (individual influence). Each

attempt of infecting node u∈ No(v) has a chance of success,

but the probability of infection p(v,u)(t) is pairwise and may

change over time. Note that we assume independence be-

tween infection attempts from multiple neighbors. The sec-

ond source of influence we consider is collective influence.

According to this process, each susceptible node u can be

infected with probability ru(t), independent of individual in-

fluence. This may include external factors [1,4,9], or exter-

nal sources of exposure [27], or the status of the incoming

neighborhood of u [7]. A couple of things should be noted

here. First, function ru(t) is node specific, and may be time

dependent. Second, there may be arbitrary number of col-

lective influence attempts on a node, as we assume ru(t) is

not conditioned upon the node already having undergone a

collective influence attempt or not. The process repeats until

a pre-specified stopping criterion is satisfied (e.g., number

of time steps elapsed, or fraction of infected nodes has ex-

ceeded some number).

3.2 Infection Probability Formula Under the Unified Model

Let Bu,t represent the probability of infection of node u by

the time t. Initial values {Bu,0} are either 0 or 1 depending on

the membership of u in the seed set. Let Ev,t denote the indi-

cator variable, which is 1 if node v is infected by the time t, 0

otherwise. To find the probability of a node u being infected

at time t, we consider an arbitrary ordering of its incoming

neighbor set Ni(u): < v1,v2, . . . ,vn >. Based on this, we de-

fine zero state probability at time t− 1: P0
sn,sn−1,...,s1

, where

superscript 0 denotes Eu,t−1 = 0. The subscript is a vector,

which elements si denote the value of Evi,t−1, and can take
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values in {0,1,∗}. si = 0 represents Evi,t−1 = 0, si = 1 de-

notes Evi,t−1 = 1, and si = ∗ indicates marginalization over

the state of vi, i.e., ‘Evi,t−1 = 0 or 1’. For instance, for a

node u with four neighbors, P0
0,1,∗,1 denotes the probability

P(Eu,t−1 = 0,Ev4,t−1 = 0,Ev3,t−1 = 1,Ev1,t−1 = 1). We begin

by calculating Bu,t in the special case of G being a tree, i.e.,

each node has at most one incoming neighbor.

Corollary 1 The infection probability of node u with parent

v in a tree is given by:

Bu,t = 1− (1− ru(t))
(

(1− pv,u(t))(1−Bu,t−1)

+pv,u(t)(1−Bv,t−1)
t−1

∏
k=1

(1− ru(k))
)

. (1)

Proof The probability of node u not being infected by time t

is P(Eu,t = 0) = 1−Bu,t . Either one of two things must have

happened for u not to be infected by time t. First, state Eu,t =
0 was reached from state (Ev,t−1 = 0,Eu,t−1 = 0) if and only

if collective influence ru(t) failed to infect u at time t. Intu-

itively, when the parent of u was not infected at timet−1, the

only chance for u to be infected at time t is through collec-

tive influence ru(t), with probability 1− ru(t). Second, state

Eu,t = 0 was reached from state (Ev,t−1 = 1,Eu,t−1 = 0), i.e.,

when the parent of u was infected at time t− 1, if and only

if collective influence was unsuccessful, and furthermore v

failed to infect u. As the two processes are independent, this

can happen with probability (1− ru(t))(1− pv,u(t)). It fol-

lows that,

1−Bu,t = P0
1 (1− ru(t))(1− pv,u(t))+P0

0 (1− ru(t))

= (1− ru(t))(P
0
1 (1− pv,u(t))+P0

0 )

= (1− ru(t))((P
0
∗ −P0

0 )(1− pv,u(t))+P0
0 )

= (1− ru(t))(P
0
∗ (1− pv,u(t))+P0

0 pv,u(t))) , (2)

where P0
∗ = P(Eu,t−1 = 0) = 1−Bu,t−1 and P0

0 = P(Eu,t−1 =

0,Ev,t−1 = 0). This means v and u were both susceptible at

time t−1. If v was also not infected by the time t−1, u can

only be susceptible because all collective influence till that

time failed, i.e., P0
0 = (1−Bv,t−1)∏t−1

k=0(1− ru(k)). We set

ru(0) = 1 if u ∈ S, 0 otherwise. Substituting the values of P0
∗

and P0
0 in Equation 2, results in Equation 1.

