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Abstract. We explore the use of instance and cluster-level conssraiith ag-
glomerative hierarchical clustering. Though previous kvbas illustrated the
benefits of using constraints for non-hierarchical clustgrtheir application to
hierarchical clustering is not straight-forward for twarpary reasons. First, some
constraint combinations make the feasibility problem (®twere exist a single
feasible solution?NP-complete. Second, some constraint combinations when
used with traditional agglomerative algorithms can cahsedendrogram to stop
prematurely in a dead-end solution even though there eitisr deasible solu-
tions with a significantly smaller number of clusters. Whemstraints lead to
efficiently solvable feasibility problems and standard laggerative algorithms
do not give rise to dead-end solutions, we empirically tHate the benefits of
using constraints to improve cluster purity and averagmdisn. Furthermore,
we introduce the new constraint and use it in conjunction with the triangle
inequality to considerably improve the efficiency of aggéative clustering.

1 Introduction and Motivation

Hierarchical clustering algorithms are run once and craatendrogram which is a tree
structure containing &-block set partition for each value éfbetweenl andn, where
n is the number of data points to cluster allowing the user wosk a particular clus-
tering granularity. Though less popular than non-hiergaditlustering there are many
domains [16] where clusters naturally form a hierarchyt ihaclusters are part of other
clusters. Furthermore, the popular agglomerative algmstare easy to implement as
they just begin with each point in its own cluster and progjkedy join the closest
clusters to reduce the number of clusters by 1 unti: 1. The basic agglomerative
hierarchical clustering algorithm we will improve upon g paper is shown in Figure
1. However, these added benefits come at the cost of time awe gfficiency since
a typical implementation with symmetrical distances regg®(mn?) computations,
wherem is the number of attributes used to represent each instance.

In this paper we shall explore the use of instance and cliestel constraints with
hierarchical clustering algorithms. We believe the useughsconstraints witthierar-
chical clustering is the first though there exists work that usetamanstraints to find
specific types of clusters and avoid others [14, 15]. Thelaitginamedconstrained hi-
erarchical clusterind16] is actually a method of combining partitional and hietacal
clustering algorithms; the method does not incorporat®dmonstraints. Recent work



Agglomerative§ = {x1,...,z,}) returns Dendrogramy, for k =1to|S|.

1. G = {z:}, Vi.
2. for k=|S| downto 1
Dendrogramy, = {C,...,Cx}
d(i,j) = D(Ci,Cj),Vi,4; 1, m=argming d(a,b).
Cy = Join(Cy,Cp); Remove(Cr,).
endloop

Fig. 1. Standard Agglomerative Clustering

[1,2,12] in the non-hierarchical clustering literaturestexplored the use of instance-
level constraints. Theust-link andcannot-link constraints require that two instances
must both be part of or not part of the same cluster respégtiVbey are particularly
useful in situations where a large amount of unlabeled dattuster is available along
with some labeled data from which the constraints can beirdadg12]. These con-
straints were shown to improve cluster purity when measagadhst an extrinsic class
label not given to the clustering algorithm [12]. Theonstraint requires the distance
between any pair of points in two different clusters to besasts. For any cluster’;
with two or more points, the-constraint requires that for each pointe C;, there must
be another poing € C; such that the distance betweerndy is at mostk. Our recent
work [4] explored the computational complexity (difficujtyf the feasibility problem:
Given a value ofk, does there exist at least one clustering solution thasfigiall the
constraints and hdsclusters? Though it is easy to see that there is no feasihlé®o
for the three cannot-link constrain®_(a,b),CL(b,c),CL(a,cjor k£ < 3, the general
feasibility problem for cannot-link constraintshéP-complete by a reduction from the
graph coloring problem. The complexity results of that wakown in Table 1%
column), are important for data mining because when problara shown to be in-
tractable in the worst-case, we should avoid them or shoati@éxpect to find an exact
solution efficiently.

