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Abstract 
Increasing instrumentation of the modern digital oilfield produces streams of data from sensors that monitor the functioning 
of different components in the field. This data should be converted to actionable information rapidly in order to respond to 
events as they happen or are predicted. The challenge is therefore to develop technologies that can process these large sensor 
datasets rapidly and with minimal manual supervision to ensure a data processing system that can scale with the increasing 
instrumentation. 

 We consider as a use-case an oilfield with several Electrical Submersible Pumps (ESPs), each instrumented with sensors 
that continually measure electrical properties of the pump (the streams of sensor data), which are then relayed to a central 
location. In this paper, we demonstrate how a time-series analysis approach can be applied to failure detection and failure 
prediction from the streams of sensor data. The method involves identifying “shapelets” – short instances that are particularly 
distinct – in the streams of sensor data. 

The shapelets approach is particularly applicable to large oil and gas enterprise datasets because the algorithm does not 
need access to the entire historical data. This greatly reduces the amount of data that needs to be stored for data analysis. 
Moreover, unlike model-based approaches, shapelet-based analysis does not make any assumptions about the underlying 
nature of the data, making it practical for applications where a detailed physical model of the pump is not available. 

We validate our proposed method by analysis on a representative set of instrumented ESPs. We describe the pre-
processing steps that were applied in our analysis. We report the results of experiments to study the effects of varying the 
data processing parameters on the accuracy of fault detection and prediction. These results indicate that shapelet-based 
approaches are promising for analysis of time-series data in the oil and gas industry. 
 
1. Introduction 
The evolving nature of the modern digital oilfield requires large-scale instrumentation and monitoring. Data mining and 
machine learning approaches have become vital to digital oilfield operations [1, 2] as they move into the age of Big Data. A 
massive portion of oilfield data today is in the form of sensor streams which necessitates the use of rapid real-time data 
analysis techniques [3]. Due to the high frequency of sensor data in the oil and gas industry [4], it is inevitable for oil and gas 
enterprises to leverage efficient data mining techniques, especially those dealing with time series data.  

In this paper, we adapt a time-series mining approach that was recently developed in the computer science community, 
known as time-series shapelets [5], for application to sensor measurements typically collected in the oil and gas industry, in 
particular to component failure detection and prediction. The streaming time series nature of such data is especially suited to 
this approach. The shapelets method identifies those time segments (“shapelets”) within the available sensor data which are 
most discriminative for differentiating between two classes, for instance those arising from failed pump components in 
contrast to those that are working normally. Using discovered shapelets from historical data, predictions about future failures 
or anomalies can be made such that proactive steps can be taken to mitigate their effects. As an example, a shapelet that was 
discovered from intake pressure measurements from an electrical submersible pump is overlaid over the full time series 
Figure 1; the short segment shown in red was found to be the most discriminative from this time series and others in the 
labeled data record for distinguishing failed pumps from normal ones. This shapelet, along with other shapelets, can be used 
for detecting failures by comparing thsem with real-time sensor data (further details about finding shapelets are provided in 
Section 4). 

The shapelets approach is particularly effective for oil and gas enterprise data because it does not need access to the entire 
historical record of sensor data while making decisions – only the shapelet time segments, identified in an offline step from 
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the historical record, are needed for real-time analysis. This greatly reduces the amount of data needed to be stored for further 
data mining. Moreover, this approach does not make any assumptions about the nature of the data, making it practical for real 
world scenarios. The shapelets found are visually interpretable, making deeper root cause analysis possible. Such time series 
mining methods are directly related to events in the oilfield, and as described in [2], there are several value propositions for 
efficient event processing [6]. 

To summarize, the primary purpose of performing time series mining on oilfield sensor data are: 
• To detect anomalies in equipment operation automatically 
• To identify time segments that are indicators of failures 
• Reduce the data storage and computational power requirements for real-time sensor data analysis 

 

 

Figure 2: Sensor measurements as time series for failure detection and prediction 

 
1.1 Use-case 

Electric submersible pumps (ESPs) are one of the main artificial lift methods for extraction of fluid. The failure of an ESP 
increases operating costs and affects production. Statistical analysis of ESP failures shows that the failure rates of ESPs vary 
considerably [7]. There are several factors affecting ESP failures, including reservoir type, sand control, and whether the ESP 
is a replacement [7]. In an effort to understand the causes of failures, the oil and gas industry has attempted to collect data on 
all potential factors and exchange this information for better data analysis [8]. However, data aggregation is a difficult task 
considering the myriad ways of collecting and recording the diverse types of data [9]. Instead of attempting to build a 
complete model of ESP failures from these disparate data sets, we apply machine learning and time-series data processing 
techniques to automatically learn failure models from only the sensor measurements (with relatively high temporal 
frequency) collected directly from the ESP. The goal of our research is therefore to understand the limits of failure detection 
and prediction using only the most accessible sensor measurements.  

