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Social Link Prediction in Online Social Tagging Systems
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Social networks have become a popular medium for people to communicate and distribute ideas, content,
news and advertisements. Social content annotation has naturally emerged as a method of categorization
and filtering of online information. The unrestricted vocabulary users choose from to annotate content has
often lead to an explosion of the size of space in which search is performed. In this article, we propose latent
topic models as a principled way of reducing the dimensionality of such data and capturing the dynamics
of collaborative annotation process. We propose three generative processes to model latent user tastes with
respect to resources they annotate with metadata. We show that latent user interests combined with social
clues from the immediate neighborhood of users can significantly improve social link prediction in the online
music social media site Last.fm. Most link prediction methods suffer from the high class imbalance problem,
resulting in low precision and/or recall. In contrast, our proposed classification schemes for social link rec-
ommendation achieve high precision and recall with respect to not only the dominant class (non-existence
of a link), but also with respect to sparse positive instances, which are the most vital in social tie prediction.
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1. INTRODUCTION

Social networking sites have offered Internet users a novel way to organize their online
digital content and share content with other users. In general, users of social media
sites contribute content which is not restricted to one media type (e.g., documents,
photos, URLs). Depending on the social media site, users can annotate content using
descriptive text (e.g., title and description of photos in Flickr1) or with metadata (i.e.,
tags). User-generated content mostly comprises of free, unstructured text, which often
does not adhere to grammatical and syntactical rules, contains slag terms and abbre-
viations and is often of restricted length (e.g., 140 characters in Twitter2). To improve

1http://www.flickr.com/
2https://twitter.com/
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online content organization, categorization, search and filtering, users have adopted
tags (or hashtags). The ability of users to select tags from an unrestricted vocabulary
has led to the creation of personalized taxonomies, offering greater malleability and
adaptability in information organization than formal classification systems, which im-
pose users with the restriction to annotate content based on predefined keywords. Even
though tags tend to be very inconsistent between various users, resulting in a large
number of polysemous and synonymous annotations [Golder and Huberman 2006], hi-
erarchies of mediated community knowledge emerge [Lerman and Plangprasopchok
2009].

In current social tagging systems organization, classification and search tend to be
rather simplistic in nature, often relying on keyword-based retrieval algorithms or ag-
gregated results stemming from collaborative filtering techniques [Harvey et al. 2011].
Probabilistic models have been successfully used in discovering the set of hidden topics
that were responsible for generating a collection of documents (e.g., [Blei et al. 2003]).
In this work, we describe three unsupervised models of online social tagging systems
as a principled mechanism to address issues of synonymy, polysemy and tag sparse-
ness. Our probabilistic models capture the generative primitives behind online content
annotation, while at the same time extract information about users’ latent interests
and hidden topics from online, large-scale social tagging systems.

Online social media sites users’ rich activities reveal crucial information about their
behavior and interests. Users’ interaction with online content can be effectively cap-
tured with tripartite graphs [Halpin et al. 2007]. The models we present in this article
mine users’ latent interests from their interactions with online content, instead of re-
lying to user-generated profiles, which may be incomplete or obsolete. We benefit from
such modeling of users’ latent interests into providing answers to a broad range of im-
portant queries, such as which users have similar interests (i.e., community detection)
and which other users a user would be mostly interested in (i.e., social link prediction).
Link prediction in social networks is a challenging problem, as social networking data
are inherently noisy and heterogeneous. One key assumption in sociology is the theory
of homophily [McPherson et al. 2001], which postulates that people who have simi-
lar characteristics tend to form ties. Moreover, it is likely that the stronger the tie,
the higher the similarity [Granovetter 1983]. Link prediction models that estimate tie
strength from entity attributes and graph structure [Lu and Zhou 2011] or interac-
tion activity and user’s profile similarity have been proposed [Xiang et al. 2010]. Such
approaches assume the existence of a latent model that captures the causality of the
underlying social process by considering relationship strength to be the hidden effect of
user profiles similarities and interactions between users. In our work, we first examine
which users’ activity (annotations, resources, or annotation of resources) is the most
discriminative in predicting social ties. We show that users’ latent interests can be
particularly beneficial to social link prediction and we model the process of social link
creation as the hidden effect of such latent profiles combined with network features.
Particularly, we propose a framework to integrate our modeling of social annotations
with network proximity. The proposed approach consists of two steps: (1) discovering
salient topics that characterize users, resources and annotations; and (2) enhancing
the recommendation power of such models by incorporating social clues from the im-
mediate neighborhood of users.

The main contributions of this work can be summarized as follows. First, we pro-
pose a novel generative modeling of tripartite graphs in social media sites with three
probabilistic models that simultaneously capture users’ interests with respect to an-
notation of resources and hidden topics. We provide a systematic comparison of our
models in the task of uncovering hidden topics and we illustrate numerous applica-
tions. Consequently, we propose several scalable methods for learning to classify social
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links, based on latent semantics and local network structure. We compare our methods
against state of the art social link prediction techniques on a real-world dataset.

The outline of the article is as follows: Section 2 describes the basic structure of tri-
partite graphs and Section 3 introduces our three probabilistic models for tripartite
graph generation. Section 4 briefly describes a social link prediction technique based
on semantic similarity of user-generated metadata. We use this technique as a baseline
to demonstrate the effectiveness of our proposed models in the task of social tie rec-
ommendation. Section 5 discusses our four scalable social link classification schemes,
which exploit latent semantics and local network structure. Section 8 evaluates our
clustering schemes on a real-world dataset and contrasts it to other approaches. Sec-
tion 9 summarizes previous work, while Section 10 concludes with a discussion of the
implications of our findings and directions of future work.

2. STRUCTURE OF TRIPARTITE GRAPHS

A social network is often represented as sociogram [Wasserman and Faust 1994], in
which nodes represent users and arcs represent explicit relationships between them.
A sociogram is realized as graph, adjacency matrix or distributed adjacency lists (each
node in the network maintains a local collection of its neighboring vertices). In order
to exploit implicit relationships between users, tripartite graph models have also been
proposed [Halpin et al. 2007], as shown in Figure 1.

Tripartite graphs offer a mechanism to describe and capture users’ behavior and
interests in terms of their activities. A tripartite graph is a graph whose vertices can
be divided into three disjoint sets: 1) a set of actors (e.g., users) A = {a1, ..., aA}, 2)
a set of concepts (e.g., tags) C = {c1, ..., cC} and 3) a set of resources (e.g., photos)
R = {r1, ..., rR}. A resource r ∈ R is annotated with a set of concepts cr ∈ C of size Nr

(similarly created, used, bookmarked or shared), by a set of actors ar ∈ A. A collection
of R resources is then represented as a concatenation of individual concept vectors c,

having N =
∑R

r=1 Nr concepts in total. It is possible to cluster vertices that belong to
any of the three disjoint sets of a tripartite model so as to extract emergent semantics.
Tripartite graphs can this way be reduced into three bipartite graphs, which model
associations between actors and concepts (bipartite graph AC), concepts and resources
(bipartite graph CR), and actors and resources (bipartite graph AR). Bipartite graphs
are easier to comprehend and work with but the reduction process discards higher
dimensional links between the three sets, which could otherwise be extremely useful
in the analysis of the social network at hand. A bipartite graph can be further reduced
to produce two simple, weighted graphs. For example, the bipartite graph of actors
and concepts (AC) may be reduced into two graphs, one for actors (graph A) and one
for concepts (graph C). In this case, the reduced graph A models relationships between
actors, weighted by the number of times two actors have used same concepts.