We begin this paper by exploring the feasibility of aggloateehierarchical clus-
tering under the above four mentioned instance and cliestet-constraints. This prob-
lem is significantlydifferent from the feasibility problems considered in oueyous
work since the value of for hierarchical clustering is not given. We then empitligal
show that constraints with a modified agglomerative hidriaad algorithm can im-
prove the quality and performance of the resultant denargiTo further improve
performance we introduce theconstraint which when used with the triangle inequal-
ity can yield large computation saving that we have boundeitié best and average
case. Finally, we cover the interesting result of an irrdaleclustering. If we are given
a feasible clustering with,,, ... clusters then for certain combination of constraints join-
ing the two closest clusters may yield a feasible but “deadi-solution with% clusters
from which no other feasible solution with less thiarlusters can be obtained, even
though they are known to exist. Therefore, the created dgmdms may be incomplete.

Throughout this papeb(z, y) denotes the Euclidean distance between two points
andD(X,Y) the Euclidean distance between the centroids of two grofipst@nces.



We note that the feasibility and irreducibility results ¢8ens 2 and 5) are not neces-
sarily for Euclidean distances and are hence applicablgifigie and complete linkage
clustering while they-constraint to improve performance (Section 4) is applieab
any metric space.

Constraint Given k Unspecifiedk|Unspecifiedk - Deadends?
Must-Link P[9,4] P No
Cannot-Link NP-complete [9, P Yes
d-constraint P[4] P No
e-constraint P[4] P No
Must-Link andd P[4] P No
Must-Link ande NP-complete [4] P No
0 ande P[4] P No
Must-Link, Cannot-Link, NP-complete [4] | NP-complete Yes

0 ande

Table 1.Results for Feasibility Problems for a Givér{partitional clustering) and Unspecifiéd
(hierarchical clustering)

2 Feasibility for Hierarchical Clustering

In this section, we examine the feasibility problem for saveifferent types of con-
straints, that is, the problem of determining whether theegiset of points can be
partitioned into clusters so that all the specified constsare satisfied.

Definition 1. Feasibility problem for Hierarchical Clustering (FHC)

Instance: A setS of nodes, the (symmetric) distanéér,y) > 0 for each pair of
nodesr andy in .S and a collectionC' of constraints.

Question: Can S be partitioned into subsets (clusters) so that all the c@iiists in C
are satisfied?

When the answer to the feasibility question is “yes”, theresponding algorithm
also produces a partition of satisfying the constraints. We note that thecfproblem
considered here isignificantlydifferent from the constrained non-hierarchical cluster-
ing problem considered in [4] and the proofs are differenvall even though the end
results are similar. For example in our earlier work we shibwmgractability results for
some constraint types using a straightforward reductiomfthe graph coloring prob-
lem. The intractability proof used in this work involves realaborate reductions. For
the feasibility problems considered in [4], the number afstérs is in effect, another
constraint. In the formulation oftkc, there arenoconstraints on the number of clusters,
other than the trivial ones (i.e., the number of clusterstrbesat least 1 and at most
E

We shall in this section begin with the same constraints asetftonsidered in [4].
They are: (a) Must-Link (ML) constraints, (b) Cannot-LirBL) constraints, (c) con-
straint and (d) constraint. In later sections we shall introduce anothester-level



constraint to improve the efficiency of the hierarchicalstéwing algorithms. As ob-
served in [4], @ constraint can be efficiently transformed into an equiviadetiection

of ML-constraints. Therefore, we restrict our attentiomtb, CL ande constraints. We
show that for anypair of these constraint types, the corresponding feasibilibplem
can be solved efficiently. The simple algorithms for thesssitgility problems can be
used to seed an agglomerative or divisive hierarchicatelimg algorithm as is the case
in our experimental results. However, when all three tyfeastraints are specified,
we show that the feasibility problemMP-complete and hence finding a clustering, let
alone a good clustering, is computationally intractable.

2.1 Efficient Algorithms for Certain Constraint Combinatio ns

When the constraint sét contains only ML and CL constraints, thel€ problem can
be solved in polynomial time using the following simple aiigiom.

1. Form the clusters implied by the ML constraints. (This bardone by computing
the transitive closure of the ML constraints as explaindd]jr) Let Cy, Cs, . .., Cp
denote the resulting clusters.

2. Ifthere is a cluste€; (1 < i < p) with nodesr andy such thatr andy are also
involved in a CL constraint, then there is no solution to thasibility problem;
otherwise, there is a solution.

