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Abstract

The increasingly large number of sensors and instruments in the oil and gas industry, along with novel
means of communication in the enterprise has led to a corresponding increase in the volume of data that
is recorded in various information repositories. The variety of information sources is also expanding: from
traditional relational databases to time series data, social network communications, collections of unsorted
text reports, and linked data available on the Web. Enabling end-to-end optimization considering these
diverse types of information requires creating semantic links between them. Though integration of data
across silo-ed databases has been recognized as a problem for a long time, it has proven to be difficult to
accomplish due to the complexity of the data arrangement within databases, scarcity of metadata that
describe the content, lack of a direct mapping between related entities across databases, and the several
types of data represented within a database. In addition, there are large amounts of unstructured text data
such as text entries in databases and document repositories. These contain valuable information on
processes from the field but there is currently no method to convert this raw data to useable information.
The Center for Interactive Smart Oilfield Technologies (CiSoft) is a USC-Chevron Center of Excellence
for Research and Academic Training on Smart Oilfield Technologies. We describe the Integrated
Optimization project at CiSoft which has the goal of developing a framework for automated linking of
heterogeneous data sources and analysis of the integrated data in the context of upstream applications.

Introduction
The increasingly large number of sensors and instruments in the oil and gas industry, along with novel
means of communication in the enterprise has led to a corresponding increase in the volume of data that
is recorded in various information repositories. The variety of information sources is also expanding: from
traditional relational databases to time series data, social network communications, collections of unsorted
text reports, and linked data available on the Web. Enabling end-to-end optimization considering these
diverse types of information requires creating semantic links between them. Though integration of data
across silo-ed databases has been recognized as a problem for a long time, it has proven to be difficult to
accomplish due to the complexity of the data arrangement within databases, scarcity of metadata that
describe the content, lack of a direct mapping between related entities across databases, and the several



types of data represented within a database. In addition, there are large amounts of unstructured text data
such as text entries in databases and document repositories. These contain valuable information on
processes from the field but there is currently no method to convert this raw data to useable information.

The Center for Interactive Smart Oilfield Technologies (CiSoft) is a USC-Chevron Center of Excel-
lence for Research and Academic Training on Smart Oilfield Technologies. We describe the Integrated
Optimization project at CiSoft which has the goal of developing a framework for automated linking of
heterogeneous data sources and analysis of the integrated data in the context of upstream applications. Our
hypothesis is that there is valuable insight to be gained by analyzing large diverse datasets together. In this
context, “large” refers to data volume (millions of instances) and “diverse” refers to the variety in data
types (such as sensor measurements, work orders, operator text annotations). For example, information
related to routine oilwell operations and repairs are recorded in production and maintenance databases
respectively. Each of these databases is typically large, has a complex schema, and is updated in
independent workflows. Linking these databases, while still retaining their independent operation, enables
optimization across both of these databases (such as accounting for planned maintenance activities in
production planning). The Integrated Optimization project aims to develop the data abstractions and
automation methods for data integration and exploiting the resulting information sources. The project
extensively uses pattern recognition techniques to automate data integration. Different methods are being
developed to handle the diverse data types encountered in enterprise data stores. State-of-the-art machine
learning methods are used to extract only the most discriminative pieces of information from the different
types of data (such as abnormal modes of equipment operation). This reflects the growing importance of
data mining and machine learning approaches in digital oilfield operations (Burda et al. 2007; Crompton
2008) as they move into the age of Big Data.

The components of the proposed data integration and analysis framework are shown in Figure 1. The
Rapid integration framework automatically discovers entries in different databases that are related to each
other using lexical, semantic and structural similarities of the data points. In order to accommodate
different types of data sources, both structured and unstructured, specific methods are being developed to
extract information from each type of data source. The current source types are relational databases,
Semantic Web ontologies, social network communications, time-series data, and free-form English text.
Together with the data integration component, the framework will enable rapid automatic integration and
subsequent analysis of heterogeneous information sources. These components are described in the
following sections (specifically, the Rapid Integration Framework for integrating relational databases and
ontologies, the Event modeling and management component for time-series analysis and temporal rule
mining, Content extraction from text for free-form English text analysis, and the Social network analysis
component for modeling enterprise social network interactions). Components of the framework are being
evaluated on specific upstream data-driven applications. Descriptions of the evaluation use-cases are
included in the corresponding component descriptions.
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Rapid Integration Framework
The rapid integration component is used to automatically discover correspondences across databases. The
first step is to convert relational data into Semantic Web ontologies. An ontology represents information
as a set of formally defined concepts within a domain. The process of identifying the entities in different
ontologies (e.g., columns from different databases) that are related to each other is called ontology
alignment. We have developed the Unified Fuzzy Ontology Matching (UFOM) framework for automat-
ically detecting linkages between ontologies (Zhang et al. 2014). Unlike other ontology alignment
approaches, UFOM is designed to discover linkages of multiple relation types. These linkages can be
exploited for efficient querying for similar entities by following relatedness links to discover similar
entities instead of evaluating every entity contained in the ontologies. UFOM uses fuzzy logic to compute
and represent the relatedness between entities. Each linkage is defined by a relation score that represents
the degree of the relationship between the entities and the confidence in this score. The design of the
UFOM framework is illustrated in Figure 2. UFOM takes two ontologies as its input and outputs a fuzzy
alignment between them. UFOM consists of four components: Preprocessing Unit, Confidence Generator,
Similarity Generator, and Alignment Generator.