Next, we extend Equation 1 to a graph of any type. With-

out loss of generality, we focus on directed graphs, as undi-

rected graphs can be converted into their directed equivalent.

Lemma 1 The probability of a node u not being infected by

the time t is related to the zero state probabilities as follows

1−Bu,t = (1− ru(t))

∑
si∈{0,∗}

(

P0
sn,sn−1,...,s1

n

∏
i=1

(1− pvi,u(t))
δsi ,∗

n

∏
i=1

pvi,u(t)
δsi ,0

)

.

(3)

where δa,b = 1 only if a = b, 0 otherwise, is the Kronecker

delta function.

Proof When the number of incoming neighbors is one, Lemma 1

follows from Equation 2. Now, suppose the statement is true

for k≥ 1 parents. Consider a sequence xk =< sk,sk−1, . . . ,s1 >.

We look at the new terms that are added due to the inclusion

of vk+1. For ease of notation, let D(xk)= (1−ru(t))∏k
i=1(1−

pvi,u(t))
δsi ,∗∏k

i=1 pvi,u(t)
δsi ,0 . Equation 3 can be rewritten as

1−Bu,t = ∑
xn

P0
xn

D(xn) . (4)

We have assumed that this is true for n = k. The addition

of vk+1 affects P(Eu,t) in ways similar to those discussed in

Corollary 1, i.e., if Evk+1,t−1 = 1, then this new node fails to

infect u with probability (1− pvk+1,u(t)). On the other hand,

if Evk+1,t−1 = 0, node vk+1 does not have the ability to infect.

Formally, the new terms added are:

P0
1,xk

(1− pvk+1,u(t))D(xk)+P0
0,xk

D(xk)

=(P0
∗,xk
−P0

0,xk
)(1− pvk+1,u(t))D(xk)+P0

0,xk
D(xk)

=P0
∗,xk

(1− pvk+1,u(t))D(xk)+P0
0,xk

pvk+1,u(t)D(xk)

=P0
∗,xk

D(∗,xk)+P0
0,xk

D(0,xk) ,

which would generate the required terms in the right hand

side of Equation 4, when n = k+ 1. This indicates that the

statement is true for k+1 incoming neighbors. By induction,

Lemma 1 is true ∀n.

Theorem 1 An approximate probability of infection is given

by the recurrence relation:

Bu,t = 1−

[

(1−Bu,t−1)

(

∏
v∈Ni(u)

(1− pv,u(t)Bv,t−1)

)

+

(

∏
v∈Ni(u)

pv,u(t)(1−Bv,t−1)

)

(

t−1

∏
k=1

(1− ru(k))− 1+Bu,t−1

)

]

(1− ru(t)) . (5)

The approximation comes from assuming that the states

of infection of incoming neighbors of a given node u are in-

dependent, i.e., for two incoming neighbors vi and v j, events

Evi,t−1 = 0 and Ev j ,t−1 = 0 are independent. Next, we pro-

ceed with proving the Theorem.

Proof We attempt to find the zero state probabilities for se-

quence xn. When xn =< 0,0, . . . ,0 >, u and all nodes in

Ni(u) are susceptible, which means that collective influence

till t − 1 was unsuccessful. Further, at k = 0, ru(t) = 1 for

u ∈ S. In this case,

P0
0,0,...,0 =

t−1

∏
k=0

(1− ru(k)) ∏
v∈Ni(u)

(1−Bv,t−1) . (6)
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Any other sequence xn, which consists of at least one ∗ in

the i-th position, represents the state of u being not infected

by the state of its i-th neighbor. Given the state of u’s neigh-

bors, the conditional probability of u not being infected is

1−Bu,t−1. The zero state probability is then computed as

follows

P0
xn

= (1−Bu,t−1) ∏
si=0

(1−Bvi,t−1) . (7)

Combining Equations 4, 6 and 7, results in the following:

1−Bu,t

1− ru(t)
= (1−Bu,t−1)



 ∏
v j∈Ni(u)

(1− pv j,u(t))





(

∑
xn

∏
s j=0

(1−Bv j,t−1)pv j ,u(t)

1− pv j,u(t)

)

+

(

Bu,t−1− 1+∏
k

(1− ru(t))

)(

∏
v j

(1−Bv j,t−1)pv j ,u(t)

)

.

After simplification, the above equation reduces to Equa-

tion 5. This step completes the proof.