When the above algorithm indicates that there is a feasilbl#ien to the given HC in-
stance, one such solution can be obtained as follows. Usdusiers produced in Step 1
along with a singleton cluster for each node that is not vwdlin an ML constraint.
Clearly, this algorithm runs in polynomial time. We now ciles the combination of
CL ande constraints. Note that there is always a trivial solutiongisting of|S| sin-
gleton clusters to the HC problem when the constraint set involves only CL and
constraints. Obviously, this trivial solution satisfiesb@L ande constraints, as the
latter constraint only applies to clusters containing twonore instances.

The FHc problem under the combination of ML andconstraints can be solved
efficiently as follows. For any node, anc-neighbor of « is another nodg such that
D(z,y) < e. Using this definition, an algorithm for solving the feaétigiproblem is:

1. Constructthe se’ = {z € S : = does not have asrneighbot.
2. If some node irt’ is involved in an ML constraint, then there is no solutionhe t
FHc problem; otherwise, there is a solution.

When the above algorithm indicates that there is a feasilgisn, one such solu-
tion is to create a singleton cluster for each nod&’imnd form one additional cluster
containing all the nodes i¥ — S’. It is easy to see that the resulting partition$f
satisfies the ML and constraints and that the feasibility testing algorithmsrimpoly-
nomial time. The following theorem summarizes the aboveutision and indicates that
we can extend the basic agglomerative algorithm with thesgbhinations of constraint
types to perform efficient hierarchical clustering. Howevedoes not mean that we
can always use traditional agglomerative clustering dlgms as the closest-cluster-
join operation can yield dead-end clustering solutionsissugsed in Section 5.



Theorem 1. TheFHc problem can be solved efficiently for each of the followingneo
binations of constraint types: (a) ML and CL (b) CL andnd (c) ML anck. O

2.2 Feasibility Under ML, CL and e Constraints

In this section, we show that thedE problem isNP-complete when all the three con-
straint types are involved. This indicates that creating@adidogram under these con-
straints is an intractable problem and the best we can hapis fan approximation
algorithm that maynot satisfy all constraints. ThEP-completeness proof uses a re-
duction from the One-in-Three 3SAT with positive literaloplem (CpL) which is
known to beNP-complete [11]. For each instance of theiQporoblem we can construct
a constrained clustering problem involving ML, CL andonstraints. Since complexity
results are worse case, the existence of just these prodeuSiicient for theorem 2.
One-in-Three 3SAT with Positive Literals (OPL)

Instance: A setC = {x1,z9,...,2,} Of n Boolean variables, a collectioi =
{¥1,Ys,...,Y,,} of m clauses, where each clausg = (z;,,z;,,z;, } has exactly
three non-negated literals.

Question: Is there an assignment of truth values to the variables o that exactly
one literal in each clause becomes true?

Theorem 2. The FHC problem isNP-complete when the constraint set contains ML,
CL ande constraints.

The proof of the above theorem is somewhat lengthy and istednliecause of
space reasons. (The proof appears in an expanded tectepoa version of this paper
[5] that is available on-line.)

3 Using Constraints for Hierarchical Clustering: Algorith m and
Empirical Results

Data Set Distortion Purity
Unconstrained|Constrained|Unconstrained/Constrained

Iris 3.2 2.7 58% 66%
Breast 8.0 7.3 53% 59%
Digit (3 vs 8) 17.1 15.2 35% 45%
Pima 9.8 8.1 61% 68%
Census 26.3 22.3 56% 61%
Sick 17.0 15.6 50% 59%

Table 2. Average Distortion per Instance and Average Percentagee@|Rurity over Entire Den-
drogram

To use constraints with hierarchical clustering we chamhgeatigorithm in Figure
1 to factor in the above discussion. As an example, a consulahierarchical clus-
tering algorithm with must-link and cannot-link constrigiris shown in Figure 2. In



this section we illustrate that constraints can improvedhality of the dendrogram.
We purposefully chose a small number of constraints an@welhat even more con-
straints will improve upon these results. We will begin bydstigating must-link and
cannot-link constraints using six real world UCI datasets.each data set we clustered
all instances but removed the labels from 90% of the ddtd énd used the remain-
ing 10% (S;) to generate constraints. We randomly selected two instat a time
from S; and generated must-link constraints between instancéghdtsame class la-
bel and cannot-link constraints between instances ofritiffeclass labels. We repeated
this process twenty times, each time generating 250 contstraf each type. The per-
formance measures reported are averaged over these twiatty All instances with
missing values were removed as hierarchical clusteringritfgns do not easily handle
such instances. Furthermore, all non-continuous colunere wemoved as there is no
standard distance measure for discrete columns.