Figure 1—Components of the data integration and analysis framework.

Figure 2—Components of the UFOM system for computing ontology alignment.
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The Preprocessing Unit identifies the type of each entity in the ontology and classifies the entities based
on their types. Different computation strategies are adopted for matching the entities with the most
appropriate type. Specifically, an entity is classified as one of the following types: Class, ObjectProperty,
String DatatypeProperty, Datetime DatatypeProperty, and Numerical DatatypeProperty. Confidence Gen-
erator quantifies the sufficiency of the resources used to generate a potential match between two entities.
It computes a confidence score for each correspondence which reflects if there is sufficient underlying
data to generate this correspondence. For correspondence between properties, their instances are the main
resources. The more instances that are used for computing similarity, the more confident we can be in the
matching process. In order to quantify the sufficiency of the properties, we utilize two metrics — Volume
and Variety.

Similarity Generator computes multiple types of similarity for every pair of entities. It generates a
vector of similarities between two entities. These similarities form the basis for computing different types
of relation correspondences (using their respective fuzzy membership functions). In UFOM, the vector
consists of four values: Name-based Similarity, Mutual Information Similarity, Containment Similarity,
and Structural Similarity (Figure 3).

Name-based Similarity is calculated based on both the semantic similarity and syntactic similarity
between the names of the two entities. The name denoting an entity typically captures the most distinctive
characteristic of the instances. Mutual Information Similarity models the mutual information that exists
between the individuals of one entity and the domain represented by the second entity. If two properties
have a high proportion of instances shared between them, then this is indicative of these properties being
highly related. Containment Similarity models the average level of alignment between an instance of an
entity and its most similar instance in another entity. It is designed to detect pairs of entities that share a
large number of common instances even if the instances themselves are misaligned. The fourth value in
the vector of similarities is designed to capture the structural similarity between two properties as they are
represented within their ontologies. We represent the ontology as a graph with properties as edges and
classes as nodes. If two properties have similar domains and ranges (classes), then they are assigned high
similarity. In turn, two classes that have similar properties should have higher similarity.

Alignment Generator calculates a single relation score by combining the vector of similarities using the
fuzzy membership functions for each relation type and constructs the correspondence based on both these.
The output of Alignment Generator is a set of fuzzy correspondences in the form of relation scores and
corresponding confidence scores. The confidence score is obtained from Confidence Generator. In order
to calculate the relation score, a set of membership functions are pre-defined in UFOM. Each such
membership function corresponds to one type of relation. Once both scores are calculated, AG prunes the
correspondences with scores less than pre-defined cutoff thresholds. Different applications will have

Figure 3—Components of the UFOM Similarity Generator.
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different thresholds. For example, a recommendation system may have relatively low thresholds since
false positives are tolerated, while a scientific application may have high thresholds.

Query Execution
Fuzzy ontology alignment can be used to speed up query execution over the matched ontologies (Zhang
et al. 2015). We consider the following problem: Given two ontologies O1 and O2, return all individuals
in O2 which are “relevant” to a given individual t in O1. A naïve approach to retrieve all such individuals
is to compare each property value of t with all property instances in O2. This approach is inefficient in
terms of search time. Since we have already discovered the matching between ontology properties, we can
improve the query performance using the fuzzy alignment. The query execution has two steps: generating
a fuzzy SPARQL query and converting to crisp SPARQL query.

The first step is to identify related properties using the fuzzy alignment. We have developed two
approaches for querying related entities: follow only a single alignment link (direct matching), and follow
multiple alignment links (indirect matching). These are illustrated in Figure 4.

For direct matching, we retrieve properties in O2 having fuzzy relations (such as equivalence and
relevance) with t’s identifier property using the fuzzy alignment derived by UFOM. For indirect matching,
we first identify intermediate classes in O2. Such classes have properties having fuzzy relation with tt’s
identifier property. Based on the intermediate classes, we discover the properties which are equivalent to
the identifier of intermediate class. This equivalent relation usually can be found by checking Object
Properties in O2. In contrast to direct matching which outputs a set of properties, indirect matching results
in a collection of triples in the form of (p1 p2, p3), where p1 is the intermediate class’ property having fuzzy
relation with t’s identifier property, p2 is the intermediate class’ identifier property, and p3 is the target
property equivalent to p2. Once we have the properties discovered by direct matching and indirect
matching, we can build fuzzy SPARQL queries to retrieve the related individuals.