3.3 Complexity Analysis

The recurrence relation in Equation 5 requires inspection of

all incoming links to a node u, |Ni(u)|, at every time step.

Therefore, in order to evaluate Equation 5 for all nodes for t

time steps, the number of operations required is t ∑u O(|Ni(u)|)=

O(|E|t).

4 Reduction to Other Models

Our analytical formula of influence in social networks, of-

fers great flexibility in terms of modeling a variety of diffu-

sion processes. Specifically, popular diffusion models can be

reduced to special cases of the Unified Model, by carefully

defining the individual influence probabilities and collective

influence functions. We next describe few such reductions.

4.1 Complex Contagion Model

According to the Complex Contagion Model [7], infection

can be achieved at time t in two ways. First, each node that

was infected at time t−1 attempts to infect each of its outgo-

ing neighbors with probability p. Once a node is infected, it

cannot be infected again. Once all infected nodes are exam-

ined, healthy nodes have a chance of random infection based

on the popularity of the contagion at time t−1. Particularly,

for nt−1
i infected nodes by the time t− 1, the probability of

random infection at time t is given by an exponential growth

law: r(t) = exp(αnt−1
i − β ), where α and β are constants

[7].

Proposition 1 The Complex Contagion Model [7] can be

treated as a special case of the Unified Model (Section 3.1),

and hence it can be approximated by Equation 5, when pair-

wise individual influence is constant and time independent,

and collective influence is equivalent to random infection.

Proof (Reduction) We begin with Equation 5. We model in-

dividual influence as

pv,u(t) = p,∀v,u, t . (8)

Substituting collective influence with the random infection

factor results in

ru(t) = r(t) = exp(α ∑
u

Bu,t−1−β ) , (9)

since the number of infections by the time t − 1, nt−1
i , is

computed as follows:

nt−1
i = E(∑

u

Eu,t−1) = ∑
u

E(Eu,t−1) = ∑
u

Bu,t−1 . (10)

Equations 8 and 9 form the reduction of Unified Model to

the Complex Contagion Model.

4.2 Independent Cascade Model

In the Independent Cascade Model [21], a seed set of in-

fected nodes is provided. At each time step t, each node

is either infected or susceptible, and every node v that was

infected at time t − 1 has a single chance to infect each

of its neighbors u. The infection succeeds with probability

pv,u = p [21].

Proposition 2 The Independent Cascade Model [21] can

be treated as a special case of the Unified Model (Section 3.1),

when collective influence is a function of the state of infec-

tion of nodes in the local neighborhood.

Proof (Reduction) We begin with Equation 5. At any time t,

a susceptible node u has a single chance to be infected by its

neighbors that were infected at t− 1. If at least one of them

succeeds, u gets infected. The probability of node u getting

infected is then given by

ru(t) = P(at least one infected neighbor succeeds)

= 1−P(no infected neighbor succeeds)

= 1− ∏
v∈Ni(u)

(1− p(Av,t−1)) , (11)

where Av,t−1 is the probability of v being infected at time

t− 1. Since Bt
v = ∑t

τ=0 Av,τ , if follows that:

Av,t =

{

Bv,t−1 if t = 1

Bv,t−1−Bv,t−2 if t > 1

This step concludes the reduction.
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4.3 Threshold Models

In threshold models the probability of infection of a node

depends on the popularity of the contagion in its incoming

neighborhood. Several threshold models exist in the liter-

ature, including the Linear Threshold Model [15], and the

Linear Friendship Model [2,6].The Generalized Threshold

Model [21] dictates that a node u is infected based on a

monotone function of the set of its infected neighbors f (In(u, t))∈

[0,1] and a threshold θu ∈ [0,1]. Particularly, u is infected

at time t if f (In(u, t)) ≥ θu. Note that the the threshold θu

can be randomly selected at each time t [26] leading to non-

determinism of the infection process. Since, these thresholds

are selected uniformly at random, this is equivalent to say-

ing that the probability of infection of a healthy node u at

time t is f (In(u, t)).

Proposition 3 The Generalized Threshold Model [21] can

be treated as a special case of the Unified Model (Section 3.1),

when pairwise individual influence is zero, and collective

influence is a function of weighted influence from the local

neighborhood of nodes.

