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Abstract. We explore the use of instance and cluster-level constraints with ag-
glomerative hierarchical clustering. Though previous work has illustrated the
benefits of using constraints for non-hierarchical clustering, their application to
hierarchical clustering is not straight-forward for two primary reasons. First, some
constraint combinations make the feasibility problem (Does there exist a single
feasible solution?)NP-complete. Second, some constraint combinations when
used with traditional agglomerative algorithms can cause the dendrogram to stop
prematurely in a dead-end solution even though there exist other feasible solu-
tions with a significantly smaller number of clusters. When constraints lead to
efficiently solvable feasibility problems and standard agglomerative algorithms
do not give rise to dead-end solutions, we empirically illustrate the benefits of
using constraints to improve cluster purity and average distortion. Furthermore,
we introduce the newγ constraint and use it in conjunction with the triangle
inequality to considerably improve the efficiency of agglomerative clustering.

1 Introduction and Motivation

Hierarchical clustering algorithms are run once and createa dendrogram which is a tree
structure containing ak-block set partition for each value ofk between1 andn, where
n is the number of data points to cluster allowing the user to choose a particular clus-
tering granularity. Though less popular than non-hierarchical clustering there are many
domains [16] where clusters naturally form a hierarchy; that is, clusters are part of other
clusters. Furthermore, the popular agglomerative algorithms are easy to implement as
they just begin with each point in its own cluster and progressively join the closest
clusters to reduce the number of clusters by 1 untilk = 1. The basic agglomerative
hierarchical clustering algorithm we will improve upon in this paper is shown in Figure
1. However, these added benefits come at the cost of time and space efficiency since
a typical implementation with symmetrical distances requiresΘ(mn2) computations,
wherem is the number of attributes used to represent each instance.

In this paper we shall explore the use of instance and clusterlevel constraints with
hierarchical clustering algorithms. We believe the use of such constraints withhierar-
chicalclustering is the first though there exists work that uses spatial constraints to find
specific types of clusters and avoid others [14, 15]. The similarly namedconstrained hi-
erarchical clustering[16] is actually a method of combining partitional and hierarchical
clustering algorithms; the method does not incorporate apriori constraints. Recent work



Agglomerative(S = {x1, . . . , xn}) returns Dendrogramk for k = 1 to |S|.

1. Ci = {xi}, ∀i.
2. for k = |S| down to 1

Dendrogramk = {C1, . . . , Ck}
d(i, j) = D(Ci, Cj), ∀i, j; l, m = argmina,b d(a, b).
Cl = Join(Cl, Cm); Remove(Cm).

endloop

Fig. 1.Standard Agglomerative Clustering

[1, 2, 12] in the non-hierarchical clustering literature has explored the use of instance-
level constraints. Themust-link andcannot-link constraints require that two instances
must both be part of or not part of the same cluster respectively. They are particularly
useful in situations where a large amount of unlabeled data to cluster is available along
with some labeled data from which the constraints can be obtained [12]. These con-
straints were shown to improve cluster purity when measuredagainst an extrinsic class
label not given to the clustering algorithm [12]. Theδ constraint requires the distance
between any pair of points in two different clusters to be at leastδ. For any clusterCi

with two or more points, theǫ-constraint requires that for each pointx ∈ Ci, there must
be another pointy ∈ Ci such that the distance betweenx andy is at mostǫ. Our recent
work [4] explored the computational complexity (difficulty) of the feasibilityproblem:
Given a value ofk, does there exist at least one clustering solution that satisfies all the
constraints and hask clusters? Though it is easy to see that there is no feasible solution
for the three cannot-link constraintsCL(a,b),CL(b,c),CL(a,c)for k < 3, the general
feasibility problem for cannot-link constraints isNP-complete by a reduction from the
graph coloring problem. The complexity results of that work, shown in Table 1 (2nd

column), are important for data mining because when problems are shown to be in-
tractable in the worst-case, we should avoid them or should not expect to find an exact
solution efficiently.