ConstrainedAgglomerative(S,ML,ClLjeturns Dendrogram, i = kmin ... kmaz

Notes: In Step 5 below, the term “mergeable clusters” is used to @eagair of clusters whose
merger does not violate any of the given CL constraints. Theevoft at the end of the loop in
Step 5 gives the value @fy,in.

1. Construct the transitive closure of the ML constrainee(B!] for an algorithm) resulting in
r connected componenid, Ma, ..., M.
2. If two points{z, y} are both a CL and ML constraint then output “No Solution” ataps
3. LetS1 =S — (U;_, Mi). Letkmax =7 4 |S1].
4. Construct an initial feasible clustering with..x clusters consisting of the clustersiM;,
..., M, and a singleton cluster for each pointdn. Sett = kmax-
5. while (there exists a pair of mergeable clusteds)
(a) Select a pair of clusters; andC,,, according to the specified distance criterion.
(b) MergeC; into C', and remove”;. (The result iDendrogram_;.)
()t =t—1.
endwhile

Fig. 2. Agglomerative Clustering with ML and CL Constraints

Table 2 illustrates the quality improvement that the mirsk-nd cannot-link con-
straints provide. Note that we compare the dendrogramisyatues betweeh,,,;,, and
kmaz. FOr each corresponding level in the unconstrained andtieonsd dendrogram
we measure the average distortidri = " | D(x; — Cy(s,)), Wheref(z;) returns
the index of the closest cluster 1@) and present the average over all levels. It is im-
portant to note that we are not claiming that agglomerativstering has distortion as
an objective function, rather that it is a good measure ofteluquality. We see that
the distortion improvement is typically of the order of 15%e also see that the aver-
age percentage purity of the clustering solution as meddwyehe class label purity
improves. The cluster purity is measured against the esitritiass labels. We believe
these improvement are due to the following. When many pdidusters have simi-



lar short distances, the must-link constraints guide tgeré¢hm to a better join. This

type of improvement occurs at the bottom of the dendrograsnversely, towards the
top of the dendrogram the cannot-link constraints rule buadvised joins. However,

this preliminary explanation requires further investigatwhich we intend to address
in the future. In particular, a study of the most informatbanstraints for hierarchical
clustering remains an open question, though promisindrpirgry work for the area

of non-hierarchical clustering exists [2].

We next use the cluster-levélconstraint with an arbitrary value to illustrate the
great computational savings that such constraints offer.c@rlier work [4] explored
ando constraints to provide background knowledge towards thee't of clusters we
wish to find. In that paper we explored their use with the Aibbat to find objects in
images that were more than 1 foot apart as the Aibo can onligatbetween such
objects. For these UCI data sets no such background knoe/kedgts and how to set
these constraint values for non-spatial data remains &reaeisearch area. Hence we
test these constraints with arbitrary values. Wejsequal to 10 times the average dis-
tance between a pair of points. Such a constraint will geadénandreds even thousands
of must-link constraints that can greatly influence the teltisg results and algorithm
efficiency as shown in Table 3. We see that the minimum impr®re was 50% (for
Census) and nearly 80% for Pima. This improvement is duedatimstraints effec-
tively creating a pruned dendrogram by making,., < n.

Data Set |UnconstrainedConstrained
Iris 22,201 3,275
Breast 487,204 59,726

Digit (3vs 8) 3,996,001 990,118

Pima 588,289 61,381
Census | 2,347,305,601563,034,601

Sick 793,881 159,801

Table 3. The Rounded Mean Number of Pair-wise Distance Calculafionan Unconstrained
and Constrained Clustering using theonstraint

4 Using the~ Constraint to Improve Performance

In this section we introduce a new constraint, theonstraint and illustrate how the
triangle inequality can be used to further improve the iinretperformance of agglom-
erative hierarchical clustering. Though this improvenuass not affect the worst-case
analysis, we can perform a best case analysis and an expeEsfedmance improve-
ment using the Markov inequality. Future work will investtg if tighter bounds can be
found. There exists other work involving the triangle inality but not constraints for
non-hierarchical clustering [6] as well as for hierarch@dastering [10].