Before converting the fuzzy query to crisp query, we calculate a seed vector for each value pair (v0,
v) where v0 is the given value and v is the value in the matched properties. The vector considers multiple
similarity metrics including syntactic, semantic, and containment similarities. The results are stored in
instance ontology. We compute the �-cut of fuzzy terms based on the membership function in order to
remove the fuzzy terms. The individuals are ranked based on their membership grade. Once the crisp

Figure 4—Top: direct matching. Bottom: indirect matching.
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SPARQL query is generated, it can be registered on the triple store. As a result, all related individuals are
returned. With the help of the fuzzy alignment, the computation burden can be reduced.

Quantitative evaluation
We performed a set of experiments to evaluate query execution components. For datasets, we used
publicly available ontologies provided by Ontology Alignment Evaluation Initiative (OAEI) campaigns
(Euzenat et al. 2011). The first dataset we use is Instance Matching (IM) ontology from OAEI 2013. It
has 5 ontologies and 1744 instances. We initialize 10 individuals from one of the ontologies and retrieve
related individuals from other ontologies. The membership grade threshold is set as 0.75. Figure 5(a)
shows the performance of our query execution component on the IM ontology. Each data point is
generated by averaging the results of 10 individuals.

As the relation score threshold increases, both precision and running time for query execution decrease.
It is because the number of correspondences decreases when we raise the relation score threshold. As a
result, we have fewer correspondences to consider when we generate crisp queries and therefore the
computational time is reduced. The reason precision also decreases is that we lose some true correspon-
dences when we increase the relation score threshold. Those correspondences can actually help us to find
more related individuals. However, as we can see if we increase the threshold from 0.5 to 0. 8, precision
only decreases by 9% while execution time is reduced by 81%. This indicates that the elimination of
correspondences caused by increasing threshold do not affect retrieving correct related individuals
significantly. This is because the remaining correspondences are still sufficient to find connections
between classes. In terms of querying for similar individuals, the correspondences between same pair of
classes may have functional overlap.

For the evaluation of querying for related individuals, we considered two ontologies from an
enterprise-scale information repository. Due to privacy concerns, we do not reveal the real names of the
properties and ontologies. Specifically, we considered two classes, C1 and C2, in O1 and two classes, C3
and C4, in O2. We selected 10 representative individuals from C1 or C2 and retrieve their relevant
instances from C3 or C4 using the fuzzy alignment. Both precision and recall are 1.0 when we verified

Figure 5—(a) Precision and execution time on applying UFOM query execution to the Instance Matching Ontology. (b) Query Execution
Time (UFOM vs Baseline)
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the results with the ground truth obtained by manually examining the ontologies for each of the
automatically retrieved entities.

Computational complexity Indirect matching is capable of discovering entities that are not directly
related to the given query entity but it is computationally more intensive than direct matching. We have
derived the computational complexity of the two approaches. We assume that the cost for comparing a pair
of entities is constant. The computation time of the direct matching process is proportional to the number
of relevant field pairs, the number of records in the source class that has the specified value, and the
number of records in the target class. The computational cost of indirect matching is proportional to the
number of records in each indirect class, the size of the set of relevant field pairs between the source class
and each indirect class, and the size of the set of primary keys of relevant records identified in a target
class. Figure 5(b) shows the average execution time for querying the ontologies from the enterprise-scale
information repository. Compared with a baseline approach of traversing the values of all properties in O2,
the proposed approach reduces the execution by approximately 99%.

Event Modeling and Management
Time Series Classification using Shapelets
A massive portion of oilfield data today is in the form of sensor streams, which necessitates the use of
rapid real-time data analysis techniques (Brule 2013; Abou-Sayed 2012). We have adapted a time-series
mining approach that was recently developed in the computer science community, known as time-series
shapelets (Le and Keogh 2009), for application to sensor measurements typically collected in the oil and
gas industry, in particular to component failure detection and prediction. The streaming time series nature
of such data is especially suited to this approach. The shapelets method identifies those time segments
(“shapelets”) within the available sensor data which are most discriminative for differentiating between
two classes, for instance those arising from failed pump components in contrast to those that are working
normally. Using discovered shapelets from historical data, predictions about future failures or anomalies
can be made such that proactive steps can be taken to mitigate their effects. As an example, a shapelet that
was discovered from intake pressure measurements from an electrical submersible pump is overlaid over
the full time series in Figure 6 – the short segment shown in red was found to be the most discriminative
from this time series and others in the labeled data record for distinguishing failed pumps from normal
ones. This shapelet, along with other shapelets, can be used for detecting failures by comparing them with
real-time sensor data.