The creator of a resource is often considered to be its owner, but many actors may
use, bookmark or share a resource, thus becoming “owners” themselves. Further, many
actors may collectively annotate a resource, socially contributing to its set of concepts.
We consider artists in Last.fm3 as resources, which are annotated with tags. Tags be-
come concepts in our modeling. More complex hierarchical Bayesian models can be
designed if more types of resources and concepts are considered. The models we de-
scribe below can be naturally extended to accommodate other resources and annota-
tion types, such as annotations of Flickr photos, or descriptive text of Youtube videos.

Users annotate resources by choosing tags from an uncontrolled vocabulary accord-
ing to their style and interests. Resources of the same nature (i.e., topic) may be tagged

3http://www.last.fm/
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Fig. 1: Tripartite graph model of a social network.

with different keywords, which may have similar meaning (e.g., synonyms) or with lin-
guistic variations of the same keyword due to the uncontrolled vocabulary (e.g., “lac”
as opposed to “laclippers”). Conversely, the same keyword can be used to annotate
resources of different nature due to polysemy. For example, “apple” may be used to
describe a story about farmers’ market or about a new i-phone product. We use proba-
bilistic models as a mechanism to address such issues of synonymy, polysemy and tag
sparseness and effectively model tripartite graphs in order to capture users’ interests
in social networks.

3. GENERATIVE MODELS OF TRIPARTITE GRAPHS IN SOCIAL NETWORKS

3.1. The User-Resource-Concept Model

We introduce User-Resource-Concept model (URC), a probabilistic author-topic model
[Rosen-Zvi et al. 2010] to model users’ interests based on their resource usage and
annotation behavior. Topics are hidden variables representing categories that natu-
rally split the corpus into clusters of closely related resources. In Last.fm, topics are
equivalent to music genres. The process of resource annotation can be described as a
stochastic process. A group of users ar, which for the purposes of estimation we as-
sume is observed, collectively annotate resource r. For each resource annotation a user
a is chosen uniformly at random. Based on user a’s interests and the nature of the
resource, a set of topics is selected. Concept cri (e.g., tag) is generated based on the
selected set of topics.

This generative process is described in graphical form in Figure 2a. x indicates the
user, chosen from ar, responsible for a given annotation. Each user is associated with a
distribution over latent topics θ, chosen from a symmetric Dirichlet(α) prior. Assuming
there are T latent topics, the multinomial distribution over topics for each author can
be represented as a matrix Θ of size T ×A. Its elements θta stand for the probability of
assigning topic t to a concept generated by actor a. We use θa to denote the ath column
of the matrix. The mixture weights for the chosen user are used to select topic z and a
concept is generated according to the distribution φ corresponding to that topic, drawn
from a symmetric Dirichlet(β) prior. Matrix Φ of size C × T denotes the multinomial
distribution over words associated with each topic. φt represents the probability of
generating concepts from topic t. Table I summarizes this notation. To summarize, we
have the following data generation process for URC:

For each actor a ∈ A choose θa | α ∼ Dirichlet(α).
For each topic t ∈ T choose φt | β ∼ Dirichlet(β).
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Table I: Notation

Set of actors A Set
Number of unique actors A Scalar

Set of concepts C Set
Number of unique concepts C Scalar
Total number of concepts N Scalar

Set of resources R Set
Number of unique resources R Scalar

Number of topics T Scalar
Dirichlet prior α Scalar
Dirichlet prior β Scalar

Probabilities of concepts given topics Φ C × T matrix
Probabilities of concepts given topic t φt C-dimensional vector

Probabilities of topics given actors Θ T ×A matrix
Probabilities of topics given actor α θα T -dimensional vector

Number of actors associated with the rth resource Ar Scalar

Actors related to the rth resource ar Ar-dimensional vector

Number of concepts associated with the rth resource Nr Scalar

Concepts related to the rth resource cr Nr-dimensional vector

ith concept in the rth resource cri ith component of cr

Concepts related to all resources c N -dimensional vector
Actor assignments x N -dimensional vector

Actor assignments for concept cri xri ith component of xr

Topic assignments z N -dimensional vector

Topic assignments for concept cri zri ith component of zr

Fig. 2: Generative models of tripartite graphs. (a) User-Resource-Concept model, (b)
User-Resource model, (c) User-Concept model.

For each resource r ∈ R, given actors vector ar,
For each concept i ∈ Nr

Choose actor xri | ar ∼ Uniform(ar)
Choose topic zri | θxri

, xri ∼ Multi(θxri
)

Choose concept cri | zri, β ∼ Multi(φzri).
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The joint distribution of observed and hidden variables is:

P (c, z,x,Φ,Θ | α, β,A) =

T
∏

t=1

P (φt | β)

A
∏

a=1

P (θa | α)

R
∏

r=1

Nr
∏

i=1

P (xri | ar)P (zri | θa, xri)P (cri | φt, zri). (1)

3.2. The User-Resource Model

The User-Resource Model (UR), shown in Figure 2b, is a simplification of the URC
model and is structurally equivalent to the LDA model [Blei et al. 2003]. We begin by
reducing the tripartite graph of users, resources and concepts into a bipartite graph of
users and resources. In this modeling, users’ interests are expressed in terms of activ-
ity involving similar resources (e.g., users A and B have similar tastes if user A creates
a resource R, which user B comments on). Hence, each user owns one “document”, and
resources become vocabulary terms that users select to “compose” their documents.

In this model, φ denotes the matrix of topic distributions, with a multinomial distri-
bution over R resources for each of T topics being drawn independently from a sym-
metric Dirichlet(β) prior. The matrix of user-specific mixture weights for these T topics,
θ, is being drawn independently from a symmetric Dirichlet(α) prior. Each resource r
is drawn from the topic distribution φ corresponding to z, the topic responsible for gen-
erating that resource, drawn from the θ distribution for that user. To summarize, the
UR model assumes the following generative process for each actor a ∈ A:

Choose θ | α ∼ Dirichlet(α).
For each topic t ∈ T choose φt | β ∼ Dirichlet(β).
For each resource ri ∈ Ra,

Choose topic zi | a ∼ Discrete(θ)
Choose resource ri | zi, β ∼ Discrete(φzi ).

The joint distribution of observed and hidden variables in this case is:

P (r, z,Φ,Θ | α, β) = P (θ | α)

T
∏

t=1

P (φt | β)

Ra
∏

i=1

P (zi | θ)P (ri | φt, zi). (2)

3.3. The User-Concept Model

The User-Concept (UC) model is shown in Figure 2c. Similarly to UR model, this too
is a simplification of the URC model. UC is an adaptation of the LDA model [Blei et al.
2003] with the difference that users are modeled based on their tag usage. In order
to construct this model, we aggregate annotations assigned by users to resources they
“own” and use these tags as vocabulary terms. The motivation for this reduction stems
from our analysis of tripartite graphs’ structure in Section 2. There we argued that
bipartite graphs are easier to work with, even though they discard information that
could otherwise be used to enhance the modeling of users’ online activities. We use
this model as a simpler and more scalable solution to our problem, and compare its
effectiveness against URC.