Proof (Reduction) We begin with Equation 5. At any time

t, the probability of node u getting infected is given by a

function of u’s status as follows:

P(u infected at time t) = f (In(u, t),bu) , (12)

where In(u, t) = {v|v∈Ni(u),Ev,t−1 = 1} and bu = {bv,u|v∈

Ni(u)} is a vector of pairwise weights bv,u associated to v’s

incoming neighbors. Substituting ru(t) in Equation 5 with

Equation 12, and setting all individual influence probabili-

ties to zero, concludes the reduction.

Linear Friendship Model: The Linear Friendship Model

(LFM) [2,6] models the additive effect to the probability of

infection at time t as a linear function of infected neighbors

by the time t − 1, and applies logistic regression to fit the

linear function into a probability value.The Linear Friend-

ship Model [2,6] can be treated as a special case of the Uni-

fied Model (Section 3.1). The reduction follows similar rea-

soning to that for Generalized Threshold Model. The differ-

ence lies in the function used to model the effect of the local

neighborhood to a node’s probability of infection in Equa-

tion 12. Here, the probability of node u getting infected at

time t is given by

P(u infected at time t) =
exp(α|In(u, t)|+β )

1+ exp(α|In(u, t)|+β )
, (13)

where |In(u, t)| = ∑v∈Ni(u) Bv,t−1, i.e., the number of infec-

tions by the time t−1 is calculated similarly to the Complex

Contagion Model [7] using Equation 10, with the difference

that the population is restricted to the local neighborhood of

node u. Including pairwise weights bv,u into the formulation

results in |In(u, t,bu)|=∑v∈Ni(u) bv,uBv,t−1, which concludes

the reduction.

Table 1 Parameters used in the experimental validation on Digg fol-

lower graph

parameter set 1

CCM p = 0.1, r(t) = exp(0.002nt−1
i −6)

GLT f (In(u, t),bu) = ∑v∈In(u,t) bv,u

ICM p = 0.1

parameter set 2

CCM p = 0.01, r(t) = exp(0.002nt−1
i −6)

GLT f (In(u, t),bu) =
exp(|In(u,t ,bu)|)

1+exp(|In(u,t ,bu)|)

ICM p = 0.7

5 Experiments

With our model well-defined, we now apply it to a real life

dataset from popular social news aggregator Digg1, and a

series of synthetic data. First, to better illustrate the abil-

ity of our Unified Model (Theorem 1 in Section 4) to cap-

ture real-life behavior, we examine a specific real-world case

study where we estimate information diffusion in a dynamic

social network. We compare the results of our analytical

framework, with those produced by several popular diffu-

sion models (CCM, LT, LFM, and ICM in Section 4). Par-

ticularly, we verify that the expected epidemics calculated

using Theorem 1 matches very well the average outcome of

multiple simulation runs of these models. Subsequently, we

run a series of large-scale experiments on synthetic data to

show that the approximation error is small and insensitive

both to graph properties and to models’ parameters. Note,

that in this work, we are not concerned with learning the

spread of infection from observational data. While this as-

pect is important, it is outside of the scope of this paper. Our

findings imply that Equation 5 is able to accurately predict

the expected epidemics forecasted by the rest of the models

without extensive numerical simulations.

5.1 Experiments Using Real-World Data

We used a subset of Digg’s2 follower graph [25]. Digg is

a popular social news aggregator that allows users to col-

lectively curate a list of news stories they find online by

submitting them to Digg and voting for them. In addition,

Digg allows users to form social networks by designating as

friends users whose activities they would like to track. Our

dataset consists of 1,244 nodes and 28,343 directed links. A

link from v to u exists if v influences u, i.e., when u follows

v. Table 1 summarizes the set of parameters used in our ex-

periments. For each model, we start with a seed set of two

infected nodes.

Figure 1 shows the results of infection spreads over time

using average of 1000 simulations for each model, and the

corresponding predicted values obtained by using the an-

1 http://digg.com/
2 The dataset can be found online at http://www.public.asu.

edu/\~ylin56/kdd09sup.html
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Table 2 Parameters used in the experimental validation on synthetic

graphs

Methods Parameter Sets

CCM

{p = 0.05, rt = exp(0.002nt−1
i −6)}

{p = 0.20, rt = exp(0.002nt−1
i −6)}

{p = 0.80, rt = exp(0.002nt−1
i −6)}

{p = 0.05, rt = exp(0.0002nt−1
i −6)}

{p = 0.20, rt = exp(0.0002nt−1
i −6)}

{p = 0.80, rt = exp(0.0002nt−1
i −6)}

ICM

p = 0.025

p = 0.050

p = 0.100

p = 0.200

p = 0.400

p = 0.800

LFM

{α = 0.05,β =−2}

{α = 0.20,β =−2}

{α = 0.80,β =−2}

alytical solution from Theorem 1. The prediction matches

very well with the average simulations, providing an em-

pirical, quantitative confirmation that Equation 5 produces a

good fit to the expected outcome which is obtained by com-

putationally expensive simulation runs.