The shapelets approach is particularly effective for oil and gas enterprise data because it does not need
access to the entire historical record of sensor data while making decisions – only the shapelet time
segments, identified in an offline step from the historical record, are needed for real-time analysis. This

Figure 6—A discriminative segment (shown in red), or shapelet, from a time series as computed by the shapelet mining algorithm. The
x-axis shows time (in days) while the y-axis represents normalized values of the intake pressure for a specified ESP.
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greatly reduces the amount of data needed to be stored for further data mining. Moreover, this approach
does not make any assumptions about the nature of the data, making it practical for real world scenarios.
The shapelets found are visually interpretable, making deeper root cause analysis possible. Such time
series mining methods are directly related to events in the oilfield, and as described in (Crompton 2008),
there are several value propositions for efficient event processing (Patri et al. 2012, 2014b).

Gas Compressor Valve Failure Use Case We coupled feature selection methods with shapelets-based
time series classification to address the problem of failure detection of gas compressors (Patri et al. 2015).
A regular failure in rotating equipment such as compressors is the breakdown of valves. This issue is of
great value to the oil and gas industry because a large portion of production is dependent on rotating
equipment. Our goal is to rank sensor dimensions and find signatures in compressor sensor data, which
may aid in the prediction of valve failure, and as a result create a path to prioritize and monitor
maintenance schedules for compressors, which are often on remote platforms. The data used in our
evaluation is from sensors that measure various physical properties of compressors, ranging from
compressor vibrations and motor winding temperatures to pressure and temperature for both suction and
discharge at the various compression stages.

Our dataset consists of sensor data from four-cylinder gas compressors in an oilfield. Each compressor
has approximately fifty sensors. The sensor functions range from measuring compressor vibrations and
motor winding temperatures to sensors measuring the pressure and temperature for both suction and
discharge at the various compression stages. Data from some of the sensors is shown in Figure 7. We
applied feature selection algorithms to automatically rank sensor streams in order of usefulness for the
specific prediction tasks.

Figure 7—Data from some of the sensors in the gas compressor – discharge temperature of a cylinder (top left), motor winding
temperature (top right), motor vibration (bottom left) and cooler vibration (bottom right).
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While these sensor measurements are easily accessible, information on past occurrences of abnormal
operating conditions is not recorded in a format suitable for use as labels in a machine learning algorithm.
We used dates entered as part of maintenance records as labels for the sensor streams in order to apply
supervised machine learning algorithms. These were obtained from a subset of work orders on compressor
maintenance that focused on issues related to valves. The work orders listed dates of reported failure and
completion along with comments for each repair. We used information from the work orders to build our
labels, thus framing our failure prediction problem as a time series classification problem.

Approach Data labeling: To convert the sensor data streams into our required time series training and
testing datasets, we partitioned the full sensor stream around the occurrences of failures. A failure report
date is available as part of the maintenance records for the gas compressor. However, this report date does
not necessarily correspond to the time when the compressor actually failed but rather when a technician
created a work order to address a deficiency or respond to a prior open work order. In this work, we label
segments as failures if they appear a short while before this failure report date. We expect the actual failure
to have occurred before a human operator notices it. Failure windows are set just before these calculated
failure times. The size of this window can be set as a parameter in our experiments, but we focused on
one-week windows. Since the data in this window is just prior to the failure occurrence, it is likely to be
indicative of failure signals before the failure. For each labeled failure occurrence, we obtain the data in
this failure window, as shown in Figure 8, and extract shapelets from this window. Each such data
segment will have a failure label associated with it.

Next, we select normal instances only from those periods that are not close to any failures. Thus, we
pick data segments of the same window size from the rest of the data (normal operation) ensuring that
there is no intersection between the clean data segments and the failure periods or the pre-failure periods
i. e. the failure window. These data segments from normal operation are assigned the “normal” label for
classification.

Our approach is presented in the following training and testing algorithms. We have also applied a
similar approach for predicting electric submersible pump (ESP) failures in the context of single sensor
(univariate) data (Patri et al. 2014).

Training algorithm:
Input: A multivariate time series, time instances known to represent failures
Output: Set of selected sensors; shapelets and decision trees for every selected sensor
1. Pre-processing: Extract equal length (multivariate) segments and assign failure/normal labels to each

from the time series based on the distribution of failure instances.
2. Feature selection: Compute a variety of features for each sensor stream in each segment. Specifi-

cally, we use the maximum cross-correlation with an exponential decay curve with a pre-defined
magnitude and exponent. Correlate the maximum cross-correlation feature for each sensor stream with the

Figure 8—Pre-processing sensor data – a failure window is set just prior to the occurrence of each failure and we use these blocks of
data to extract signals indicative of failure
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failure/normal labels using a linear classifier. Retain only sensor streams which have � 50% classification
accuracy.