Definition 2. (The~ Constraint For Hierarchical Clustering) Two clusters wigogeo-
metric centroids are separated by a distance greater thaannot be joined.



IntelligentDistancey, C = {C1,...,Ck})
returns d(i, j) Vi, j.

l.fori=2ton—-1 di,; =D(C1,C;)endloop
2. fori=2ton—-1

forj:i-l—ltOn—l d;j:|d1’i—d1’j|

if d;; >~thend;; =~ + 1;donotjoin elsed;; = D(zi, ;)
endloop
endloop

3. returnd;,;, Vi, j.
Fig. 3. Function for Calculating Distances Using the&Constraint and the Triangle Inequality.

The ~v constraint allows us to specify how geometrically well seped the clus-
ters should be. Recall that the triangle inequality for ¢hpeintsa, b, c refers to the
expressionlD(a,b) — D(b,c)| < D(a,c) < D(a,b) + D(c,b) whereD is the Eu-
clidean distance function or any other metric function. \@ anprove the efficiency
of the hierarchical clustering algorithm by making use af tbwer bound in the tri-
angle inequality and the constraint. Let, b, c now be cluster centroids and we wish
to determine the closest two centroids to join. If we haveady computed)(a, b)
andD(b, ¢) and the valuéD(a,b) — D(b, ¢)| exceeds,, then we need not compute the
distance betweea andc as the lower bound o®(q, ¢) already exceeds and hence
a andc cannot be joined. Formally the function to calculate disenusing geometric
reasoning at a particular dendrogram level is shown in [Ei§uCentral to the approach
is that the distance between a central poift(in this case the first) and every other
point is calculated. Therefore, when bounding the distéreteeen two instances,(b)
we effectively calculate a triangle with two edges with knlewgths incident o and
thereby lower bound the distance betweaeamndb. How to select the best central point
and the use of multiple central points remains future imgttrtesearch.

If the triangle inequality bound exceedsthen we save making: floating point
power calculations if the data points arerindimensional space. As mentioned earlier
we have no reason to believe that there will be at least onatgin where the triangle
inequality saves computation &l problem instanceshence in the worst case, there is
no performance improvement. But in practice it is expeateaicicur and hence we can
explore the best and expected case results.

4.1 Best Case Analysis for Using the constraint

Consider the: points to clustefz, ..., z,, }. The first iteration of the agglomerative hi-
erarchical clustering algorithm using symmetrical distmis to compute the distance
between each point and every other point. This involves gmeputation(D(x1, z2),
D(x1,23), D(x1,20))sey (D(@, Tig1)y D(Ti, Tig2) ooy D(@i, 1)) yevey (D(Xp—1, T ))s
which corresponds to an arithmetic series- 1 + n — 2 + ... 4+ 1 of computations.
Thus for agglomerative hierarchical clustering ussygnmetricaldistances the num-
ber of distance computationsign — 1)/2 for the base level. At the next level we
need only recalculate the distance between the newly crehister and the remain-



Fig. 4. A Simple lllustration for a Five Instance Problem of How theafigular Inequality Can
Save Distance Computations

ing n — 2 points and so on. Therefore, the total number of distanceluzdlon is
nin —1)/2 4 (n — 1)(n — 2)/2 = (n — 1)%. We can view the base level calcula-
tion pictorially as a tree construction as shown in Figurtf &e perform the distance
calculation at the first level of the tree then we can obtainnas using the triangle
inequality forall branches in the second level. This is as bounding the distagisveen
two points requires the distance between these points andhanon point, which in
our case i%;. Thus in the best case there are only 1 distance computations instead
of (n —1)2.

4.2 Average Case Analysis for Using the constraint

However, it is highly unlikely that the best case situatiah @ver occur. We now focus
on the average case analysis using the Markov inequalitgtershine theexpectegber-
formance improvement which we later empirically verifytloebe the average distance
between any two instances in the data set to cluster. Thegtdanequality provides a
lower bound; if this bound exceeds computational savings will result. We can bound
how often this occurs if we can expreg terms ofp, hence lety = ¢p.