It has been estimated that just a 1% improvement in ESP performance world-wide would provide over a half-million 
additional barrels of oil per day [10]. Considering the high cost incurred by an ESP failure, early detection and prediction of 
pump failures of even a subset of all operational assets from readily available data can reduce OPEX (Operational 
expenditure) and can reduce average maintenance cost. The approach proposed in this paper can be generalized for other 
smart oilfield areas where time series data is plentiful. This use case is illustrated in Figure 2.  

The rest of this paper is organized as follows. In Section 2, we describe related work in ESP failure analysis. In Section 3, 
we provide a brief introduction to the shapelets approach to time series data processing. In Section 4, we describe our 
approach and Section 5 presents the results from our experiments. We conclude in Section 6. 

 

Figure 1: A discriminative segment (shown in red), or shapelet, from a time series as computed by the shapelet mining algorithm. 
The x-axis shows time (in days) while the y-axis represents normalized values of the intake pressure for a specified ESP. 
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2. Related Work on ESP failure prediction 
Considering the large number of ESPs deployed in an oilfield, the bulk of ESP failure prediction research has focused on 
computing population-level estimates and causes of failure [11]. Statistical analysis of ESP failures across an oilfield has 
shown that the failure rates vary considerably [7]. Sawaryn has derived analytical expressions describing failure patterns at a 
population level [12]. The amount of sand in the extracted fluid is one of the important causal factors affecting failure and 
Kalu-Ulu et al. have modeled ESP failures in sand producing wells [13]. Furthermore, Liu et al. [14] has adapted data mining 
classification algorithms and Liu et al. [15] presents a Bayesian network-based machine learning algorithm to predict rod 
pump failures. 

In our work, we explore methods to identify and predict failures of individual ESPs using machine learning techniques. 
We have also used a technique (similar to this work) based on time series shapelets for electricity disaggregation in [16]. 
Specifically, in this work, we have used the concept of events as temporal periods of operation (either failure or normal) of 
ESP pumps as described in Section 4. However, it is possible to instead add more semantics and structure to define and 
represent events for oil field processes. The Process-oriented Event Model [17] describes the semantics of such an event 
model and also provides a case study for pump failure event detection. 
 
3. Background on Time Series Shapelets 
Time series shapelets, introduced by Ye et al. [5], are discriminative subsequences in time series which can differentiate 
instances of the positive class (e.g. normal operation of pump) from those of the negative class (e.g. failed or anomalous 
operation of pump). Time series shapelets are identified based on information gain criteria [5]. Essentially, the subsequence 
with the highest information gain is identified to be the most discriminative between the classes and thus is the “shapelet”. To 
perform classification of time series using shapelets, a decision tree classifier is built based on distance from the shapelet. 
When a new time series instance is encountered, the distance to the shapelet is calculated, and depending on which branch of 
the tree it falls in (distance lesser or greater than distance measure of shapelet), it is assigned a predicted class label. For the 
case of multiple shapelets from one time series, the same decision tree can be extended to have multiple nodes. 

To summarize, our primary motivations for applying the time series shapelets method to oil and gas sensor data is 
because they have the following advantages over other conventional approaches:  

• Shapelet-based methods provide very fast classification times 
• They are visually interpretable 
• They do not need to use the complete training data for classification (after the shapelet has been discovered from the 

time series), only the discovered shapelet segments are required 
• They make no assumptions about structure of time series (in contrast to conventional autoregressive or ARIMA time 

series models). The number of parameters involved is also minimal. 
Various extensions to time series shapelets have been proposed in the literature, most notable of them being Logical 

Shapelets [18], Local Shapelets [19], and Fast Shapelets [20]. In this paper we use the Fast Shapelets algorithm, which is 
currently the fastest supervised shapelet finding method [19]. Though they were originally intended for use with supervised 
datasets, extending shapelets to include the idea of unsupervised shapelets (U-shapelets) was presented in Zakaria et al. [21]. 
Instead of maximizing the information gain in the case of (supervised) shapelets, the U-shapelets method maximizes the 
separation gap, a new metric described in [21]. This method allows unsupervised shapelets to be used for clustering. A 
stopping criteria based on Rand index is used to decide the number of clusters. 
 