In this model, φ denotes the matrix of topic distributions, with a multinomial dis-
tribution over N concepts for each of T topics being drawn independently from a sym-
metric Dirichlet(β) prior. θ is the matrix of user-specific mixture weights for these T
topics, being drawn independently from a symmetric Dirichlet(α) prior. For each an-
notation, z denotes the topic responsible for generating that concept, drawn from the
θ distribution for that user, and c is the concept, drawn from the topic distribution
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φ corresponding to z. To summarize, the UC model assumes the following generative
process for each actor a ∈ A:

Choose θ | α ∼ Dirichlet(α).
For each topic t ∈ T choose φt | β ∼ Dirichlet(β).
For each concept ci ∈ Na,

Choose topic zi | a ∼ Discrete(θ)
Choose concept ci | zi, β ∼ Discrete(φzi ).

The joint distribution of observed and hidden variables in this case is:

P (c, z,Φ,Θ | α, β) = P (θ | α)

T
∏

t=1

P (φt | β)

Na
∏

i=1

P (zi | θ)P (ci | φt, zi). (3)

3.4. Parameter Estimation

Given any one of the three models we described above, we can obtain information about
which topics users are mostly interested in, as well as a representation of annotations
with respect to these topics, by estimating parameters Φ (probability of topics given
concepts) and Θ (probability distribution over topics for each user, given concepts).
The hidden structure of topics is captured by the posterior distribution of the hidden
variable z (probability of topic mixtures of concepts). We adopt collapsed Gibbs sam-
pling [Griffiths and Steyvers 2004] to compute the posterior distribution on z and then
use the result to infer matrices Φ and Θ.

4. SOCIAL LINK PREDICTION USING HIDDEN TOPICS (SLIGHT)

One natural application of our modeling is social link prediction given some snapshot
of a tripartite graph. Makrehchi [2011] constructed a semi-bipartite graph of extracted
hidden topics from user profiles and then applied topological metrics such as Katz
[Katz 1953] and short path scores to rank and recommend users. Makrehchi [2011]
showed that this method outperforms approaches that rely on similarity measures of
feature vectors (i.e., Bag of Words) and low rank approximation (i.e Latent Semantic
Indexing (LSI)). We extend this approach by considering resources and metadata to
represent users’ interests instead of documents consisting of words. Our goal is to
use this approach as a baseline in comparison to our novel techniques for social link
prediction (see Section 5) in a generic social network that is not as focused as academic
networks extracted from technical paper co-authorships.

Gibbs sampling of the posterior distribution on z results into generating matrices
Φ, Θ and C [Rosen-Zvi et al. 2010]. Topic-actor matrix Θ in particular represents a
bipartite graph linking topics to actors. Using matrix Θ, we can build a semi-bipartite
graph G [Makrehchi 2011] of size (A+ T )× (A+ T ):

G =

[

S Θ⊤

Θ Θ×Θ⊤

]

. (4)

S represents relationships between users and is unknown. Makrehchi [2011] used
Katz score [Katz 1953] to predict the missing values of the unknown block S, such
that S = Katz(G), in an academic social network. Katz score, a generalization of de-
gree centrality, measures the degree of influence of an actor in a social network [Katz
1953]. Typical centrality measures only consider the geodesic distance between a pair
of actors. Instead, Katz takes into account the total number of walks between a pair
of actors, penalizing long paths by an attenuation factor δ ∈ (0, 1) (typically the spec-
tral norm of matrix G), raised to the power of path length. The Katz score for any two
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entries gi, gj of matrix G can be computed as follows:

Katz(gi, gj) =
∞
∑

l=1

δl|pathl(gi, gj)|, (5)

where pathl(gi, gj) is the set of all paths of length l between gi, gj .

4.1. Threshold Selection

Due to the fact that link prediction between two nodes is a binary classification prob-
lem, similarity matrix S has to be converted into a binary adjacency matrix. The pro-
cess consists of examining the similarity between each pair of users and checking if its
value exceeds a threshold. As the similarity threshold decreases, more links are added,
leading to more true positives but also to more false positives. We determine the best
threshold value automatically based on the probability of the existence of a link in a
social network [Makrehchi 2011]. In a sparse, directed social network, the number of
existing links is considerably smaller than all possible links. The density of a directed
social network can be calculated as ∆ = L

n(n−1) , where L is the number of true links

in the network and n is the number of nodes. The higher the density of the graph, the
higher the probability of a link, hence the higher the probability that nodes are con-
nected to others. Conversely, low density indicates a sparse graph with few connected
nodes, isolated communities and unreachable nodes.

Given link probability p = ∆, we determine the optimal threshold value τ by mini-
mizing the squared error between the empirical density of the graph that results from
link prediction by converting all similarity values that exceed τ into links, and the true
density of the graph p. Formally, we define the optimal threshold as follows:

τ̂
.
= min

τ







([

∑n

i=1

∑n

j=1 1I{S(ni, nj)}

n(n− 1)

]

− p

)2






, (6)

where

1I{S(ni, nj)} =

{

0, S(ni, nj) ≤ τ
1, S(ni, nj) > τ

. (7)

5. SOCIAL LINK PREDICTION USING LATENT SEMANTICS AND NETWORK STRUCTURE

Social networking users involve in rich activities that reveal crucial information about
their interests and tastes. Explicit user profiles, typically consisting of personal infor-
mation like hobbies, favorite movies and music, etc., can be mined in order to identify
user interests, based on which friendship predictions can be made. However, infor-
mation in user profiles tends to be scarce or obsolete. Instead of mining explicit user
profiles, we gather valuable information about users’ interests from metadata that de-
scribe their social network activities. In Last.fm we capture music genre preferences
by mining listening frequencies to artists as well as by recording tags, with which
users annotate artists they are mostly listening to. Schifanella et al. [2010] showed
that even though there is no globally shared vocabulary in Flickr, high vocabulary
similarity between users suggests the presence of a link between them.

In our work, we exploit the latent description of users’ interests (matrix Θ), which we
learn using Gibbs sampling. Our intention is to explore whether the activation of a so-
cial link induces a local alignment of interests or if conversely a similarity in interests
triggers the creation of a social link. We test this hypothesis on our Last.fm dataset,
which provides annotation metadata needed to construct our generative models, as
well as ground truth social network to evaluate the accuracy of our recommendations.
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We describe user interests in a latent space, organizing them in topics, emerging
from user activity and annotation process. To do so, we use the generative models we
presented in Section 3, treating users as authors and annotations as the vocabulary
authors use to describe resources. Since we do not a priori know what is the optimal
number of topics, we vary the number of topics achieving description of user inter-
ests in variable granularities, from more abstract to extremely specific. We treat link
recommendation as a binary classification problem, where 1 indicates a link and 0
indicates the absence of a link.

In the rest of this section we propose four classification schemes that utilize matrix
Θ to learn how to recommend appropriate links. All classifiers are generated as sup-
port vector machines (SVM) with Gaussian radial basis function kernels [Cristianini
and Shawe-Taylor 2010]. Finally, the last classification scheme exploits all previous
classifiers building a hierarchical system.