We begin this paper by exploring the feasibility of agglomerativehierarchical clus-
tering under the above four mentioned instance and cluster-level constraints. This prob-
lem is significantlydifferent from the feasibility problems considered in our previous
work since the value ofk for hierarchical clustering is not given. We then empirically
show that constraints with a modified agglomerative hierarchical algorithm can im-
prove the quality and performance of the resultant dendrogram. To further improve
performance we introduce theγ constraint which when used with the triangle inequal-
ity can yield large computation saving that we have bounded in the best and average
case. Finally, we cover the interesting result of an irreducible clustering. If we are given
a feasible clustering withkmax clusters then for certain combination of constraints join-
ing the two closest clusters may yield a feasible but “dead-end” solution withk clusters
from which no other feasible solution with less thank clusters can be obtained, even
though they are known to exist. Therefore, the created dendrograms may be incomplete.

Throughout this paperD(x, y) denotes the Euclidean distance between two points
andD(X, Y ) the Euclidean distance between the centroids of two groups of instances.



We note that the feasibility and irreducibility results (Sections 2 and 5) are not neces-
sarily for Euclidean distances and are hence applicable forsingle and complete linkage
clustering while theγ-constraint to improve performance (Section 4) is applicable to
any metric space.

Constraint Given k Unspecifiedk Unspecifiedk - Deadends?
Must-Link P [9, 4] P No

Cannot-Link NP-complete [9, 4] P Yes
δ-constraint P [4] P No
ǫ-constraint P [4] P No

Must-Link andδ P [4] P No
Must-Link andǫ NP-complete [4] P No

δ andǫ P [4] P No
Must-Link, Cannot-Link, NP-complete [4] NP-complete Yes

δ andǫ

Table 1.Results for Feasibility Problems for a Givenk (partitional clustering) and Unspecifiedk
(hierarchical clustering)

2 Feasibility for Hierarchical Clustering

In this section, we examine the feasibility problem for several different types of con-
straints, that is, the problem of determining whether the given set of points can be
partitioned into clusters so that all the specified constraints are satisfied.

Definition 1. Feasibility problem for Hierarchical Clustering (FHC)

Instance: A setS of nodes, the (symmetric) distanced(x, y) ≥ 0 for each pair of
nodesx andy in S and a collectionC of constraints.

Question: CanS be partitioned into subsets (clusters) so that all the constraints inC
are satisfied?

When the answer to the feasibility question is “yes”, the corresponding algorithm
also produces a partition ofS satisfying the constraints. We note that the FHC problem
considered here issignificantlydifferent from the constrained non-hierarchical cluster-
ing problem considered in [4] and the proofs are different aswell even though the end
results are similar. For example in our earlier work we showed intractability results for
some constraint types using a straightforward reduction from the graph coloring prob-
lem. The intractability proof used in this work involves more elaborate reductions. For
the feasibility problems considered in [4], the number of clusters is in effect, another
constraint. In the formulation of FHC, there arenoconstraints on the number of clusters,
other than the trivial ones (i.e., the number of clusters must be at least 1 and at most
|S|).

We shall in this section begin with the same constraints as those considered in [4].
They are: (a) Must-Link (ML) constraints, (b) Cannot-Link (CL) constraints, (c)δ con-
straint and (d)ǫ constraint. In later sections we shall introduce another cluster-level



constraint to improve the efficiency of the hierarchical clustering algorithms. As ob-
served in [4], aδ constraint can be efficiently transformed into an equivalent collection
of ML-constraints. Therefore, we restrict our attention toML, CL andǫ constraints. We
show that for anypair of these constraint types, the corresponding feasibility problem
can be solved efficiently. The simple algorithms for these feasibility problems can be
used to seed an agglomerative or divisive hierarchical clustering algorithm as is the case
in our experimental results. However, when all three types of constraints are specified,
we show that the feasibility problem isNP-complete and hence finding a clustering, let
alone a good clustering, is computationally intractable.

2.1 Efficient Algorithms for Certain Constraint Combinatio ns

When the constraint setC contains only ML and CL constraints, the FHC problem can
be solved in polynomial time using the following simple algorithm.

1. Form the clusters implied by the ML constraints. (This canbe done by computing
the transitive closure of the ML constraints as explained in[4].) Let C1, C2, . . ., Cp

denote the resulting clusters.
2. If there is a clusterCi (1 ≤ i ≤ p) with nodesx andy such thatx andy are also

involved in a CL constraint, then there is no solution to the feasibility problem;
otherwise, there is a solution.