4. Approach 
This section describes the dataset used for our experiments and then explains our proposed shapelet mining approach. We 
developed a pre-processing method to address the irregular nature of real world sensor data and transform the sensor 
measurements into a format suitable for shapelet-based time series analysis. This method can handle invalid data points, 
irregularity in sampling intervals and reduce redundant data segments. These are three frequent problems with industrial 
sensor datasets and are particularly applicable to datasets from the highly instrumented oil and gas industry. 
 
4.1 Dataset description 

We used data from electrical submersible pumps (ESPs) from a single onshore oilfield within Chevron North America. 
We consider a supervised classification scenario. The classification task is to detect and predict the behavior of a new ESP 
instance over a specified period of time, given sensor readings of its physical attributes (current, voltage and intake pressure). 
We are provided with labeled data from ESPs defining periods of normal and failure operation. The data ranges from 1 Aug 
2011 to 29 July 2013, and measurements are nominally recorded at hourly intervals. We use data from 11 normal operation 
periods (from 11 ESPs) and 10 failure operation periods (from 8 ESPs, with two ESPs providing two failures each). For these 
periods, we have sensor data containing time-stamped data points for various attributes or physical properties of the pump. In 
this paper, we focus on three of these attributes – current, voltage, and intake pressure, which are the most readily available 
sensor measurements. We also have timestamps for all of the data with separate timestamps for insertion date of the data 
points as well as the last good scan dates (which we use later for ensuring that the data points are valid). Instances of sensor 
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measurements from selected ESPs during both normal and failed operation periods are shown in Figure 3 (intake pressure), 
Figure 4 (current), and Figure 5 (voltage). These plots show measurements from two normally functioning ESPs and two 
failed ESPs. These do not represent all the patterns of normal or failure periods since there is a lot of diversity in the data. 
Our prediction methods need to incorporate such diverse instances to be able to make decisions even for previously unseen 
instances without overfitting. Shapelets are suitable for this purpose because they are designed to identify the most 
discriminative segments in the time series instances, irrespective of the nature of the data. 

 

 
 Figure 3: Examples of intake pressure measurements during normal operation (blue) and failed operation (red).  

 

 
 Figure 4: Examples of current measurements during normal operation (blue) and failed operation (red).  
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 Figure 5: Examples of voltage measurements during normal operation (blue) and failed operation (red).  

 
4.2 Issues with using the raw dataset 

Since real oilfield data is irregularly recorded and contains large missing portions, we have developed an appropriate pre-
processing method for use before the described shapelets technique can be used for classification. In particular, we have 
developed a pre-processing method to obtain “clean” data segments. The proposed method divides each sensor data stream 
into windows of a specified segment size (preferably, the time duration over which predictions need to be made) and ensures 
that the elements within each segment are regularly sampled. Only a specified degree of overlap is allowed between 
consecutive segments so as to avoid overly similar time segments. A check is performed on whether the sensor value read 
was new or not, providing only regularly sampled data segments in the end, suitable for input to shapelet based classification 
approaches. 

Several factors make the raw dataset, collected directly from sensors in an oilfield, unsuitable for direct analysis via the 
shapelet mining algorithm (or any generic data mining method). We desire a regularly sampled version that can directly be 
input to a state-of-the-art shapelet finding method (such as Fast Shapelets [20]). To process the dataset, a logical choice 
would be obtaining one time series per ESP (per failure/normal operation period). However, this is not possible to implement 
here because of the following three issues. 

The first issue is that of validity. Since it is possible for sensors to fail in their functioning, some of the data points 
recorded may not be valid and need to be eliminated. Keeping track of the “last good scan” timestamp in the data can help us 
perform this elimination. 