5.1. Latent Topics & Common Neighbors Scheme

Many social link prediction approaches calculate graph-based proximity scores [Lu
and Zhou 2011], asserting that the “closer” two nodes are in the social graph, the more
likely they are to become linked in the future. Intuitively, network proximity measures
the likelihood of an interaction between two users u and v, regardless of the existence
of a path between them. Proximity metrics used in prior work include neighborhood
based methods and methods based on the ensemble of all paths [Lu and Zhou 2011].

Neighborhood based methods, such as the number of common neighbors, the Jac-
card coefficient, which computes the probability of two users sharing neighbors, and
Adamic/Adar, which refines the simple counting of common neighbors by weighting
rarer neighbors more heavily, exploit local network features. For simplicity and com-
putational efficiency, we use the number of common neighbors between two users as
a prominent indicator of social link creation. The number of common neighbors be-
tween users u and v measures their corresponding neighborhood overlap. It is defined
as CN(u, v) = |Γ(u)

⋂

Γ(v)|, where Γ(u) is the set of neighbors of user u in the network
and | · | denotes set cardinality.

To account for user homophily with respect to latent topics, we consider column
Θ(:, u) as a feature vector for user u and use the standard cosine similarity to compare
the feature vectors of two users u and v:

σ(u, v) =

∑

t Θ(t, u)Θ(t, v)
√
∑

t Θ(t, u)2
√
∑

t Θ(t, v)2
. (8)

This quantity is 0 if u and v share no latent topics and 1 if they have exactly the same
interests. The feature vector for a user pair (u, v) is therefore constructed as:

F (u, v) = [σ(u, v), CN(u, v)] . (9)

We found that when considering the above feature set, the result is a non separable
training sample due to the fact that similarity values between pairs for both positive
and negative samples exhibit great variance. This in effect produces very inefficient
classifiers that preform poorly in the recommendation task. To avoid this situation,
as well as to reduce the number of training samples provided to the classifier (effec-
tively achieving scalability), we average similarity values over the number of common
neighbors. We characterize the average latent similarity of user pairs with k common
neighbors in the social network as follows:

avgσ(k) =
1

|p : kp = k|

∑

p:kp=k

σ(p), (10)
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where p denotes a user pair (u, v) and kp denotes the number of common neighbors for
user pair p.

5.2. Latent Topics & Shortest Distance Scheme

Instead of using the number of common neighbors, here, we use shortest distance to
capture graph based similarity between users u and v, denoted as SD(u, v). The feature
vector for a user pair (u, v) is therefore constructed as:

F (u, v) = [σ(u, v), SD(u, v)] . (11)

Because of the great variance of similarity values, we train this classifier using the
average latent similarity of user pairs with shortest distance k in the social network,
using Equation (10), with the difference that in this case kp denotes the shortest dis-
tance value for user pair p.

5.3. Latent Topics Classification Scheme

Here we focus solely on similarity of users’ interests, ignoring network effects. Consid-
ering this scheme we are able to test the hypothesis that social links form on the basis
of user homophily or conversely if the social network also plays some role in link for-
mation. Again, we consider column Θ(:, u) as feature vector for user u and we compute
the pointwise squared distance between feature vectors of users u and v. The feature
vector for a user pair (u, v) is therefore constructed as:

F (u, v) =
[

(Θ(1, u)−Θ(1, v))2, . . . , (Θ(T, u)−Θ(T, v))2
]

. (12)

F (u, v) is zero when users u and v are completely aligned with respect to their interests
in the latent space, whereas larger values indicate less common interests. Note that
the optimization objective of this classifier is to minimize the distance between users
u and v between whom a tie exists. In contrast, the two previous schemes assume
maximum similarity values between such users.

5.4. Ensemble Classification Scheme

The first step in an ensemble approach is data partitioning. Each partitioning tech-
nique should have a unique view of the data or use a different underlying model to
generate the data partitions. In our approach, we select classifiers that partition the
data using different set of features and appropriate similarity metrics discussed in the
previous subsections. In particular, we train each of the above three classifiers individ-
ually using the same set of training data. This results in classifiers Cl1, Cl2, and Cl3
respectively.

We combine the predictions of each classifier using a consensus mechanism, accord-
ing to which each classifier is treated as expert casting a vote for or against the exis-
tence of a link between a pair of users. We set Cl1, Cl2 and Cl3’s ensemble weights to

equal values and we normalize them such that
3
∑

i=1

λCli = 1. The consensus function we

use is a weighted binary vote. For a pair of users p = (u, v) and classifier Cli we define
a prediction function ξCli(p) such that:

ξCli(p) =

{

1, ∃ e(u, v)
0, otherwise

, (13)

where e(u, v) denotes a directed edge between users u and v. We compute the consensus

score for p as
3
∑

i=1

λCliξCli(p). We could have learned different weights for each classifier,

indicating our confidence in its predictions. However, this procedure imposes another

ACM Transactions on Information Systems, Vol. V, No. N, Article A, Publication date: YYYY.



Social Link Prediction in Online Social Tagging Systems A:11

Table II: Symbols used in Complexity Analysis

G Social Network
Λ Adjacency matrix of G
E Number of edges in G
A Number of users
V Vocabulary size

Umax Maximum number of users that can be associated with a resource
ATrain Training set size

round of supervised training phase, which would unnecessarily increase the complex-
ity of our approach. In our evaluation section we show that, despite its simplicity, the
majority voting scheme is quite effective in producing high quality recommendations.

5.5. Complexity Analysis

We performed our experiments on a 2.4 GHz Intel Core 2 Duo, with 2 GB of memory,
running Windows 7. For our evaluation, we used a real-world dataset (see Section 6) of
2K users from Last.fm online music system [Cantador et al. 2011]. All algorithms were
implemented in Matlab. We now discuss in detail the computational complexity of our
approach and examine its ability to scale into large datasets. Table II summarizes the
symbols used in our analysis.

5.5.1. Complexity of Inferencing Latent Models. The worst case time complexity of each
iteration of the Gibbs sampler is O(V UmaxA). As complexity is linear in V , Gibbs sam-
pling can be efficiently carried out on large data sets [Rosen-Zvi et al. 2010]. Consider-
able speedup gains can be achieved by optimizing Gibbs sampling and by successfully
incorporating recent advances in parallel and cloud computing [Liu et al. 2011].

5.5.2. Complexity of Structural Features Calculation. Next, we discuss the computational
complexities of graph-based similarity metrics.

Common Neighbors. Naively, Λ2 computes CN for all user pairs. Intuitively, Λ2(u, v)
denotes the number of different length 2 paths that connect users (u, v). Multiplication
of extremely sparse matrices (i.e., adjacency matrix) is inefficient and can become very
expensive for large datasets. Instead of using matrix multiplication in calculating CN
for each user u and all u’s neighbors, we first search all u’s neighbors and then lay out
the neighbors of each of u’s neighbors respectively. The time complexity to traverse the
neighborhood of a node with k neighbors in a sparse network is k ≪ A, hence the time
complexity for calculating CN is O(Ak2).

Shortest Distance. We find the shortest path SD between any two users using John-
son’s algorithm [Johnson 1977], resulting in a time complexity of O(AlogA + AE). A
faster implementation based on a min-priority queue (i.e., Fibonacci heap) can further
reduce running time to O(AlogA+ E).