3. Apply univariate shapelet mining algorithm (specifically, Fast Shapelets (Rakthanmanon and Keogh
2013)) to only the sensor streams selected in Step 2. This step produces a set of shapelets and a decision
tree for each selected sensor stream (much fewer than the total number of sensors).

Testing algorithm:
Input: A single multivariate time series
Output: Class A (Normal) or Class B (Failure)
1. Discard variables from the multivariate time series that correspond to sensors not in the set of

selected sensors
2. For every selected sensor stream, compute the Euclidean distance to shapelets in the corresponding

decision tree (from Step 3 of the training algorithm).
3. Use the distances to compute a failure/normal label using the decision tree for each selected sensor.
4. Apply majority voting to select a single failure/normal label from the set of labels from selected

sensors (from Step 3).

Data mining across heterogeneous data sources
The data integration framework facilitates data mining across heterogeneous data sources and mining the
integrated historical data can enable the discovery of temporal patterns. In our work, we identify a class
of patterns called classification rules, which take the form: “IF Conditions, THEN Class.” The conditions
are a conjunction of attributes or features found in the data which identify the target class with high
precision. Rules are intended to be concise and interpretable. This comprehensibility relative to “black-
box” classifiers facilitates easier adoption by domain experts.

Rule-Learning Features The data integration framework links together both relevant information and
non-relevant information to any specific application. Therefore, steps must be taken to restrict the number
of features in the search space to reduce the chances of over-fitting the data and finding spurious rules.
Preprocessing the data into a smaller set of semantically meaningful features also keeps the rules
interpretable.

An example of such preprocessing is the clustering of pump cards, which is a series of load-position
pairs recorded throughout each pump cycle. Rather than data mining on individual load-position points,
we group complete pump cards together into similar clusters. We find that hierarchical agglomerative
bottom-up clustering using the Euclidean distance metric works well for grouping similar pump cards.
Each cluster is one feature in the search for classification rules. Figure 9 shows some example pump card
clusters.
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Confidence in inferred production estimates use case Enhanced Oil Recovery is a technique used to
improve production in fields with highly viscous oil. In this technique, operators inject steam into and
around a well that has seen a reduction in flow. The steam heats the oil under the surface, reducing its
viscosity. This often leads to an increase in production. The primary indication that a well would benefit
from steam stimulation is a decline in production. Inferred production calculations are used as estimates
of individual well production in lieu of expensive well gauging. Inferred production is calculated based
on an analysis of pump card measurements, in addition to other data. Noise in the inferred production
estimates can also lead to sub-optimal wells being flagged for stimulation. For low-producing wells, even
well tests measuring actual production can have high variation. This leads to many spurious alerts which
obscure the alerts for high-producing wells ready for stimulation.

Rule learning can help with Enhanced Oil Recovery by reducing false alarms due to well failures and
due to low-confidence inferred production data. For this use-case, the objective for rule learning is to find
the best candidate wells based on characteristics of productive wells in the historical record. A good
candidate is a well that will benefit most from steam injection. Features can include pump card clusters
and temporal information about events, such as the amount of time elapsed since the last steam injection.

Content Extraction from Text
The amount of unstructured text data collected in real-world enterprise applications is increasing with the
easy availability of portable computers enabling operators to enter notes in the field. For instance, field
engineers record their observations into a Computerized maintenance management system (CMMS) using
a mix of natural language and domain-specific terms. Such text instances can number in the hundreds of
thousands in an enterprise. In this context, “unstructured” refers to natural language that does not strictly
follow the rules of the language. Content extraction from such unstructured text collections is the process
of identifying only the key terms in an entry that are relevant to a specific application, i.e., the terms that
share a particular relation with each other. Content extraction thus transforms unstructured text to a
structured representation. For example, in a maintenance application, the content extraction task could be

Figure 9—Example pump card clusters. To keep the clusters interpretable, we label each cluster with an image made up of a
composition of all member images. This “average” pump card image conveys information to the domain expert.
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to identify terms describing repair actions and parts that were repaired. This transformation helps us
understand the data and make use of it in various tasks such as data integration and summarization.

The problem of content extraction has been widely studied in Natural Language Processing but most
of these approaches make use of the structure of the text by assuming that it is composed of grammatically
correct sentences. Corporate datasets often do not satisfy this criterion. For this reason we applied a
bootstrapping based approach to solve the problem (Shang et al. 2015). The approach is illustrated in
Figure 10. The method uses an iterative approach where event patterns are used to extract matching
sentences and these matches are used to refine the patterns. This approach is adapted from the DIPRE
system (Brin 1999) where patterns are used to extract author-book pairs. While DIPRE relied on regular
expressions of characters for patterns, we use approximate matching based on the semantic distance
between words. We rank patterns in order to ensure that only high precision patterns are retained. We also
tokenize the input sentences to extract local features before searching for patterns. The steps are listed in
Algorithm 1 (Figure 10). The information extraction part is preceded by set of data pre-processing tasks
in which we tokenize the sentences using bigrams, remove stop words, and perform stemming.