5.2 Experiments With Synthetic Datasets

For an extensive analysis of the approximation error, we run

a series of experiments on simulated data. To study the effect

of graph size on the approximation quality, we generated

random sparse directed graphs of sizes 20, 40, 80, 160, 320,

640, 1,280, 2,560, 5,120 and 10,240 following the Erdős-

Rényi model [11], with number of edges approximately five

times the number of nodes. For each size and a given set of

parameters we generated a random graph, nodes of which

were uniformly partitioned into five roughly equal cardinal-

ity subsets. We started with infecting all nodes in one of

these subsets, and ran 1000 simulations. Thus, we have five

initial conditions for each size and set of parameters for a

given model, and for each of the initial conditions we ran

1000 simulations. To examine the effect of graph density3

on the approximation error, we fixed the size of the graph

and then we generated random directed graphs with varying

density values of 0.002,0.004,0.008, ...,0.512. We repeated

our experiments for graphs with fixed size, but varied den-

sity instead. The parameters used for each model are sum-

marized in Table 2.

We report approximation error using two measures: (a)

root mean squared error (RMSE) at time t, and (b) fractional

3 Density refers to the ratio of the number of links present in the

graph to the total number of possible links.

error in prediction of total number of infections at time t.

We measure the error in approximating the probability of

infection at time t in terms of RMSE as follows:

erms
t =

√

∑u(B
∗
u,t −Bu,t)2

n
, (14)

where Bu,t is the probability of infection of node u by the

time t obtained by simulations, and B∗u,t is the value pre-

dicted by Theorem 1. We further report the fractional error

in prediction of total number of infections at time t:

e
f
t =
|σ∗t −σt |

σt

, (15)

where σt = ∑u Bu,t is obtained by simulations and σ∗t =

∑u B∗u,t is the predicted value obtained by Theorem 1.

Figures 2(a), 2(b) and 2(c) show how RMSE averaged

over graph sizes varies with time. For ICM, the error stabi-

lizes quickly, while for CCM and LFM the error decreases

with time. The decrease is more prominent for LFM, where

the error is insensitive to the parameters. Figures 3(a), 3(b)

and 3(c) report average RMSE over time as a function of

graph size. In all three cases, the error is very small.

Figures 4 and 5 show the variation of fractional error

e
f
t with graph size and time accordingly. We note that the

trend is similar to that observed for RMSE. In fact, it can be

shown that the fractional error e
f
t is bounded by RMSE erms

t

according to the following formula:
√

|V |

σt
erms

t ≤ e
f
t ≤
|V |

σt
erms

t . (16)

Figure 6 shows how RMSE varies with density. For CCM

the error decreases with increasing density, whereas the er-

ror increases till some density and then falls rapidly for ICM.

No clear trend is prominent in LFM; nonetheless the error

is contained in a very small window (∼ 0.0291 to 0.0298).

RMSE curves with respect to time for different densities are

shown in Figure 7. For brevity, we report results only for one

parameter set for each model in this case, as we found other

parameter sets produce similar trends. In all cases, the error

decreases with time. The decrease becomes more apparent

in high density graphs for CCM. Small density graphs re-

quire higher values of t (not shown in the figure) to reveal

a similar pattern decreasing error. For ICM, the error de-

creases initially, but then stabilizes around a small constant

value. Finally, RMSE rises initially in the case of LFM, but

then falls exponentially, and is very less sensitive to the den-

sity.

Overall, these experiments demonstrate the robustness

of our model. To summarize, we find that the error remains

small for different graph sizes and densities. The error is also

unaffected by the various models’ parameter values. This

fact empirically verifies our claim that under the Unified

Model of Influence, Equation 5 is a good approximation to

various models with minimal computational requirements.
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(c) Independent Cascade Model

Fig. 1 Agreement of simulation and theory for the three models for Digg1k dataset.
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Fig. 2 RMSE as a function of time steps on synthetic graphs. RMSE is averaged over graph sizes.
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Fig. 3 RMSE averaged over time, as a function of graph size on synthetic graphs.