When the above algorithm indicates that there is a feasible solution to the given FHC in-
stance, one such solution can be obtained as follows. Use theclusters produced in Step 1
along with a singleton cluster for each node that is not involved in an ML constraint.
Clearly, this algorithm runs in polynomial time. We now consider the combination of
CL andǫ constraints. Note that there is always a trivial solution consisting of|S| sin-
gleton clusters to the FHC problem when the constraint set involves only CL andǫ
constraints. Obviously, this trivial solution satisfies both CL andǫ constraints, as the
latter constraint only applies to clusters containing two or more instances.

The FHC problem under the combination of ML andǫ constraints can be solved
efficiently as follows. For any nodex, anǫ-neighbor of x is another nodey such that
D(x, y) ≤ ǫ. Using this definition, an algorithm for solving the feasibility problem is:

1. Construct the setS′ = {x ∈ S : x does not have anǫ-neighbor}.
2. If some node inS′ is involved in an ML constraint, then there is no solution to the

FHC problem; otherwise, there is a solution.

When the above algorithm indicates that there is a feasible solution, one such solu-
tion is to create a singleton cluster for each node inS′ and form one additional cluster
containing all the nodes inS − S′. It is easy to see that the resulting partition ofS
satisfies the ML andǫ constraints and that the feasibility testing algorithm runs in poly-
nomial time. The following theorem summarizes the above discussion and indicates that
we can extend the basic agglomerative algorithm with these combinations of constraint
types to perform efficient hierarchical clustering. However, it does not mean that we
can always use traditional agglomerative clustering algorithms as the closest-cluster-
join operation can yield dead-end clustering solutions as discussed in Section 5.



Theorem 1. TheFHC problem can be solved efficiently for each of the following com-
binations of constraint types: (a) ML and CL (b) CL andǫ and (c) ML andǫ. ⊓⊔

2.2 Feasibility Under ML, CL and ǫ Constraints

In this section, we show that the FHC problem isNP-complete when all the three con-
straint types are involved. This indicates that creating a dendrogram under these con-
straints is an intractable problem and the best we can hope for is an approximation
algorithm that maynot satisfy all constraints. TheNP-completeness proof uses a re-
duction from the One-in-Three 3SAT with positive literals problem (OPL) which is
known to beNP-complete [11]. For each instance of the OPL problem we can construct
a constrained clustering problem involving ML, CL andǫ constraints. Since complexity
results are worse case, the existence of just these problemsis sufficient for theorem 2.
One-in-Three 3SAT with Positive Literals (OPL)

Instance: A set C = {x1, x2, . . . , xn} of n Boolean variables, a collectionY =
{Y1, Y2, . . . , Ym} of m clauses, where each clauseYj = (xj1 , xj2 , xj3} has exactly
three non-negated literals.

Question: Is there an assignment of truth values to the variables inC so that exactly
one literal in each clause becomes true?

Theorem 2. TheFHC problem isNP-complete when the constraint set contains ML,
CL andǫ constraints.

The proof of the above theorem is somewhat lengthy and is omitted because of
space reasons. (The proof appears in an expanded technical report version of this paper
[5] that is available on-line.)

3 Using Constraints for Hierarchical Clustering: Algorith m and
Empirical Results

Data Set Distortion Purity
Unconstrained Constrained Unconstrained Constrained

Iris 3.2 2.7 58% 66%
Breast 8.0 7.3 53% 59%

Digit (3 vs 8) 17.1 15.2 35% 45%
Pima 9.8 8.1 61% 68%

Census 26.3 22.3 56% 61%
Sick 17.0 15.6 50% 59%

Table 2.Average Distortion per Instance and Average Percentage Cluster Purity over Entire Den-
drogram

To use constraints with hierarchical clustering we change the algorithm in Figure
1 to factor in the above discussion. As an example, a constrained hierarchical clus-
tering algorithm with must-link and cannot-link constraints is shown in Figure 2. In



this section we illustrate that constraints can improve thequality of the dendrogram.
We purposefully chose a small number of constraints and believe that even more con-
straints will improve upon these results. We will begin by investigating must-link and
cannot-link constraints using six real world UCI datasets.For each data set we clustered
all instances but removed the labels from 90% of the data (Su) and used the remain-
ing 10% (Sl) to generate constraints. We randomly selected two instances at a time
from Sl and generated must-link constraints between instances with the same class la-
bel and cannot-link constraints between instances of differing class labels. We repeated
this process twenty times, each time generating 250 constraints of each type. The per-
formance measures reported are averaged over these twenty trials. All instances with
missing values were removed as hierarchical clustering algorithms do not easily handle
such instances. Furthermore, all non-continuous columns were removed as there is no
standard distance measure for discrete columns.