We evaluated our approach on the text comments in the database of an enterprise level corporation. The
database contained approximately 400,000 lines and represented field notes by engineers. Events in this
application correspond to actions taken by engineers and the event parameter represents the object
involved in an action. The average length of a line is 13 words.

The lines are a mixture of English words, numbers, and alphanumeric terms. Since variations in
numbers and alphanumeric terms between otherwise similar sentences do not typically represent different
events, we replaced instances of such terms with a generic tag. Examples of lines in this dataset are shown
in Figure 11.

Figure 10—Illustration of approach and algorithm for event extraction from unstructured data.

Figure 11—Examples from enterprise dataset. ID and DIGIT represent alphanumeric characters and numbers respectively that are
replaced with type tags before event extraction. PART represents words not shown for privacy concerns.
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We selected the following seed Event-Event parameter word pairs for extracting new events from the
enterprise dataset: “replace belts”, “repair part”, “need belts”, and “repair break”. With these seed pairs
and by using approximate matching using WordNet similarity, the patterns found after the first iteration
are shown in Figure 12. The false positives are marked in red. The method achieves a precision of 70%.

Learning word relatedness from unstructured text
Given a text dataset, several applications require words in the data to be associated with terms of known
significance, i.e., there is a need to learn word similarity. Typically, the Distributional Hypothesis, which
states that words that occur in the same contexts tend to have similar meanings (Harris 1985), has been
used as the basis for association methods in information retrieval (Stiles 1961). However, when the data
set contains only short free-form sentences as in the case of field notes in industrial applications, learning
similarity based on co-occurrence within the context is not sufficient. Therefore, we need to consider the
co-occurrence of a pair of words “across” similar contexts.

We have developed the notion of cross-context similarity (CCS) to relate similarity between sentences
(more generally, denoted “contexts”) to similarity between the individual words that comprise the context.
Our approach makes use of a simple bag-of-words model relating terms to their contexts and the similarity
is calculated using only the information provided in a labeled sentence corpus. In the case, where the
sentences (contexts) are not labeled and similarity between them is not known, we can use established
sentence similarity measures (e.g., cosine similarity) to compute context similarity. Our hypothesis is that
the more often two terms occur in similar contexts, the greater the cross-context similarity between them.
The idea is especially advantageous in short texts, where the contexts are short sentences. In this case there
may not be enough information in the same context to find similar terms. For instance consider the
sentences:

1. “Two-Face has appeared in multiple Batman media forms.”
2. “The character of Joker has undergone many revisions.”

Co-occurrence alone does not provide any relationship between (Joker, Two-Face). However, if it is
known that the sentences are related (both describe Batman villains), one can infer that there is some
similarity between (Joker, Two-Face).

The CCS model is based on computing cross-occurrence which is defined as a measure of the weighted
co-occurrence between terms in similar contexts. The weights in the cross occurrence are calculated based
on context similarity over all pairs of contexts and the membership score of words in the corresponding
contexts. This membership score may be a binary value representing presence/absence, frequency, or
TF-IDF score. Cross-occurrence is appropriately normalized to get CCS so that it is bounded between 0
and 1.

Figure 12—Approximate pattern matching: Subset of event and event parameter pairs after first iteration. Pairs in red are considered
incorrect in our evaluation.
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We use CCS to automatically obtain the relatedness between cataloged (English) and uncatalogued
(non-English codes such as part numbers) words from text data in an enterprise dataset. A sample of
results obtained using CCS is shown in Figure 13. In this graph, low relatedness links were removed,
preserving only meaningful relationships. The cataloged words such as flats, tires, and vehicle can be
together considered to form a description of the codes.

Figure 14 shows another snapshot of the relatedness measure, where all the codes related to wells
gather around the term wells. Thus, CCS not only finds the relatedness but also helps in interpreting the
meaning of unknown terms.

Figure 13—Relatedness between cataloged (English) and uncatalogued (non-English codes such as part numbers) words using CCS.
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Social Network Analysis
The wealth of information available in the modern enterprise is not limited to formal interactions and silos
containing structured data. As social media have become phenomenally popular, enterprises have adopted
light-weight tools such as on-line forums and microblogging services for internal communication.
Employees have been using social network sites and microblogging services to stay in touch with close
colleagues or to reach out to employees they do not know, to connect on a personal level or to establish
strong professional relationships (Wu et al. 2010). Analysis of enterprise social interactions analysis can
lead to insights, both at the atomic (micro) and collective (macro) level. Micro analysis is intended to
provide better tools for communication, search and productivity, whereas macro analysis is be used for
strategic decision making and informed planning. Examples of micro analysis include recommendation
services that can connect employees to “interesting” people, suggest “interesting” discussions for
employees to contribute, or projects to get involved in. Macro analysis can enable enterprises to utilize the
results stemming out of informal interactions analysis, to better understand how their employees work
together to complete tasks or produce innovative ideas, reveal trends, identify experts and influential
individuals, so as to evaluate and adjust their management strategy, team building and resource allocation
policies (Chelmis et al. 2013).