6 Seed Set Selection for Influence Maximization

An important problem studied in the diffusion literature is

the influence maximization problem [21]. The problem states

that given a graph a graph G and a positive integer k, se-

lect k nodes in the graph, infecting which initially (seed set),

would create maximum number of infections in the future

after the steady state has been reached. We claim that it is

more advantageous to know how infection of a node affects

the number of infections in the immediate future or in a

given time frame rather than in infinite time. Therefore, we

state a generalization of the problem:

Definition 1 (Generalized Influence Maximization) Given

a graph G(V,E), an infection model M, a time t and a posi-

tive integer k, select S⊂V ×N with |S|= k such that σM
t (S)

is maximum. Here, σM
t (S) represents the expected number

of infection achieved by the model M at time t with seed set

S, i.e., ∀(u,τ) ∈ S, node u is manually infected at time τ .

6.1 Online Seed-set Selection using Unified Model

(OSSUM)

We propose a greedy method based on the formula for the

Unified Model (Equation 5). At each time step t ≤ k we se-

lect a node, infecting which would produce the maximum

increase in total infection at the next time step. Algorithm 1

details the selection process. As shown in Section 4, for ICM
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Fig. 4 Fractional error over time on synthetic graphs. Fractional error is averaged over graphs sizes.
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Fig. 5 Fractional error averaged over time, as a function of graph size on synthetic graphs.
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Fig. 6 RMSE on synthetic graphs for varying density, averaged over time.

Algorithm 1 Online Seed-set Selection using Unified Model

(OSSUM)

1: function OSSUM(G, M, k)

2: S← /0

3: for t = 1→ k do

4: arg maxl σ M
t (S∪ (l, t−1))−σ M

t (S) ⊲ Computed using

Equation 5

5: S← S∪ l

6: end for

7: return S

8: end function

and GLT, the infection process can be captured by the col-

lective influence, and the Equation 5 becomes

Bu,t = 1− (1− ru(t))(1−Bu,t−1) . (17)

Let rl
u(t) denote the collective influence on node u if node

l was manually infected at time t − 1. Suppose Bl
u,t denote

the resultant infection probability of node u after the manual

infection of node l. Then,

Bl
u,t =

{

1− (1− rl
u(t))(1−Bu,t−1) if u 6= l

1 if u = l
(18)

Now, note that for both ICM and GLT, the objective function

(line 4 in Algorithm 1)

F(l, t− 1) = σM
t (S∪ (l, t− 1))−σM

t (S) = ∑
u

Bl
u,t −∑

u

Bu,t

=(1−Bl,t−1)+∑
u 6=l

(rl
u(t)− ru(t))(1−Bu,t−1) (19)

[From Equations 17 and 18]
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(a) CCM with (p = 0.05, rt = exp(0.002nt−1
i −

6))
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(b) ICM with p = 0.05
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(c) LFM with α = 0.05, β =−2

Fig. 7 RMSE over time on the synthetic graphs of size 1,000, for varying density values.

Using Equations 11 and 19 with some algebraic manipula-

tion, the objective function becomes

F(l, t−1)= (1−Bl, t−1)

(

1+ ∑
u∈No(l)

p(1− ru(t))(1−Bu,t−1)

1− pAl,t−1

)

.

(20)

Similarly for LFM, the objective function can shown to be

F(l, t− 1) = (1−Bl, t− 1)+ ∑
u∈No(l)

(1−Bu,t−1)

(

s

(

α ∑
j∈Ni(u)

b j,uB j,t−1 + bl,u(1−Bl,t−1)+β

)

− s

(

α ∑
j∈Ni(u)

b j,uB j,t−1 +β

))

, (21)

where, s(x)= exp(x)/(1+exp(x))= 1/(1+exp(−x)). Find-

ing F(l, t − 1) requires O(1+∑u∈No(l) indegree(u)) opera-

tions. To find the node l that maximizes F(l, t− 1), one has

to find F(l, t−1)∀l ∈V , which requires O(∑l(1+∑u∈No(l) udi
)),

where udi
denotes the in-degree of node u. Now,

∑
l

(1+ ∑
u∈No(l)

indegree(u))≤ |V |+∑
u

|E|= |V |(1+ |E|) .