ConstrainedAgglomerative(S,ML,CL)returns Dendrogrami, i = kmin ...kmax

Notes: In Step 5 below, the term “mergeable clusters” is used to denote a pair of clusters whose
merger does not violate any of the given CL constraints. The value oft at the end of the loop in
Step 5 gives the value ofkmin.

1. Construct the transitive closure of the ML constraints (see [4] for an algorithm) resulting in
r connected componentsM1, M2, . . ., Mr.

2. If two points{x, y} are both a CL and ML constraint then output “No Solution” and stop.
3. LetS1 = S − (

⋃r

i=1
Mi). Let kmax = r + |S1|.

4. Construct an initial feasible clustering withkmax clusters consisting of ther clustersM1,
. . ., Mr and a singleton cluster for each point inS1. Sett = kmax.

5. while (there exists a pair of mergeable clusters)do
(a) Select a pair of clustersCl andCm according to the specified distance criterion.
(b) MergeCl into Cm and removeCl. (The result isDendrogramt−1.)
(c) t = t − 1.

endwhile

Fig. 2. Agglomerative Clustering with ML and CL Constraints

Table 2 illustrates the quality improvement that the must-link and cannot-link con-
straints provide. Note that we compare the dendrograms fork values betweenkmin and
kmax. For each corresponding level in the unconstrained and constrained dendrogram
we measure the average distortion (1/n ∗

∑n

i=1 D(xi − Cf(xi)), wheref(xi) returns
the index of the closest cluster toxi) and present the average over all levels. It is im-
portant to note that we are not claiming that agglomerative clustering has distortion as
an objective function, rather that it is a good measure of cluster quality. We see that
the distortion improvement is typically of the order of 15%.We also see that the aver-
age percentage purity of the clustering solution as measured by the class label purity
improves. The cluster purity is measured against the extrinsic class labels. We believe
these improvement are due to the following. When many pairs of clusters have simi-



lar short distances, the must-link constraints guide the algorithm to a better join. This
type of improvement occurs at the bottom of the dendrogram. Conversely, towards the
top of the dendrogram the cannot-link constraints rule out ill-advised joins. However,
this preliminary explanation requires further investigation which we intend to address
in the future. In particular, a study of the most informativeconstraints for hierarchical
clustering remains an open question, though promising preliminary work for the area
of non-hierarchical clustering exists [2].

We next use the cluster-levelδ constraint with an arbitrary value to illustrate the
great computational savings that such constraints offer. Our earlier work [4] exploredǫ
andδ constraints to provide background knowledge towards the “type” of clusters we
wish to find. In that paper we explored their use with the Aibo robot to find objects in
images that were more than 1 foot apart as the Aibo can only navigate between such
objects. For these UCI data sets no such background knowledge exists and how to set
these constraint values for non-spatial data remains an active research area. Hence we
test these constraints with arbitrary values. We setδ equal to 10 times the average dis-
tance between a pair of points. Such a constraint will generate hundreds even thousands
of must-link constraints that can greatly influence the clustering results and algorithm
efficiency as shown in Table 3. We see that the minimum improvement was 50% (for
Census) and nearly 80% for Pima. This improvement is due to the constraints effec-
tively creating a pruned dendrogram by makingkmax ≪ n.

Data Set Unconstrained Constrained
Iris 22,201 3,275

Breast 487,204 59,726
Digit (3 vs 8) 3,996,001 990,118

Pima 588,289 61,381
Census 2,347,305,601563,034,601
Sick 793,881 159,801

Table 3. The Rounded Mean Number of Pair-wise Distance Calculationsfor an Unconstrained
and Constrained Clustering using theδ constraint

4 Using theγ Constraint to Improve Performance

In this section we introduce a new constraint, theγ constraint and illustrate how the
triangle inequality can be used to further improve the run-time performance of agglom-
erative hierarchical clustering. Though this improvementdoes not affect the worst-case
analysis, we can perform a best case analysis and an expectedperformance improve-
ment using the Markov inequality. Future work will investigate if tighter bounds can be
found. There exists other work involving the triangle inequality but not constraints for
non-hierarchical clustering [6] as well as for hierarchical clustering [10].