5.5.3. Complexity of Averaging Strategy. To reduce the number of training samples pro-
vided to our SVM classifiers, we first average similarity values over the number of
common neighbors (similarly for shortest distance) as shown in Equation (10). This
needs the computation of all user pairs with k common neighbors, for each value of k,
and then averaging over all similarity values. We begin by sorting CN by rows and
columns in O(AlogA) time. This step can be significantly sped up using better sort-
ing strategies. Searching for user pairs with k common neighbors requires at most
O(A + A) = O(A) steps, resulting in O(KA|SCNk

|), where K is the number of unique
values of k, and |SCNk

| denotes the maximum cardinality of the set S of user pairs with
k common neighbors.
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5.5.4. Complexity of SVM Classification. Support vector machines (SVMs), though accu-
rate, are not preferred in applications requiring great classification speed due to the
number of support vectors being large. Standard SVM training requires the solution
of a very large quadratic programming (QP) optimization problem, which directly in-

volves inverting the kernel matrix, resulting in O(ATrain3

) time and O(ATrain2

) space
complexities [Keerthi et al. 2006]. Due to our averaging strategy, ATrain is already
sufficiently small (i.e., ATrain ≪ A). However, one hardly ever needs to estimate the
optimal solution, and the training time for a linear SVM to reach a certain level of gen-
eralization error actually decreases as training set size increases [Shalev-Shwartz and
Srebro 2008]. Tsang et al. [2005] proposed an approximation algorithm that obtains
approximately optimal solution, while at the same time having a time complexity that
is linear in ATrain and a space complexity that is independent of ATrain for nonlinear
kernels.

In our work, we use Sequential Minimal Optimization (SMO) to train our SVM clas-
sifiers [Platt 1999]. SMO divides the quadratic programming optimization problem
into smaller problems that can be solved analytically. Further, as SMO memory re-
quirements grow linearly to the training set size, SMO can handle very large training
sets [Platt 1999]. In testing time, we need to pass a user pair instance onto an SVM
model to find the hypothesis with the highest confidence (i.e., existence of a link or
not). The time complexity for this step is ∼ O(1) (linear to the number of the support
vectors and linear to the number of features).

6. DATASET

To examine the effectiveness of our models (see Section 3) and classification schemes
(see Section 5), we use a dataset containing social networking, tagging and music artist
listening information from a set of 2K users from Last.fm online music system [Can-
tador et al. 2011]. Last.fm builds profiles of each user’s musical tastes by recording
details of the songs users listen to. Further, Last.fm allows users to create social net-
works by listing friends (users who have similar musical tastes to them).

Our Last.fm dataset consists of 1,892 users with 25,434 directed user friend re-
lations, 17,632 artists and 92,834 user-listened artist relations, i.e., tuples of the
form <user, artist, listening count>. Further, the dataset contains 11,946 unique
tags, which were used in 186,479 annotations, i.e., tuples of the form <user, tag,
artist>. This leads to a vocabulary size of R = 17, 632 in our User-Resource model
and C = 11, 946 unique words in our User-Concept and User-Resource-Concept models
for this dataset. We split our dataset into two disjoint sets, such that we retain 10%,
25%, 50%, and 75% of the data for training, and the rest for testing.

6.1. Predictive Power

To demonstrate the effectiveness of our generative models on uncovering hidden topics,
we compute their perplexity [Rosen-Zvi et al. 2010] (i.e., their ability to predict tags or
artists for new users). We divide our dataset into two disjoint sets, such that we retain
90% of the data for training and the rest for testing. Figure 3 shows the three models’
perplexity scores on varying number of hidden topics.

URC yields lower perplexity overall than the other two models on the Last.fm
dataset. UC slightly outperforms URC for 100 topics. UR and UC models can be seen as
extensions of the classic LDA model, whereas URC is an extension of the Author-Topic
model. Intuitively, URC captures more of the hidden structure of users’ annotation ac-
tivity in Last.fm. UC also captures the essence of tagging behavior through statistical
categorization of tags in latent topics. Contrary, classification of artists based solely on
users’ annotation seems to be of inferior quality, probably due to noisy human-provided
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Fig. 3: UR, UC and URC perplexity for varying number of hidden topics.

metadata, which are in their nature unrestricted, uncontrolled and highly susceptible
to personal taste. We conjecture that annotation metadata can be extremely useful in
capturing collective knowledge about a domain, such as music genres in Last.fm.

6.2. Examples of Topic and User Distributions

In this section, we provide illustrative examples of topics learned by our three models
on our Last.fm dataset. The topics are extracted from a single sample at the 2000th
iteration of the Gibbs sampler. Figure 4 shows 4 topics (out of 50) learned by the URC
model. Each topic is illustrated with (a) the top 10 tags most likely to be generated
conditioned on the topic and (b) the top 10 most likely users to have generated a tag
conditioned on the topic. Users’ identities have been anonymized for privacy, offering
no particular insights to our analysis. We include a sample here for completeness,
while we refrain from listing users’ probabilities for UR and UC models for space effi-
ciency. Figure 5 shows 4 topics (out of 50) learned by the UR model along with a list of
the top 10 artists most likely to be generated conditioned on the topic. Figure 6 shows
4 topics (out of 50) learned by the UC model. Each topic in this case is illustrated with
the top 10 tags most likely to be generated conditioned on the topic.

Topics learned by the URC model offer a qualitative representation of music genres
in Last.fm, “generating” a music taxonomy based on user-specific tags. The top 10 most
likely artists in each topic learned by URC are well-known in terms of popularity and
fame. Solo artists and music bands are being categorized in corresponding music cate-
gories in this case. Finally, even though most of the topics in our models semantically
capture music genres, some topics illustrate some other types of discovered themes.
For instance, topic 5 in UC captures users’ preferences in the form of explicitly stated
feelings and opinions with respect to specific artists. Notably, URC topics 44 and 47
match surprisingly well UC topics 47 and 45 accordingly.
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Fig. 4: Top tags and users for 4 topics (out of 50) learned by the URC model.

Fig. 5: Top artists for 4 topics (out of 50) learned by the UR model.

Fig. 6: Top tags for 4 topics (out of 50) learned by the UC model.
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Fig. 7: Probability distribution of three most popular users’ latent interests over twenty
topics.

6.3. User Focus Analysis

Our generative models capture latent users’ interests in different contexts. A latent in-
terest profile can be built for each user for each of our models, facilitating quantitative
measurement of user “focus”. We measure the “focus” of a user u to characterize disper-
sion of user latent interests across multiple topics. To measure u’s focus, we first sort
u’s topic probability vector in descending order and then sum the difference between
topic pairs. Formally, we define user “focus” as:

f(u)
.
=

T−1
∑

t=1

(upt
− upt+1

), (14)

where upt
denotes the probability of topic t for user u. Intuitively, a perfectly “focused”

user has a focus value of one, whereas the focus of a completely “diverse” user is equal
to zero.

Figure 7 shows the probability distribution of three most popular users’ latent in-
terests over twenty topics, for each of our models. Users’ focus values for each model
are provided inside parenthesis in the legend. User U3 exhibits more focused interests
than the rest two users in all three models, whereas U1 demonstrates clear focus only
under the UR model. This indicates that our models indeed capture users’ interests
from different perspectives; here with respect to emergent (latent) music genres and
annotation taxonomy.