(22)

Therefore, the time complexity of finding k nodes is O(k|V |(1+

|E|)).
Note that the Influence Maximization problem in [21] is

a special case of Generalized Influence Maximization where

t→ ∞ and S ∈V ×{0}, i.e., all the nodes are infected at t =

0. We propose to use OSSUM which generates S = {(u1,0),
(u2,1), . . . ,(uk,k− 1)}, and use the set {u1,u2, . . . ,uk}.

6.2 Experiments with Seed-set selection

Here we present the results of seed-set selection for the In-

fluence Maximization problem. We used three heuristics for

seed-set selection as baselines -

– Degree: The nodes with top k highest degrees are se-

lected.

– Single Discount: First the highest degree node is selected

and is removed from the graph. Next, The highest degree

node from the remaining graph is selected. The process

is continued until k nodes have been selected.

– Degree Discount: A heuristic designed for ICM, which

performs a form of weighted discount based on the pa-

rameter p.

The baselines and our algorithm were applied on the HEPT

graph for ICM and LFM. Figure 8 shows the results of these

experiments. For ICM (Figure 6.2), we set p = 0.01 and plot

σ∞, i.e., until number of infections reach a steady state for

a given seed set. OSSUM performs almost same as Degree

Discount. This could be attributed to the fact that Degree

Discount heuristic for ICM is based on similar assumption

as our solution for the Unified Model, i.e., it assumes that

every node and it’s neighborhood forms a star-like network,

which is equivalent to the statement that infection state of

two neighbors are independent.

A considerable difference appears in the case of LFM

(Figure 6.2). In LFM, the probability of infection of a node

always remains bounded below by s(β ) (the infection prob-

ability of u at time t is s(α|In(u, t)|+β )), and so at steady

state (t → ∞), every node becomes infected. Therefore, to

study the difference between the different seed-set selection

methods, we plot the number of infections achieved until

t = 60, i.e., (σ60). It can be observed that OSSUM signif-

icantly outperforms the baseline. The difference primarily

arises from the fact that the infection probability of a node

has a non-linear dependency on it’s neighborhood, which is

difficult to capture by the baselines. However, OSSUM al-

lows us to compute the infection probability as we select the

nodes for manual infection providing a better selection al-

gorithm, as long as the model can be fitted into the Unified

Model.
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(a) ICM at steady state
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(b) LFM at t = 60

Fig. 8 Seed-set selection for Influence maximization.

7 Conclusion

Influence analytics and diffusion prediction in online social

networks have been important for many domains from mar-

keting to public health. With the tremendous increase in the

volume of data, network sizes reach millions of nodes, re-

stricting the applicability of computational models for dif-

fusion prediction. In this work, we have proposed a novel,

general analytical framework for influence calculation in so-

cial networks, which does not require extensive simulations.

In this framework, each node has its own individual func-

tion of collective influence and pairwise influence functions

for each neighboring node. Both functions vary with time,

thus making our framework directly applicable to a plethora

of situations. We have shown how various popular models

of diffusion constitute special cases of our model. Hence,

our formula is applicable for approximating the expected

outcome of these models. Particularly, we have shown that

our formula can substitute expensive simulation runs to cal-

culate the expected probabilities of infection. We have fur-

ther demonstrated that significant computation gains can be

achieved using our formula instead of such models. We have

validated our results using real world social networks and a

number of Erdős-Rényi graphs.

We applied our analytical model for influence to the task

of influence maximization in social networks. The process

of influence, which manifests itself in a plethora of domains

including online social networks and social media, has been

the subject of many studies. The problem of identifying a

set of target nodes whose influence will maximize the over-

all cascade in the social network in particular has been well

studied, particularly in the context of social-opinion dynam-

ics, campaign-design and gateway finding among others. We

have shown that our unified model is beneficial to seed set

selection. Specifically, we have proposed a greedy solution

to the problem of influence maximization and have empiri-

cally demonstrated its superiority against state of the art ap-

proaches in the total number of infections with increasing

seed-set sizes. Relevant applications include but are not lim-

ited to diffusion of information in social networks, the prop-

agation of viruses in computer networks, and the spread of

epidemics in human populations.
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