Definition 2. (Theγ Constraint For Hierarchical Clustering) Two clusters whose geo-
metric centroids are separated by a distance greater thanγ cannot be joined.



IntelligentDistance(γ, C = {C1, . . . , Ck})
returns d(i, j) ∀i, j.

1. for i = 2 to n − 1 d1,i = D(C1, Ci) endloop
2. for i = 2 to n − 1

for j = i + 1 to n − 1 ˆdi,j = |d1,i − d1,j |
if ˆdi,j > γ thendi,j = γ + 1 ; do not join elsedi,j = D(xi, xj)

endloop
endloop

3. returndi,j , ∀i, j.
Fig. 3. Function for Calculating Distances Using theγ Constraint and the Triangle Inequality.

The γ constraint allows us to specify how geometrically well separated the clus-
ters should be. Recall that the triangle inequality for three pointsa, b, c refers to the
expression|D(a, b) − D(b, c)| ≤ D(a, c) ≤ D(a, b) + D(c, b) whereD is the Eu-
clidean distance function or any other metric function. We can improve the efficiency
of the hierarchical clustering algorithm by making use of the lower bound in the tri-
angle inequality and theγ constraint. Leta, b, c now be cluster centroids and we wish
to determine the closest two centroids to join. If we have already computedD(a, b)
andD(b, c) and the value|D(a, b)− D(b, c)| exceedsγ, then we need not compute the
distance betweena andc as the lower bound onD(a, c) already exceedsγ and hence
a andc cannot be joined. Formally the function to calculate distances using geometric
reasoning at a particular dendrogram level is shown in Figure 3. Central to the approach
is that the distance between a central point (c) (in this case the first) and every other
point is calculated. Therefore, when bounding the distancebetween two instances (a, b)
we effectively calculate a triangle with two edges with knowlengths incident onc and
thereby lower bound the distance betweena andb. How to select the best central point
and the use of multiple central points remains future important research.

If the triangle inequality bound exceedsγ, then we save makingm floating point
power calculations if the data points are inm dimensional space. As mentioned earlier
we have no reason to believe that there will be at least one situation where the triangle
inequality saves computation inall problem instances; hence in the worst case, there is
no performance improvement. But in practice it is expected to occur and hence we can
explore the best and expected case results.

4.1 Best Case Analysis for Using theγ constraint

Consider then points to cluster{x1, ..., xn}. The first iteration of the agglomerative hi-
erarchical clustering algorithm using symmetrical distances is to compute the distance
between each point and every other point. This involves the computation(D(x1, x2),
D(x1, x3),..., D(x1, xn)),..., (D(xi, xi+1), D(xi, xi+2),...,D(xi, xn)),..., (D(xn−1, xn)),
which corresponds to an arithmetic seriesn − 1 + n − 2 + . . . + 1 of computations.
Thus for agglomerative hierarchical clustering usingsymmetricaldistances the num-
ber of distance computations isn(n − 1)/2 for the base level. At the next level we
need only recalculate the distance between the newly created cluster and the remain-



x1

x2 x3 x4 x5

x3 x4 x5 x4 x5 x5

Fig. 4. A Simple Illustration for a Five Instance Problem of How the Triangular Inequality Can
Save Distance Computations

ing n − 2 points and so on. Therefore, the total number of distance calcluation is
n(n − 1)/2 + (n − 1)(n − 2)/2 = (n − 1)2. We can view the base level calcula-
tion pictorially as a tree construction as shown in Figure 4.If we perform the distance
calculation at the first level of the tree then we can obtain bounds using the triangle
inequality forall branches in the second level. This is as bounding the distance between
two points requires the distance between these points and a common point, which in
our case isx1. Thus in the best case there are onlyn− 1 distance computations instead
of (n − 1)2.

4.2 Average Case Analysis for Using theγ constraint

However, it is highly unlikely that the best case situation will ever occur. We now focus
on the average case analysis using the Markov inequality to determine theexpectedper-
formance improvement which we later empirically verify. Let ρ be the average distance
between any two instances in the data set to cluster. The triangle inequality provides a
lower bound; if this bound exceedsγ, computational savings will result. We can bound
how often this occurs if we can expressγ in terms ofρ, hence letγ = cρ.