Figure 8a shows that a (small) disassortative mixing pattern exists between user
popularity and focus for all our models. Users’ latent tastes tend to disperse slightly
as the number of their friends increases. We used Jensen-Shannon divergence (JS)
to analyze the similarity between popular users (i.e., users with many social ties) and
their neighbors. We found that as users popularity increases, so does topical divergence
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Fig. 8: (a) Average focus of users having k friends. (b) Average Jensen-Shannon diver-
gence between all combinations of users having k friends and their friends.

with their ties. Figure 8b summarizes the results. The effect can be observed for all
models, even though large fluctuations are apparent due to the small number of user
pairs over which averaging is performed. This suggests that more and more diverse
friendships are created with increasing user popularity. This phenomenon discloses
the cognitive process of a user’s friending behavior.

7. NETWORK RECONSTRUCTION & USER HOMOPHILY

Link prediction is important in social networks for understanding the mechanisms by
which social networks form and evolve [Ge and Zhang 2012]. Most approaches thus far
assume that a snapshot of the social network, with some links missing, is available. Ge
and Zhang [2012] proposed a two-phase supervised method to address the problem of
predicting the structure of a social network when only a small subgraph of the social
network is known and multiple heterogeneous sources are available. A recent study
[Leroy et al. 2010] has discussed the link prediction problem when the network is
not fully observed. Mislove et al. [2010] explored the complementary question: can we
predict topical similarity from the social network?

In our work, we evaluate the effectiveness of our approach with respect to the task
of extracting the structure of the social network, i.e., all links at the same time. In
this scenario, no prior friendship links are provided to our method. Since no friendship
links are available, it is impossible to exploit the topological structure of the social
network. Here, we focus on latent-based network reconstruction, where our objective
is to reveal all links between pairs of users through their pair-wise similarity. The
novelty of our approach comes from the fact that we combine topological structure with
inferred latent user profiles, which are described as distributions over resources and
their associated metadata, instead of actual content [Lipczak et al. 2012; Makrehchi
2011].

We examine the performance of SLIgHT (see Section 4) for each of our three
tripartite graph generative models. We compute the Accuracy, Precision, Recall
and F-measure of this approach while varying the number of hidden topics (T =
{1, 10, 20, 50, 100}). The optimal threshold in each case is selected using Equation (6).
Figure 9 shows the results. All three models are able to yield very high accuracy, how-
ever, their precision and recall are low for practical purposes. This result seems to con-
tradict the hypothesis of user homophily in social networks [McPherson et al. 2001],
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Fig. 9: Performance of SLIgHT. X-axis: number of hidden topics; Y-axis: Performance
on test set.

since users’ interests in terms of hidden topics are not accurate predictors of link for-
mation. In fact, high accuracy values are observed due to correct classification of true
negatives (absent of links).

Our results contradict those of Makrehchi [2011] for academic co-authorship net-
works. We explain this as a result of the very well defined structure and focused
nature of co-authorship networks. Instead, online social networks encompass diverse
user communities, which may or may not be related to each other. Katz score is used
in this approach to calculate users proximity in the latent space defined by extracted
hidden topics. Few heavily weighted paths in academic networks guarantee better re-
sults than many long (weak) paths in diverse, online social networks. Latent similarity
with respect to artists yields better results than latent similarity with respect to tags.
Similar musical preferences between users yield better predictive power with respect
to link prediction in Last.fm as a result. Our URC model exhibits inferior performance
than UR due to its attempt to capture similarity in terms of annotations as well. URC
and UC are therefore comparable in performance with respect to network reconstruc-
tion.

In the following sections, we focus our analysis on UR, UC, and URC models for
TUR = 20, TUC = 20, and TURC = 50 hidden topics respectively. This selection is
based on optimal values achieved by the three models with respect to F-measure (see
Figure 9) in the network reconstruction task. Different datasets and different settings
(e.g., number of hidden topics) may lead to different results than what we report in
this work.

7.1. Users’ Homophily

Next, we analyze in detail the similarity of users’ topic distributions in relation to
their number of common friends and their distance d along the social network. Intu-
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Fig. 10: Average similarity between latent topic vectors of Last.fm users as a function
of (a) number of common neighbors and (b) distance d.

itively, the presence of a social tie indicates some degree of shared context between
connected users, who are likely to have some interests in common [Schifanella et al.
2010]. Likewise, the existence of numerous common friends suggests sharing of com-
mon experiences through indirect interactions. Regardless of the mechanism driving
this potential alignment, we measure this effect as a function of local structural prop-
erties. Figures 10a and 10b demonstrate these correlations respectively. The similar-
ity score is calculated as cosine similarity between topic vectors from matrix Θ, using
Equation (8). To compute averages for these quantities and exclude biases due to sam-
pling, we performed an exhaustive investigation of the social network up to distance
equal to the network diameter.

Figure 10a indicates strong alignment between users sharing numerous friends.
Precisely, average similarity is large for large values of common friends, however, it
drops as the number of common friends decreases. Large fluctuations in this case are
visible for large number of common friends due to the small number of users over
whom averages are computed. Average similarity under the URC model is relatively
constant in this case, when the number of common neighbors is in the range between
1 and 25, even though a small increasing trend is visible. Hence, the existence of many
common friends indicates interests commonality, which however may be distributed
across different topics, for different subsets of common friends.

Similarly, Figure 10b suggests that a certain degree of alignment between neighbors
in the social network is in fact existent. While average similarity is quite large for
neighbors (d = 1), it drops rapidly as d increases and is close to zero for d ≥ 3. Our
observation corroborates the results presented by Schifanella et al. [2010], suggesting
that the alignment of users’ interests must be a local effect. Average similarity under
the UC model is relatively constant for d ∈ [3, 8], indicating common tag usage by many
Last.fm users who have not established friendship relationships with each other. This
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fact explains why UC and URC perform worse than UR in the network reconstruction
task (see Figure 9).

8. PREDICTION OF SOCIAL TIES

In this section, we test the effectiveness of our four classification schemes. We refer
to “Latent Topics & Common Neighbors Scheme” as Scheme A, to “Latent Topics &
Shortest Distance Scheme” as Scheme B, and to “Latent Topics Classification Scheme”
as Scheme C. Finally, we refer to “Ensemble Classification Scheme” as Scheme D. Fig-
ure 11 shows the performance achieved by our classification schemes under our three
models with respect to Precision and Recall. We found Scheme B to be the least ef-
fective, hence we refrain from discussing its performance any further, even though
Scheme B is included in “Ensemble Classification Scheme”’ (Scheme D), influencing
its performance. Scheme B aggregates users’ latent similarity with respect to short-
est distance, which in effect results in aggregating all training similarity values for
true links (i.e., existing social ties) in a single training point in the distance–similarity
space. To this extent, the aggregation methodology is non-linear to the preprocessing
of true positives and true negatives samples, resulting in information loss in exchange
of scalability gains.