Recall that the general form of the Markov inequalityi{:X = = > a) < @
wherex is a single value of the continuous random variakilea is a constant and
E(X) is the expected value of. In our situation sinceX is distance between two
points chosen at rando,( X') = p andy = a = ¢p as we wish to determine when the
distance will exceed. Therefore, at the lowest level of the trée-¢ n) then thenumber
of timesthe triangle inequality will save us computation timezig% = n% =n/c,
indicating a saving of a factor df/c at this lowest level. As the Markov inequality is a
rather weak bound then in practice the saving may be sulmtaniifferent as we shall
see in our empirical section. The computation saving thatohtained at the bottom
of the dendrogram are reflected at higher levels of the degmdno. When growing the
entire dendrogram we will save at leastc+ (n — 1) /c ... +1/cdistance calculations.
This is an arithmetic sequence with the additive constainigol/c and hence the total
expected computations saved is at leg&2(2/c + (n — 1)/c) = (n* + n)/2c. As the
total computations for regular hierarchical clusteringrsis— 1)2, the computational
saving is expected to be by a approximately a factdr/@t.

Consider the 150 instance IRIS data set150) where the average distance (with
attribute value ranges all being normalized to between Olafdmbtween two instances
is 0.6; that is,p = 0.6. If we state that we do not wish to join clusters whose cen-
troids are separated by a distance greater than 3.0ther8.0 = 5p. By not using



the~ constraint and the triangle inequality the total numberarhputations is 22201,
and the number of computations that are saved is at (@86t + 150)/10 = 2265;
hence the saving is about 10%. We now show thattleenstraint can be used to im-
prove efficiency of the basic agglomerative clustering atgm. Table 4 illustrates the
improvement that using-@aconstraint equal to five times the average pairwise instance
distance. We see that the average improvementis consigtarhe average case bound
derived above.

Data Set |UnconstrainedUsing~y Constraint
Iris 22,201 19,830
Breast 487,204 431,321
Digit (3vs 8) 3,996,001 3,432,021
Pima 588,289 501,323
Census | 2,347,305,601 1,992,232,981
Sick 793,881 703,764

Table 4. The Efficiency of Using the Geometric Reasoning Approacimf@ection 4 (Rounded
Mean Number of Pair-wise Distance Calculations.)

5 Constraints and Irreducible Clusterings

In the presence of constraints, the set partitions at eaehdéthe dendrogram must be
feasible. We have formally shown thatkif, ... is the maximum value of for which a
feasible clustering exists, then there is a way of joiningstadrs to reach another cluster-
ing with k,,,;,, clusters [5]. In this section we ask the following questiaiit traditional
agglomerative clustering find a feasible clustering forreealue ofk betweenk,, ..
andk,,;, ? We formally show that in the worse case, for certain typesostraints (and
combinations of constraints), if mergers are performecdhimbitrary fashion (includ-
ing the traditional hierarchical clustering algorithmedg&gure 1), then the dendrogram
may prematurely dead-end. A premature dead-end impli¢thtbaendrogram reaches
a stage where no pair of clusters can be merged without iriglatne or more con-
straints, even though other sequences of mergers may rigguiticaintly higher levels
of the dendrogram. We use the following definition to captheeinformal notion of a
“premature end” in the construction of a dendrogram. Howddigrm agglomerative
clustering in these dead-end situations remains an imptarggen question.

Definition 3. A feasible clustering’ = {C1, Cs, ..., Cy} of asetS isirreducibleif no
pair of clusters inC' can be merged to obtain a feasible clustering with 1 clusters.

The remainder of this section examines the question of wtnohbinations of con-
straints can lead to premature stoppage of the dendrograrficdiconsider each of the
ML, CL and e-constraints separately. It is easy to see that when onlychtistraints
are used, the dendrogram can reach all the way up to a singlteglno matter how
mergers are done. The following illustrative example shthaswith CL-constraints, if
mergers are not done correctly, the dendrogram may stopgbueety.