Recall that the general form of the Markov inequality is:P (X = x ≥ a) ≤ E(X)
a

,
wherex is a single value of the continuous random variableX , a is a constant and
E(X) is the expected value ofX . In our situation sinceX is distance between two
points chosen at random,E(X) = ρ andγ = a = cρ as we wish to determine when the
distance will exceedγ. Therefore, at the lowest level of the tree (k = n) then thenumber
of timesthe triangle inequality will save us computation time isnE(X)

a
= n ρ

cρ
= n/c,

indicating a saving of a factor of1/c at this lowest level. As the Markov inequality is a
rather weak bound then in practice the saving may be substantially different as we shall
see in our empirical section. The computation saving that are obtained at the bottom
of the dendrogram are reflected at higher levels of the dendrogram. When growing the
entire dendrogram we will save at leastn/c+(n−1)/c . . . +1/c distance calculations.
This is an arithmetic sequence with the additive constant being 1/c and hence the total
expected computations saved is at leastn/2(2/c + (n − 1)/c) = (n2 + n)/2c. As the
total computations for regular hierarchical clustering is(n − 1)2, the computational
saving is expected to be by a approximately a factor of1/2c.

Consider the 150 instance IRIS data set (n=150) where the average distance (with
attribute value ranges all being normalized to between 0 and1) between two instances
is 0.6; that is,ρ = 0.6. If we state that we do not wish to join clusters whose cen-
troids are separated by a distance greater than 3.0, thenγ = 3.0 = 5ρ. By not using



theγ constraint and the triangle inequality the total number of computations is 22201,
and the number of computations that are saved is at least(1502 + 150)/10 = 2265;
hence the saving is about 10%. We now show that theγ constraint can be used to im-
prove efficiency of the basic agglomerative clustering algorithm. Table 4 illustrates the
improvement that using aγ constraint equal to five times the average pairwise instance
distance. We see that the average improvement is consistentwith the average case bound
derived above.

Data Set UnconstrainedUsingγ Constraint
Iris 22,201 19,830

Breast 487,204 431,321
Digit (3 vs 8) 3,996,001 3,432,021

Pima 588,289 501,323
Census 2,347,305,601 1,992,232,981
Sick 793,881 703,764

Table 4. The Efficiency of Using the Geometric Reasoning Approach from Section 4 (Rounded
Mean Number of Pair-wise Distance Calculations.)

5 Constraints and Irreducible Clusterings

In the presence of constraints, the set partitions at each level of the dendrogram must be
feasible. We have formally shown that ifkmax is the maximum value ofk for which a
feasible clustering exists, then there is a way of joining clusters to reach another cluster-
ing with kmin clusters [5]. In this section we ask the following question:will traditional
agglomerative clustering find a feasible clustering for each value ofk betweenkmax

andkmin? We formally show that in the worse case, for certain types ofconstraints (and
combinations of constraints), if mergers are performed in an arbitrary fashion (includ-
ing the traditional hierarchical clustering algorithm, see Figure 1), then the dendrogram
may prematurely dead-end. A premature dead-end implies that the dendrogram reaches
a stage where no pair of clusters can be merged without violating one or more con-
straints, even though other sequences of mergers may reach significantly higher levels
of the dendrogram. We use the following definition to capturethe informal notion of a
“premature end” in the construction of a dendrogram. How to perform agglomerative
clustering in these dead-end situations remains an important open question.

Definition 3. A feasible clusteringC = {C1, C2, . . ., Ck} of a setS is irreducible if no
pair of clusters inC can be merged to obtain a feasible clustering withk − 1 clusters.

The remainder of this section examines the question of whichcombinations of con-
straints can lead to premature stoppage of the dendrogram. We first consider each of the
ML, CL and ǫ-constraints separately. It is easy to see that when only ML-constraints
are used, the dendrogram can reach all the way up to a single cluster, no matter how
mergers are done. The following illustrative example showsthat with CL-constraints, if
mergers are not done correctly, the dendrogram may stop prematurely.