In prior work, we have designed and built the Semantic Social Network Analysis for the Enterprise
(rESONAtE) model (Chelmis et al. 2013). rESONAtE is a formal model that abstracts the semantics of
social network communication into an integrated, context-aware, time-sensitive, multi-dimensional space,
with the goal of enabling the correlation across different domains (Chelmis et al. 2013). The social graph
representation, shown in Figure 15, represents both social links between users and maintains integrated
information regarding users dynamically changing interests and activities, across collaboration tools used
in the work environments. The Social Layer captures users’ contextual and temporal interactions. Nodes
represent users and arcs represent explicit relationships (links) between them. An edge between users is
defined by the context under which it was created and has an associated timestamp. The Content Layer
captures published content from all available sources, including but not limited to resources shared by

Figure 14—Relatedness between known word (well) and non-English codes (part numbers) as computed using CCS.
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users (e.g. photos or videos), bookmarked and/or tagged resources (e.g. URLs), users’ generated content
(e.g. status updates in Facebook), e-mails, chat messages, and blog posts. The Semantic Layer contains
meta-information about content, and can be broken down into several constituting layers, each containing
different metadata about the content.

Organizational Hierarchy vs. Social Network Interactions
Organizational hierarchy is relatively static whereas communication may reflect “shortcuts,” i.e. collab-
oration that spans hierarchical levels when seeking for help, or offering guidance. Studying communi-
cation patterns may reveal hidden organizational dynamics such as employees belonging to the same team
according to the organizational hierarchy, but rarely actually interact due to having diverse responsibil-
ities. Social network analysis can enable better understanding of how information propagation works
between corporate borders. As a specific use-case of such analysis, we have analytically examined the
impact of organizational hierarchy in adopting new technologies in the enterprise (Chelmis et al. 2014).

For our study, we acquired the organizational hierarchy of a Fortune 500 multinational company. In
addition, we gathered adoption logs of the internal microblogging service, which resembles Twitter,
during the first two years of adoption of the service in the enterprise. This dataset allows us to empirically
characterize individual dynamics and influence and examine the spread of adoption through the hierarchy.
To characterize the adoption mechanism of the internal microblogging service, we developed two
agent-based computational models with the least possible number of parameters. The model emphasizes
modeling the cumulative number of adoptions over time, rather than trying to predict which specific node
in the network will infect which other nodes. The model represents the influence that each node has on
the spread of influence (microscopic modeling) and uses this to provide an analytical framework by which

Figure 15—Layers of the rESONAtE model for representing social network communications (Chelmis et al. 2013).
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changes in the adoption rate over time can be predicted (macroscopic dynamics). This study suggested that
middle-level managers are most successful in influencing employees into adopting the new microblogging
service. The analysis was further extended to model a wide variety of social network influence (Srivastava
2014).

Conclusions
The Integrated Optimization project is developing a suite of technologies to enable rapid integration and
analysis of large heterogeneous data sources in the oil and gas industry. The Rapid Integration Framework
provides a semantic layer for integrating relational databases and ontologies without affecting the
underlying data recording workflows. The Event Modeling and Management component develops
machine learning-based methods for classifying sensor measurements and has applications in predicting
equipment (electric submersible pumps and compressors) failures and for optimizing enhanced oil
recovery operations. Methods for content extraction from text enable automatic identification of key terms
in large quantities of free-form English text. The models for social network analysis can provide insights
to oil and gas enterprises seeking to realize the dynamics of adoption of new technologies in their
organization and could assist in designing better strategies for rapid and efficient technology adoption and
information dissemination at the workplace. These methods are currently evaluated in specific upstream
applications.

Acknowledgment
This work is supported by Chevron U.S.A. Inc. under the joint project, Center for Interactive Smart
Oilfield Technologies (CiSoft), at the University of Southern California.

References
Abou-Sayed, A. 2012. Data mining applications in the oil and gas industry. Journal of Petroleum

Technology, 64:88–95.
Brin, S. 1999. Extracting patterns and relations from the world wide web. In The World Wide Web and

Databases, 172–183, Springer.
Brule, M. R. 2013. Big Data in Exploration and Production: Real-Time Adaptive Analytics and

DataFlow Architecture. SPE Digital Energy Conference and Exhibition, 5-7 March, The Woodlands,
Texas, USA. SPE-163721-MS.