The ensemble achieves the best precision (up to 89.8% under the UR model) due
to its ability to alleviate bad choices made by some of the “expert” classifiers. Even
though Scheme D’s recall is not as high when compared to the rest of the schemes,
it’s comparable (up to 86.83% under the UC model) when the training dataset size
is small (10%), which would be the case in a real life social network with millions of
users. Overall, precision seems to be increasing or stay constant for dataset size up to
50%, after which point over-fitting causes degradation in performance. On the other
hand, recall drops as a function of dataset size, indicating that small but discrimina-
tory training samples can lead to good performance overall. Ultimately, the trade-off
between precision and recall (F-measure) has to be considered for the optimal choice of
model, scheme and training dataset size. Of course, different datasets may yield best
results for different combinations. The nature and focus of the social network as well
as user-generated content type in this context have to be considered when making this
selection.

Support Vector Machines have to achieve a trade-off between maximizing the mar-
gin and minimizing the empirical error, which leads to classifying every sample to the
dominant class (negative in our case) under high class imbalance or when data are
non-separable, if the misclassification penalty is adequately small. This results in no
(or minuscule) classification errors on the negative instances, but high errors on the
positive instances, which even though are quite sparse, are also the most vital in so-
cial tie prediction. A classifier that classifies everything as negative may be extremely
accurate but it will not have any practical use as it will never identify the positive in-
stances correctly [Ertekin et al. 2007]. Due to social networks sparsity, we expect most
test links to belong to the negative class (absence of link). We address this problem
here by examining the Precision and Recall that our various schemes achieve when
calculated separately for the positive and negative classes.

Figure 12 shows the results. Intuitively, true negatives are easier to classify correctly
under most models, in most cases. Overall, we observe a degradation in performance
with respect to true positives (which are harder to predict) due to over-fitting and noisy
observations as the training dataset size increases. Nevertheless, all of our schemes
yield reasonable results for practical purposes, for reasonably small training datasets
(less than 20% of complete dataset in all cases). Based on the analysis presented above
we observe that hidden topics proximity alone is not sufficient to accurately predict
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Fig. 11: Precision and Recall of Latent Semantics Classification Schemes as a function
of training data size. X-axis: Training set size as percentage of complete dataset; Y-
axis: Precision/Recall.

social ties. However, our work demonstrates that the addition of local network features
to latent semantics greatly improves performance, often by a considerable margin.

8.1. Comparison with other methods

In this section, we compare our schemes with two tag-based similarity metrics, which
have shown superior performance in the content-based network reconstruction task
[Schifanella et al. 2010]:

(1) Cosine Similarity (CS). The normalized cosine similarity between two users u and

v can be calculated as follows: CS(u, v) =

∑

t

fu(t)fv(t)

√

∑

t

fu(t)2
∑

t

fv(t)2
, where fu(t) denotes the

number of times user u has used tag t.
(2) Maximal Information Path: Similarity metric that computes semantic relatedness

of terms in non-hierarchical triple representation [Schifanella et al. 2010].

We present results in the form of the area under the receiver-operating character-
istic curve (AUC). AUC quantifies prediction accuracy and tests how much better a
classifier is than pure chance, while at the same time measuring its overall ability
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to rank all missing connections (positive class), which are the hardest to predict, over
nonexistent ones (negative class). AUC evaluates classification performance across the
entire range of decision thresholds, providing a good performance overview when the
operating condition for the classifier is unknown or the classifier is expected to be used
in situations with significantly different class distributions.

We randomly split our dataset into two disjoint sets, such that we retain 10%, 25%,
50%, and 75% of the data for training and the rest for testing. The evaluation consists
of selecting pairs of users, computing their similarity and adding links between users
in decreasing order of their topical similarity. The pairs of users with highest similarity
are those we predict to be most likely tied. Particularly, we randomly sample 12, 716
pairs of users, out of which 50% are true links and 50% are negative samples. For
each predicted social link, we check the actual social network to see if the prediction is
correct. Our “Ensemble Classification Scheme” (Scheme D) produces only class labels
without assigning score values, hence we exclude it from our comparison. This leaves
us with two Schemes, A and C.

The choice to select pairs of users randomly stems from the size of our dataset,
which makes an exhaustive comparative evaluation infeasible. For the calculation of
AUC values for the two baselines, we use the complete dataset instead of splitting it
into disjoint training and testing sets. Note that this strategy may bias the evaluation
in favor of the baselines, which have a complete view of the dataset for their similar-
ity calculations. Therefore, our evaluation is a conservative choice in that it does not
unfairly help our proposed schemes (in fact there might be a bias against them).

For consistency across our experiments, we focus our analysis on UR, UC and URC
models for TUR = 20, TUC = 20, and TURC = 50 hidden topics respectively. This setup
limits our observations to three settings only. However, it would be tedious and diffi-
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Table III: Area under the ROC curve comparison for 10%, 25%, 50%, and 75% of edges
observed

Model Scheme
% of observed edges

10% 25% 50% 75%

UR
Scheme A 0.5624 0.6569 0.8663 0.8949
Scheme C 0.5454 0.6005 0.6418 0.7342

UC
Scheme A 0.5514 0.7129 0.7993 0.8511
Scheme C 0.5500 0.6225 0.6429 0.7417

URC
Scheme A 0.6515 0.7007 0.7967 0.8540
Scheme C 0.6491 0.5485 0.6357 0.7654

Baselines
MIP 0.6256
CS 0.6087

cult to compare all our models for all settings respectively. Further, different datasets
may result in different optimal models. Table III shows the results. The observation
of AUC values further validates that our classification schemes act as proper rank-
ing functions for all three models. Scheme A, which combines latent topics with local
structure (number of common neighbors), performs better than Scheme C, which only
considers latent similarity. Further, as the fraction of observed edges increases, the
classification accuracy of our schemes improves significantly. When 20% or more of the
original dataset is provided for training, our schemes outperform the baselines, often
by a considerable factor.

9. RELATED WORK

Probabilistic models have been successfully used in discovering the hidden topics that
were responsible for generating a collection of documents [Blei et al. 2003]. Our model
is an adaptation of the author-topic model proposed by Rosen-Zvi et al. [2010]. The ob-
jective of their work was to provide a generative process for document creation, capable
of recovering hidden topics in a document corpus. We are extending their model to re-
sources of any type (not just documents) and annotations (instead of words). The social
process of annotation generation is unknown. It is not intuitive that such framework
would perform as well in this context.

Social tagging systems have been well studied, leading to a vast literature around
this area. Gupta et al. [2010] summarized different techniques employed to study var-
ious aspects of tagging. Halpin et al. [2007] studied the basic dynamics behind tagging
in the social bookmarking site del.icio.us4 and proposed a collaborative tagging model
based on preferential attachment and informational value. We instead take a proba-
bilistic, generative approach that accurately models collaborative annotation in online
social media.

Bundschus et al. [2009] proposed a model, which does not correctly simulate the
real social annotation process because users are modeled as creators of content words
instead of tags. Lu et al. [2010] proposed a model that overcomes the limitations of
previous models by representing all related entities (users, documents, words and tags)
and latent variables (topics, user perspectives) in a unified model. Their model exhibits
high complexity due to the numerous variables that have to be estimated, and does
not sufficiently capture users’ interests, as in our case. Harvey et al. [2011] proposed
to use hidden topic models to improve social bookmark search results. Hariri et al.

4https://delicious.com/
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[2012] proposed a context-aware music recommendation system, which leverages top
frequent tags for songs from social tagging Web sites, using Latent Dirichlet Allocation
to determine a set of latent topics for each song. Our models can be effectively used to
recommend not only resources, but also tags and users at the same time.