Example: Consider a setS with 4k nodes. To describe the CL constraints, we will think
of S as the union of four pairwise disjoint setsX , Y , Z andW , each withk nodes. Let
X = {x1, x2, . . ., xk}, Y = {y1, y2, . . ., yk}, Z = {z1, z2, . . ., zk} andW = {w1, w2,
. . ., wk}. The CL-constraints are as follows.(a) There is a CL-constraint for each pair
of nodes{xi, xj}, i 6= j, (b) There is a CL-constraint for each pair of nodes{wi, wj},
i 6= j, (c) There is a CL-constraint for each pair of nodes{yi, zj}, 1 ≤ i, j ≤ k.

Assume that the distance between each pair of nodes inS is 1. Thus, nearest-
neighbor mergers may lead to the following feasible clustering with2k clusters:{x1, y1},
{x2, y2}, . . ., {xk, yk}, {z1, w1}, {z2, w2}, . . ., {zk, wk}. This collection of clusters
can be seen to be irreducible in view of the given CL constraints. However, a feasible
clustering withk clusters is possible:{x1, w1, y1, y2, . . ., yk}, {x2, w2, z1, z2, . . ., zk},
{x3, w3}, . . ., {xk, wk}. Thus, in this example, a carefully constructed dendrogram
allowsk additional levels. ⊓⊔

When only theǫ-constraint is considered, the following lemma points out that there
is only one irreducible configuration; thus, no premature stoppages are possible. In
proving this lemma, we will assume that the distance function is symmetric.

Lemma 1. If S is a set of nodes to be clustered under anǫ-constraint. Any irreducible
and feasible collectionC of clusters forS must satisfy the following two conditions.

(a) C contains at most one cluster with two or more nodes ofS.
(b) Each singleton cluster inC contains a nodex with noǫ-neighbors inS.

Proof: SupposeC has two or more clusters, sayC1 andC2, such that each ofC1 andC2

has two or more nodes. We claim thatC1 andC2 can be merged without violating the
ǫ-constraint. This is because each node inC1 (C2) has anǫ-neighbor inC1 (C2) since
C is feasible and distances are symmetric. Thus, mergingC1 andC2 cannot violate
theǫ-constraint. This contradicts the assumption thatC is irreducible and the result of
Part (a) follows. The proof for Part (b) is similar. SupposeC has a singleton cluster
C1 = {x} and the nodex has anǫ-neighbor in some clusterC2. Again,C1 andC2 can
be merged without violating theǫ-constraint. ⊓⊔

Lemma 1 can be seen to hold even for the combination of ML andǫ constraints since
ML constraints cannot be violated by merging clusters. Thus, no matter how clusters are
merged at the intermediate levels, the highest level of the dendrogram will always cor-
respond to the configuration described in the above lemma when ML andǫ constraints
are used. In the presence of CL-constraints, it was pointed out through an example that
the dendrogram may stop prematurely if mergers are not carried out carefully. It is easy
to extend the example to show that this behavior occurs even when CL-constraints are
combined with ML-constraints or anǫ-constraint.

6 Conclusion and Future Work

Our paper made two significant theoretical results. Firstly, the feasibility problem for
unspecifiedk is studied and we find that clustering under all four types (ML, CL, ǫ and
δ) of constraints isNP-complete; hence, creating a feasible dendrogram is intractable.
These results are fundamentally different from our earlierwork [4] because the feasibil-
ity problem and proofs are quite different. Secondly, we proved under some constraint



types (i.e. cannot-link) that traditional agglomerative clustering algorithms give rise to
dead-end (irreducible) solutions. If there exists a feasible solution withkmax clusters
then the traditional agglomerative clustering algorithm may not get all the way to a fea-
sible solution withkmin clusters even though there exists feasible clusterings foreach
value betweenkmax andkmin. Therefore, the approach of joining the two “nearest”
clusters may yield an incomplete dendrogram. How to performclustering when dead-
end feasible solutions exist remains an important open problem we intend to study.

Our experimental results indicate that small amounts of labeled data can improve the
dendrogram quality with respect to cluster purity and “tightness” (as measured by the
distortion). We find that the cluster-levelδ constraint can reduce computational time
between two and four fold by effectively creating a pruned dendrogram. To further
improve the efficiency of agglomerative clustering we introduced theγ constraint, that
allows the use of the triangle inequality to save computation time. We derived best case
and expected case analysis for this situation which our experiments verified. Additional
future work we will explore include constraints to create balanced dendrograms and the
important asymmetric distance situation.
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