Burda, B., Crompton, J., Sardoff, H. M. et al. 2007. Information Architecture Strategy for the Digital
Oil Field. SPE Digital Energy Conference and Exhibition, 11-12 April, Houston, Texas, U.S.A. SPE-
106687-MS.

Chelmis, C., Srivastava, A., and Prasanna, V. K. 2014. Computational Models of Technology
Adoption at the Workplace. Social Network Analysis and Mining, 4(1): 1–18.

Chelmis, C., Wu, H., Sorathia, V. et al. 2013. Semantic social network analysis for the enterprise.
Computing and Informatics – Special Issue on Computational Intelligence for Business Collaboration.

Crompton, J. 2008. Putting the FOCUS on Data. Keynote Address at the 2008 W3C Workshop on
Semantic Web in Oil & Gas Industry, Houston, Texas.

Euzenat, J., Meilicke, C., Stuckenschmidt, H. et al. 2011. Ontology Alignment Evaluation Initiative:
Six Years of Experience. Journal on Data Semantics XV, 6720:158–192.

Harris, Z. S. 1985. Distributional structure. In The Philosophy of Linguistics, ed. J. J. Katz, 26–47.
Oxford University Press.

Patri, O. P., Sorathia, V. and Prasanna, V. K. 2012. Event-driven information integration for the digital
oilfield. SPE Annual Technical Conference and Exhibition. 8-10 October, San Antonio, Texas, USA.
SPE-159835-MS.

SPE-174907-MS 17



Patri, O., Panangadan, A., Chelmis, C. et al. 2014. Predicting Failures from Oilfield Sensor Data using
Time Series Shapelets. SPE Annual Technical Conference and Exhibition, 27-29 October, Amsterdam,
The Netherlands. SPE-170680-MS.

Patri, O., Sorathia, V., Panangadan, A. et al. 2014. The Process-oriented Event Model (PoEM) – A
Conceptual Model for Industrial Events. ACM International Conference on Distributed Event-Based
Systems (DEBS), Mumbai, India, 26-29 May.

Patri, O., Reyna, N., Panangadan, A. et al. 2015. Predicting Compressor Valve Failures from
MultiSensor Data, SPE Western Regional Meeting, 27-30 April, Garden Grove, California, USA.
SPE-174044-MS.

Rakthanmanon, T. and Keogh, E. 2013. Fast shapelets: A scalable algorithm for discovering time
series shapelets. Proc. Thirteenth SIAM conference on data mining (SDM), 2-4 May, Austin, Texas, USA.

Shang, C., Panangadan, A. and Prasanna, V. K. 2015. Event Extraction from Unstructured Text Data,
26th International Conference on Database and Expert Systems Applications (DEXA), Valencia, Spain,
1-4 September.

Srivastava, A., Chelmis, C. and Prasanna, V. K. 2014. Influence in Social Networks: A Unified
Model? IEEE/ACM International Conference on Social Networks Analysis and Mining (ASONAM),
Beijing, China, 17-20 August.

Stiles, H. E. 1961. The association factor in information retrieval. J. ACM, 8(2):271–279.
Wu, A., DiMicco, J. M. and D. R. Millen. 2010. Detecting professional versus personal closeness

using an enterprise social network site. Proc. 28th international conference on Human factors in
computing systems (CHI ‘10), 1955-1964, New York, NY, USA.

Ye, L. and Keogh, E. 2009. Time series shapelets: a new primitive for data mining. Proc., 15th ACM
SIGKDD international conference on Knowledge discovery and data mining, 947–956.

Zhang, Y., Panangadan, A. and Prasanna, V. K. UFOM: Unified Fuzzy Ontology Matching, IEEE
International Conference on Information Reuse and Integration (IRI), San Francisco, USA, 13-15 August.

Zhang, Y., Panangadan, A. and Prasanna, V. K. 2015. UFOMQ: An Algorithm for Querying for
Similar Individuals in Heterogeneous Ontologies,” 17th International Conference on Big Data Analytics
and Knowledge Discovery (DaWaK), Valencia, Spain, 1-4 September.

18 SPE-174907-MS


	Rapid Data Integration and Analysis for Upstream Oil and Gas Applications
	Introduction
	Rapid Integration Framework
	Query Execution
	Quantitative evaluation
	Computational complexity


	Event Modeling and Management
	Time Series Classification using Shapelets
	Gas Compressor Valve Failure Use Case
	Approach

	Data mining across heterogeneous data sources
	Rule-Learning Features
	Confidence in inferred production estimates use case


	Content Extraction from Text
	Learning word relatedness from unstructured text

	Social Network Analysis
	Organizational Hierarchy vs. Social Network Interactions

	Conclusions

	Acknowledgment
	References