The next concern is of regularity in the frequency of sampling the data points. In cases where the sensor was not 
operational, or for other reasons, we found that the data was sampled for some periods at a 1-day frequency instead of the 
standard 1-hour frequency imposed on the rest of the data. Figure 6 shows plots of insertion dates and last good scan dates for 
a single pump. As seen in the plot, it is not regular for the complete duration of the data stream. Regular intervals between 
data points are essential for the shapelet finding algorithm. One method to handle this is to interpolate for the missing data 
points, but this can result in localized artifacts, which are then spuriously interpreted as distinctive patterns in the shapelet-
based algorithm. Instead, as described later, we find clean segments where the data is regularly sampled for further use.  

The third issue is that of redundancy. There may be several data segments in our input training dataset that are very 
similar to each other with only a few data points being different at the beginning and end of the segments. However, if we do 
not allow any overlap between the segments at all, then we are left with an extremely limited number of segments and the 
possibility that the most distinctive patterns are across two segments. To handle this tradeoff, we introduce an overlap 
parameter, which controls the amount of overlap between consecutive segments. 
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Figure 6: Irregularity in sampling of oilfield sensor data. The period between consecutive data points varies between 1-hour and  
1-day. The X-axis shows time (in days) and the Y-axis represents the insertion date of the data point (left) and the last good scan 
date (right). 
 
4.3 Pre-processing 

Since large portions of the data can be missing, we need an effective pre-processing technique to filter useful data. The 
following filtering step does not modify any of the data or interpolate any values. Our pre-processing method is summarized 
in Figure 7. We extract segments out of each time series for each pump. The first criterion for keeping a segment is to ensure 
that it is valid. We ensure this by requiring that the “insertion date” of the data entry is within 1 day of the “last good scan” 
timestamp. The second condition is to fix a regular time interval for sampling of the values. We only consider those values, 
which are recorded 1 hour apart. These two pre-processing conditions give us regularly sampled segments of data. However, 
each segment is very similar to the previous segment with the exception of just one or two data points, which have changed. 
To eliminate many of these close segments, we add a third condition, which restricts the degree of overlap between adjacent 
or consecutive segments. This parameter can be changed to reflect various requirements in specific use cases. The more the 
allowed overlap, the more the number of segments we get after pre-processing. In our experiments, we allow a 75% overlap 
between adjacent segments, thus forcing at least ¼ of consecutive segments to be different from each other. 
 

 

Figure 7: Proposed pre-processing workflow 
 
4.4 Failure event detection and failure event prediction 

We describe the two major scenarios of data mining tasks performed via the shapelet mining approach. The first task is 
failure detection. The failure detection experiment aims to detect whether a given data segment represents a failure or not. It 
is reactive rather than being proactive. For failure event detection, we label the failure event durations as negative class 
instances while all other segments are treated to be of the positive class. For example, as described earlier in the pre-
processing steps, given a segment length parameter, all possible clean data segments (of the specified segment length), which 
satisfy all the three processing checks, may be extracted. 

Failure event prediction aims to predict failures before they occur, so that maintenance personnel may be notified in 
advance, taking the proactive anomaly detection approach mentioned in [6, 22]. The failure prediction experiment aims to 
classify whether a given data segment will eventually lead to a failure. We define a user-customizable lookback parameter, 
which is to be used for finding precursor segments for building the training and testing data sets in the shapelet-based 
classification approach. The intuition behind this is that there is a failure event precursor at some point before the failure is 

Valid	  data	  segment	  	  
if	  and	  only	  if	  	  

all	  the	  following	  hold	  

Regular	  time	  interval	  
between	  data	  points	  

(1	  hour)	  
Insert	  date	  within	  1	  day	  
of	  last	  good	  scan	  date	  

No	  overlap	  with	  
previous	  segment	  for	  a	  
speci>ied	  duration	  

(atleast	  1/4th	  different)	  
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detected and we want to make predictions based on including this data point in our training and testing data. We label 
segments that are precursors to the failure or normal event durations (within the lookback period) as negative or positive class 
instances respectively. Note that we do not extract or consider any data from the actual failure or normal duration while 
making a prediction.  