Example: Consider a sef with 4k nodes. To describe the CL constraints, we will think
of S as the union of four pairwise disjoint seX5 Y, Z andW, each withk nodes. Let
X={z1, 22, ..z, Y ={y1, y2, - . s Y }» Z = {21, 22, . . ., 2z} andW = {wy, wa,
..., w }. The CL-constraints are as follow&) There is a CL-constraint for each pair
of nodes{x;,z;}, # j, (b) There is a CL-constraint for each pair of nodes, w; },

i # j, (c) There is a CL-constraint for each pair of nodes, z;}, 1 < 1,5 < k.

Assume that the distance between each pair of nodé&s i 1. Thus, nearest-
neighbor mergers may lead to the following feasible clustpwith 2% clusters{xy, y1 },
{z2,y2}, - {&kuk}, {21, w1}, {22, w2}, ..., {2k, wi }. This collection of clusters
can be seen to be irreducible in view of the given CL constsaidowever, a feasible
clustering withk clusters is possibldxz, w1, y1, Y2, - - - Yk }, {T2, w2, 21, 22, - . -, 2k }
{xs, ws}, ..., {zr, wr}. Thus, in this example, a carefully constructed dendrogram
allowsk additional levels. a0

When only thes:-constraint is considered, the following lemma points bat there
is only one irreducible configuration; thus, no prematugppages are possible. In
proving this lemma, we will assume that the distance fumassymmetric.

Lemma 1. If S'is a set of nodes to be clustered undereaconstraint. Any irreducible
and feasible collectiod”’ of clusters forS must satisfy the following two conditions.

(a) C contains at most one cluster with two or more nodesS .of
(b) Each singleton cluster i6’ contains a node: with noe-neighbors inS.

Proof: Suppos& has two or more clusters, s&¥ andC-, such that each af, andC,
has two or more nodes. We claim th@t andCy can be merged without violating the
e-constraint. This is because each nod€’in(C5) has are-neighbor inC; (C5) since
C is feasible and distances are symmetric. Thus, mer@ingnd C> cannot violate
the e-constraint. This contradicts the assumption thas irreducible and the result of
Part (a) follows. The proof for Part (b) is similar. Suppd@séhas a singleton cluster
Cy = {z} and the node has are-neighbor in some cluster,. Again,C; andCs can
be merged without violating theconstraint. a

Lemma 1 can be seen to hold even for the combination of MLeanmohstraints since
ML constraints cannot be violated by merging clusters. Thasnatter how clusters are
merged at the intermediate levels, the highest level of éraltbgram will always cor-
respond to the configuration described in the above lemmaWheande constraints
are used. In the presence of CL-constraints, it was pointethoough an example that
the dendrogram may stop prematurely if mergers are noechotit carefully. It is easy
to extend the example to show that this behavior occurs ev@mvZL-constraints are
combined with ML-constraints or anconstraint.

6 Conclusion and Future Work

Our paper made two significant theoretical results. Firsitlg feasibility problem for
unspecified: is studied and we find that clustering under all four types (KL, ¢ and
) of constraints iSNP-complete; hence, creating a feasible dendrogram is tafioée
These results are fundamentally different from our eawiark [4] because the feasibil-
ity problem and proofs are quite different. Secondly, wevptbunder some constraint



types (i.e. cannot-link) that traditional agglomeratiestering algorithms give rise to
dead-end (irreducible) solutions. If there exists a fdasiblution withk,,,, clusters
then the traditional agglomerative clustering algoritheymot get all the way to a fea-
sible solution withk,,,;,, clusters even though there exists feasible clusteringsdoh
value betweerk,,., andk,,;,. Therefore, the approach of joining the two “nearest”
clusters may yield an incomplete dendrogram. How to perfdustering when dead-
end feasible solutions exist remains an important openl@nokve intend to study.

Our experimental results indicate that small amounts afliedbdata can improve the
dendrogram quality with respect to cluster purity and “tighss” (as measured by the
distortion). We find that the cluster-levélconstraint can reduce computational time
between two and four fold by effectively creating a pruneddtegram. To further
improve the efficiency of agglomerative clustering we idtroed they constraint, that
allows the use of the triangle inequality to save computetiibe. We derived best case
and expected case analysis for this situation which ourrexgats verified. Additional
future work we will explore include constraints to creatéain@ed dendrograms and the
important asymmetric distance situation.
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