Lin et al. [2012] explored tag growth and users’ activities dynamics in social media
using a model that resembles ours. Their approach differs from ours in that they model
posts that contain resources and tags, whereas we are modeling direct annotation of re-
sources. Liu et al. [2012] proposed a framework to combine the tasks of user preference
discovery and document topic mining through modeling of user-document interactions.
In both works, there is only one “tagger” per document, whereas our model captures
the social aspect of tagging, allowing a mixture of users to collaboratively contribute
in the annotation process. Therefore, our approach is more general and the problem
we study more difficult. Long et al. [2006] proposed a general model to find hidden
structures (local clusters and global community structures) from a k-partite graph. By
introducing hidden nodes into the original k-partite graph, they construct a relation
summary network to approximate the original k-partite graph under a broad range
of distortion measures. We instead are focusing on the actual generative process that
drives the original tripartite graph creation.

Relational topic model was introduced to model links between documents as binary
random variable conditioned on their contents [Chang and Blei 2009]. Topic-link model
[Liu et al. 2009] performed topic modeling and author community discovery in a uni-
fied framework but did not provide reasonable results in the task of link prediction.
Pennacchiotti and Gurumurthy [2011] applied LDA for social link recommendation,
modeling social media users’ streams as documents, represented by words that they
emit in social media. Krestel et al. [2009] applied LDA for tag recommendation. Even
though our approaches are similar, we utilize resources and annotations as descrip-
tors of user interests and we propose three generative models that capture the essence
of tripartite graph formation in social networks. We further demonstrate that our ap-
proach yields high precision and recall in the social link recommendation task.

The problem of link prediction for social networks has been well studied in numerous
domains and contexts. Lu and Zhou [2011] explored several network proximity metrics
for social link prediction, demonstrating that important information can be mined from
the graph alone. Schifanella et al. [2010] utilized vocabulary overlap between users as
indicator of user connectivity in Flickr. While we are adopting this hypothesis, we in-
stead propose a generative process to model content annotation by users. Moreover, we
consider this process in conjunction with local network structure. Taskar et al. [2003]
proposed a relational Markov network framework to define a joint probabilistic model
over the entire graph-entity attributes and links, assuming a Markov dependency (the
label of one node depends on its neighbors’ labels). In contrast to our work, their dis-
criminative model only explains social ties conditioned on the observed variables.

Backstrom and Leskovec [2011] predicted and recommended links in social networks
using random walks. Unlike ours, their approach depends on knowing almost all links
along with a set of source and candidate nodes, and only needs to predict few new
links. Sadilek et al. [2012] predicted friendship links in Twitter based on one input
feature, assuming mutual independence between the observed and hidden variables.
Their model exhibits high complexity due to the vast number of hidden nodes it in-
cludes (one for each possible link). Both approaches only consider undirected graphs.
Instead, we test the effectiveness of our approach in a directed social network, which
captures more realistically the asymmetric relationships between users.

Recently, the problem of link prediction in heterogeneous networks has been stud-
ied. Sun et al. [2011] proposed PathSim to measure the similarity among same type
objects in heterogeneous networks based on symmetric meta paths (sequence of rela-
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tions between different object types). However, in online social networks many valu-
able paths are asymmetric and the relatedness of different-typed objects is also mean-
ingful. Hence, PathSim is not suitable in this context. Further, there is no standard
procedure to follow in order to explicitly specify path combinations to define meta
paths. Typical users do not necessarily posses the amount of domain knowledge re-
quired to define meta paths. Choosing the best path by experimentation or learning
it from training examples leads to a state space explosion, rendering this approach
impractical. Davis et al. [2011] proposed a neighborhood multi-relational link predic-
tion approach based on triad census, trivially extended to heterogeneous networks. Its
weighted version is equivalent to weighted common neighbors. Prediction scores are
calculated individually for each link type of interest, ignoring latent influence due to
meta paths. Instead, our approach combines structural features with latent user inter-
ests, while at the same time provides a generative model of the heterogeneous network
formation and evolution.

Latent feature based models [Hoff 2009; Menon and Elkan 2011] consider link pre-
diction as a matrix completion problem and employ latent matrix factorization to learn
latent factors for each object and make predictions. However, such models disregard
the local network structure. Our model, as an adaptation of the author-topic model,
is closely related to methods based on matrix factorization [Rosen-Zvi et al. 2010].
For applications where models with n-ary relations with n > 3 need to be considered,
tensor factorization techniques are required. Kolda and Bader [2009] provide a re-
cent overview of leading approaches. Unfortunately, the straightforward application of
higher-order tensor models becomes problematic due to computational requirements
and data sparsity.

Dietz [2009] proposed a generative model that learns shared tastes of users from
network structure and user playlists. Even though our approach is similar in spirit,
our user modeling radically differs. Perhaps the work closest to ours is that of Parimi
and Caragea [2011]. Their hierarchical system exploits latent user interests based on
user profiles, treating users as documents. In this sense, our work is a generaliza-
tion of their approach, while at the same time requiring significantly less amount of
training data to achieve high precision and recall. Further, in their small-scaled exper-
iments, they only considered ROC-AUC analysis. We, in contract, address scalability
issues, considering thousands of users who may be arbitrarily connected, resulting in
million potential friendships. Last but not least, we show that our approach effectively
addresses the high class imbalance problem due to data sparsity.

10. CONCLUSIONS

In this article, we presented three generative probabilistic models of online social tag-
ging systems as a principled way of reducing the dimensionality of such data, captur-
ing at the same time the dynamics of collaborative annotation process. Our models
represent users’ interests in a latent space over resources and rich metadata describ-
ing them. Even though our probabilistic models ignore several aspects of real-world
annotation process (such as topic correlation and user interaction), they nonetheless
provide a principled and efficient way of understanding user-resource-tag dynamics in
very large, online social tagging systems.

We showed that our generative probabilistic models can be used to learn users’ tastes
and to effectively reconstruct the network of ties or predict future social links when
some prior evidence is provided. In particular, we showed how to exploit latent user
interests in conjunction with structural features to significantly improve social link
prediction in the online music social media site Last.fm. We showed that similarity of
interests alone does not trigger the creation of a social link. Instead, we showed how to
achieve high prediction performance using four classifiers, which jointly exploit users’
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interests similarity and their local network proximity. We plan to further validate our
results by examining dynamic social networks. Taking into account temporality, we
will be able to better understand if the combination of taste and local network similar-
ity indeed drives tie formation or if conversely, tie formation results in taste alignment
and local network densification. While most link prediction methods suffer from the
high class imbalance problem resulting in low precision and/or recall solutions, our
proposed methods achieve high precision and recall for highly imbalanced classes.

In addition to tags, news stories and music artists, there exist other types of re-
sources, metadata and user activities that can be used to further improve the quality
of predictions. In our future work, we plan to address the challenge of combining mul-
tiple heterogeneous sources of information within a unified approach. We also plan to
establish a mechanism which will automatically identify the most discriminative la-
tent topics and will discard uninformative resources and metadata. Our results have
important implications for the design of social media sites. Besides link recommenda-
tion and prediction, our methods can be easily adapted to facilitate analysis of trending
topics and users’ latent interests, resource and tag recommendations and categoriza-
tion, classification and filtering of online information.
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