Typically, the lookback should be larger than the segment length parameter so as to have multiple data segments for 
training the system. However, if it is too large, then it would cover a lot of redundant data points which may not have the real 
precursors for the failure event that is about to happen. Since we do not know the point of time when an exact precursor for a 
failure event occurs, we fix a moderately long lookback period, typically a few times the segment length. However, the 
shapelet-based algorithm provides good results (as shown in the next section) for different lookback periods irrespective of 
the fact that we may not have included the ‘real’ failure precursor data point or added too many redundant data points. Figure 
8 illustrates the extraction of time segments from each sensor dataset for failure detection and prediction. 
 

 

Figure 8: Failure Event Detection and Failure Event Prediction Scenarios. The red shaded portion denotes a failure operation and 
the green operation period denotes a normal operation period. All segments extracted are of the specified segment length. In the 
detection scenario, the segments are extracted from the actual failure or normal operation duration, while, for prediction, segments 
are extracted only from the lookback period without utilizing any data in the actual labeled failure or normal periods. 
 
5. Evaluation 
This section describes our experimental framework, experiments performed and evaluation results. We have two major 
categories of experiments – at the segment-level and at the pump-level, and for each category, there are two scenarios – 
failure detection and failure prediction, as described earlier. We used the supervised shapelet finding algorithm, Fast 
Shapelets [20], for finding shapelets in all the experiments. A discussion of the experimental results is given in Section 5.6. 
 
5.1 Segment-level Failure Detection 

The first category of experiments is that of segment-level classification – either for failure detection or failure prediction. 
In this category, we extract data segments from all pumps during pre-processing. All extracted segments (from all pumps) are 
collected to form the full segment-level dataset. This dataset is split randomly into training and testing sets, which are 
independent of each other. Note that in this method of evaluation, though a given segment only appears in either the training 
or test portion, a particular pump can contribute sensor data segments to both the training and test portions. Two shapelets, 
extracted from one such training experiment, are shown in Figure 9. According to the shapelet framework, these segments are 
the most discriminative for distinguishing failures from working instances. 

We used various parameters in our experiments. We used segment lengths of 1-day, 2-day and 1-week. The allowed 
overlap was set such that at least one-fourths of the data is different between consecutive segments. We experimented for 
25%-75% and 50%-50% random splits for the training and testing sets respectively. We compared our results to a baseline 
classifier, denoted by ZeroR, and to other common classifiers as well in Section 5.3. The ZeroR classifier simply assigns the 
label of the majority class in the training data to a new class instance. Thus, if there are more positive class instances than 
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negative in the training data, it will assign the positive class to every test data instance, and vice-versa. This baseline 
classifier provides the minimum expected accuracy estimates for this dataset. The accuracy results are shown in Table 1. 

 

 

Figure 9: Two shapelets (shown in red) extracted for failure detection based on intake pressure sensor data (normalized). The 
segment length was 1 week. The first shapelet (left) is of 35 hours duration and the second one (right) is of 5 hours duration. The 
data was split into a 50%-50% train-test split (half of the data was used for training). 
 

Table 1: Accuracy of detecting failures at the pump level.  

Segment length 1 day 2 days 1 week 

% Data in Training 25% 50% 25% 50% 25% 50% 

Current 77 77 77 82 72 85 

Voltage 81 82 83 85 72 73 

Intake Pressure 90 89 90 91 85 96 

ZeroR (baseline) 72 72 72 74 73 75 
 
5.2 Segment-level failure prediction 

For our failure prediction experiment, we considered data segments that appear before the failure or normal events (i.e., 
data segments are collected from the lookback period). The lookback periods were set as follows: a lookback of 1-week for 
1-day segment length, and a lookback of 4-weeks for both the 2-day and the 1-week segment lengths. The accuracy results 
are shown in Table 2. The shapelets extracted from training a prediction classifier are shown in Figure 10.  

 

Table 2: Accuracy of predicting failures at the pump level.  

Segment length 1 day 2 days 1 week 

% Data in Training 25% 50% 25% 50% 25% 50% 

Current 60 68 67 73 71 66 

Voltage 58 68 64 69 70 67 

Intake Pressure 87 83 73 74 67 71 

ZeroR (baseline) 56 53 52 52 52 55 
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Figure 10: Three shapelets (shown in red) extracted for failure prediction based on intake pressure sensor data (normalized). The 
segment length was 1 week and lookback period was 4 weeks. The shapelet durations are – 50 hours, 36 hours and 5 hours. The 
data was divided into a 50-50 train-test split (half of the data was used for training). 

 
5.3 Comparison with other machine learning techniques 

We compared our results with those of several state-of-the-art machine learning approaches, widely used for pump failure 
detection. The results are shown in Table 3. We observe that shapelet-based methods are comparable to other classifiers. In 
these experiments, the segment length is 1 week and the split for training and testing is 50%. The lookback window for 
failure prediction is 4 weeks. 
 
Table 3: Comparison of accuracy (%) of shapelet-based segment-level failure detection with other machine learning techniques. The 
following classifiers are compared to our proposed Fast Shapelets-based method (FS): Logistic Regression, Multi Layer Perceptron 
(MLP), Support Vector Machines (SVM) using either Gaussian or radial basis function (rbf) kernel, polynomial kernel, or linear 
kernel, AdaBoost, Decision Tree (J48), Random Forests (RF) and our baseline classifier (ZeroR). 

 
FS Logistic MLP SVM(rbf) SVM(poly) SVM(linear) AdaBoost J48 RF ZeroR 

Failure detection 96 74 93 96 73 73 93 91 95 75 

Failure prediction 71 55 69 76 55 55 73 75 80 55 
 
5.4 Pump-level failure detection 

The segment-level classification experiments attempt to detect and predict failures given a single segment. However, in a 
typical oilfield monitoring application, it is sufficient to detect and predict failures at a given time using all the sensor 
measurements available up to that time. We can therefore combine the predictions of all the time segments from a given ESP 
to get a prediction of the failure for that pump. We call this analysis pump-level failure detection and prediction. 

For pump-level analysis, the train-test split is performed differently from the segment-level experiments. We use leave-
one-out (LOO) cross validation for evaluating pump-level failure detection and prediction. In LOO, only instances (the data 
segments extracted after pre-processing) from one of the pumps are set aside for testing the learned classifier while all other 
segments (along with their failure/normal labels) are used for training using the Fast Shapelets algorithm as described earlier. 
This evaluation is repeated for each pump and the classification accuracy results are aggregated. Note that unlike segment-
level evaluation, none of the data segments from the well set aside for testing are used for training the shapelet-based failure 
detector or predictor. (In segment-level evaluation, the segments from all the wells were randomly split into training and test 
instances.) 

Table 4 presents the accuracy of pump-level failure detection. There are 8 ESPs which failed and 11 which functioned 
normally in the available data (column “Failed/Normal?”). The number of data segments extracted after pre-processing is 
shown (column “#test segments”) for each of these 19 cases. The accuracy of applying the shapelet-based classifier for each 
of the segments from an ESP (the classifier is trained on all the segments from the remaining ESPs) is shown in columns 
“#detected failure segments” and equivalently as a percentage in column “Segment-level accuracy (%).” In order to combine 
the segment-level labels into a single label for the pump, we apply a threshold. Setting this threshold enables the precision-
recall performance of the classifier to be traded-off against each other. (Precision is defined as the fraction of all positives 
labeled by the classifier that are true positives; recall is defined as the fraction of all positives in the dataset that are identified 
as true positives by the classifier.) Increasing the threshold increases the precision (certainty that identified failures are 
genuine faults) at the cost of recall (missing some genuine faults). In our evaluation, we set the failure detection rule to 
classify a pump as a failure if 40% or more of the segments were classified as failure segments. This approach is then able to 
detect ESP failures with a precision of 89% – 8 out of the 9 pumps labeled as failures had actually failed and a recall of 100%  
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– 8 out of the 8 failed pumps were correctly identified. In Table 4, setting this threshold enables Pump #5, #9, and #16 to be 
labeled correctly even though their segment-level accuracy is less than 100%. 
 
Table 4: Results of detecting failures at the pump level. Rows in bold indicate pumps that were labeled correctly 

as failures/normal though their segment-level accuracy is less than 100% 

Pump 
number 

Failed/ 
Normal? 

#test 
segments 

#detected failure 
segments 

Segment-level 
accuracy (%) 

Detection label after 
threshold of 40% 

1 F 4 4 100 F 

3 F 1 1 100 F 

4 F 2 2 100 F 

5 F 6 4 67 F 

6 F 28 28 100 F 

7 F 2 2 100 F 

8 F 10 10 100 F 

9 F 10 4 40 F 

10 N 11 0 100 N 

11 N 13 13 0 F 

12 N 19 0 100 N 

13 N 22 0 100 N 

14 N 24 0 100 N 

15 N 13 0 100 N 

16 N 8 2 75 N 

17 N 14 0 100 N 

18 N 14 0 100 N 

19 N 22 2 91 N 

20 N 19 0 100 N 
 
5.5 Pump-level failure prediction 

The evaluation described in Section 5.4 is repeated for pump failure prediction. In this case, all the segments for training 
and testing are taken from the lookback period. The accuracy results are shown in Table 5. In this case, we apply a threshold 
of 20%. The failure prediction rule is that a pump is predicted to fail if 20% or more of the segments were classified as failure 
segments. The pump-level shaplets-based predictor is able to predict ESP failures with a precision of 78% (7 out of the 9 
pumps labeled as failures will actually fail) and a recall of 78% (7 out of the 9 pumps that would fail were correctly 
identified). 
 
5.6 Discussion 

The computational cost of the Fast Shapelets method that was presented is very different for training and classification. 
Classification is typically fast since it depends only on the number and length of shapelets identified during training and these 
are few in number (Figure 9 and Figure 10). The shapelets identified during training can be viewed by domain experts (Figure 
9 and Figure 10) and an interpretation with regards to failure causes can be attempted. As expected, prediction of failures is 
harder than detection (the accuracies of prediction experiments are lower than that of the corresponding detection 
experiments). Intake pressure is generally a better indicator and predictor of failures compared to current and voltage given 
the accuracy results in (Table 1 and Table 2). As expected, increasing the amount of data used in training gives higher 
accuracies (25% versus 50%, Table 1) but the accuracies are comparable in magnitude. Moreover, the accuracy is 
comparable with other ML techniques even with low amounts of training (Table 3). Our novel threshold-based method of 
detecting pump-level failures is able to achieve relatively high precision of 89% and recall of 100% when the classifier is 
trained on all data segments available from other pumps (Table 4). Note that in a fault monitoring application with low 
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failure rates, the operational cost of implementing the monitoring workflow is largely determined by the false alarm rates 
(100 – precision). Pump-level failure prediction has lower precision and recall (both 78%, Table 5). The pre-processing 
procedure and the shapelets algorithm have a few parameters that need to be determined before it can be applied for 
classification. In our case, a segment length of 1 week, and a lookback period of 4 weeks was found to give the best results. 
The optimal parameters may have to be recomputed for a different dataset. 

Table 5: Results of predicting failures at the pump level 

Pump 
number 

Will fail/ 
Normal? 

#test 
segments 

# predicted to fail 
segments 

Segment-level 
accuracy (%) 

Prediction label after 
threshold of 20% 

1 F 2 2 100 F 

2 F 8 0 0 N 

3 F 9 2 22 F 

4 F 12 7 58 F 

5 F 12 11 92 F 

6 F 5 5 100 F 

7 F 2 2 100 F 

8 F 12 12 100 F 

9 F 12 1 8 N 

10 N 5 1 80 N 

11 N 5 2 60 N 

14 N 8 2 75 N 

15 N 8 2 75 N 

16 N 8 7 13 F 

17 N 6 1 83 N 

18 N 10 5 50 N 

19 N 9 9 0 F 

20 N 6 1 83 N 
 
 
6. Conclusions 

Shapelets-based time series classification is attractive for oil and gas applications due to their fast classification time and 
the possibility of interpreting the underlying shapelets by domain experts. We adapted the shapelets approach for detecting 
and predicting ESP failures only from readily available sensor data. This required developing an appropriate pre-processing 
procedure. In our experiments to evaluate the accuracy of this method, we found that the accuracy is comparable to other 
machine learning-based classifiers even with relatively low amounts of training data. The method is able to detect failures 
only from intake pressure measurements with a precision of 89% and 100% recall. The accuracy of predicting failures is 
lower with a precision of 78% at 78% recall. This approach has a few customizable parameters that may have to be adapted 
to different datasets. In future work, multiple measurement attributes (intake pressure, current, and voltage) can be considered 
together in the shapelets-based classifier to improve the detection and prediction accuracy. 
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