Example: Market Basket Data

- Items frequently purchased together:
 \[\text{Bread} \Rightarrow \text{PeanutButter} \]

- Uses: (2 Classical, 2 Recent)
 - Product placement (place items close together)
 - Advertising – Amazon (people who buy x buy y)
 - Analyzing manufacturing errors
 - Analyzing crashes
 - Demographic analysis of a transactional or customer database

- Note, data to mine is not always in a database
Association Rule Definitions

- **Set of items**: $I = \{I_1, I_2, \ldots, I_m\}$
- **Transactions**: $D = \{t_1, t_2, \ldots, t_n\}$, $t_j \subseteq I$
- **Itemset**: $\{I_{i1}, I_{i2}, \ldots, I_{ik}\} \subseteq I$
- **Support of an itemset**: Percentage of transactions which contain that itemset.
- **Large (Frequent) itemset**: Itemset whose number of occurrences is above a threshold.
Association Rule Definitions

- **Association Rule (AR):** implication $X \Rightarrow Y$ where $X, Y \subseteq I$ and $X \cap Y = \emptyset$.
- **Support of AR (s) $X \Rightarrow Y$:** Percentage of transactions that contain $X \cup Y$.
- **Confidence of AR (α) $X \Rightarrow Y$:** Ratio of number of transactions that contain $X \cup Y$ to the number that contain X.
Association Rule Techniques

1. Find Large Itemsets.
2. Generate rules from frequent itemsets.
Algorithm to Generate ARs

Input:
\[D \quad // \text{Database of transactions} \]
\[I \quad // \text{Items} \]
\[L \quad // \text{Large itemsets} \]
\[s \quad // \text{Support} \]
\[\alpha \quad // \text{Confidence} \]

Output:
\[R \quad // \text{Association Rules satisfying } s \text{ and } \alpha \]

ARGen Algorithm:
\[R = \emptyset; \]
\[\text{for each } l \in L \text{ do} \]
\[\quad \text{for each } x \subset l \text{ such that } x \neq \emptyset \text{ and } x \neq l \text{ do} \]
\[\quad \quad \text{if } \frac{\text{support}(l)}{\text{support}(x)} \geq \alpha \text{ then} \]
\[\quad \quad \quad R = R \cup \{x \Rightarrow (l - x)\}; \]
Apriori – Each AR Algorithm has a Simple and Clever Idea

Large Itemset Property:
Any subset of a large itemset is large.

Contrapositive:
If an itemset is not large, none of its supersets are large.
Apriori Algorithm

1. \(C_1 \) = Itemsets of size one in \(I \);
2. Determine all large itemsets of size 1, \(L_1 \);
3. \(i = 1 \);
4. Repeat
5. \(i = i + 1 \);
6. \(C_i = \text{Apriori-Gen}(L_{i-1}) \);
7. Count \(C_i \) to determine \(L_i \); \textbf{(note that this involves performing a query)}
8. until no more large itemsets found;
Apriori-Gen

- Aside: L is a set of sets.
- Generate candidates of size $i+1$ from large itemsets of size i.
- Approach used: join large itemsets of size i if they agree on $i-1$
- May also prune candidates who have subsets that are not large.
Apriori-Gen Example

<table>
<thead>
<tr>
<th>Transaction</th>
<th>Items</th>
</tr>
</thead>
<tbody>
<tr>
<td>t_1</td>
<td>Blouse</td>
</tr>
<tr>
<td>t_2</td>
<td>Shoes,Skirt,TShirt</td>
</tr>
<tr>
<td>t_3</td>
<td>Jeans,TShirt</td>
</tr>
<tr>
<td>t_4</td>
<td>Jeans,Shoes,TShirt</td>
</tr>
<tr>
<td>t_5</td>
<td>Jeans,Shorts</td>
</tr>
<tr>
<td>t_6</td>
<td>Shoes,TShirt</td>
</tr>
<tr>
<td>t_7</td>
<td>Jeans,Skirt</td>
</tr>
<tr>
<td>t_8</td>
<td>Jeans,Shoes,Shorts,TShirt</td>
</tr>
<tr>
<td>t_9</td>
<td>Jeans</td>
</tr>
<tr>
<td>t_{10}</td>
<td>Jeans,Shoes,TShirt</td>
</tr>
<tr>
<td>t_{11}</td>
<td>TShirt</td>
</tr>
<tr>
<td>t_{12}</td>
<td>Blouse,Jeans,Shoes,Skirt,TShirt</td>
</tr>
<tr>
<td>t_{13}</td>
<td>Jeans,Shoes,Shorts,TShirt</td>
</tr>
<tr>
<td>t_{14}</td>
<td>Shoes,Skirt,TShirt</td>
</tr>
<tr>
<td>t_{15}</td>
<td>Jeans,TShirt</td>
</tr>
<tr>
<td>t_{16}</td>
<td>Skirt,TShirt</td>
</tr>
<tr>
<td>t_{17}</td>
<td>Blouse,Jeans,Skirt</td>
</tr>
<tr>
<td>t_{18}</td>
<td>Jeans,Shoes,Shorts,TShirt</td>
</tr>
<tr>
<td>t_{19}</td>
<td>Jeans</td>
</tr>
<tr>
<td>t_{20}</td>
<td>Jeans,Shoes,Shorts,TShirt</td>
</tr>
</tbody>
</table>
Apriori-Gen Example (cont’d)

<table>
<thead>
<tr>
<th>Scan</th>
<th>Candidates</th>
<th>Large Itemsets</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>{Blouse}, {Jeans}, {Shoes}, {Shorts}, {Skirt}, {TShirt}</td>
<td>{Jeans}, {Shoes}, {Shorts}</td>
</tr>
<tr>
<td></td>
<td></td>
<td>{Skirt}, {TShirt}</td>
</tr>
<tr>
<td></td>
<td>{Shoes, Shorts}, {Shoes, Skirt}, {Shoes, TShirt}, {Shorts, Skirt},</td>
<td>{Jeans, TShirt}, {Shoes, Shorts},</td>
</tr>
<tr>
<td></td>
<td>{Shorts, TShirt}, {Skirt, TShirt}</td>
<td>{Shoes, TShirt}, {Shorts, TShirt},</td>
</tr>
<tr>
<td></td>
<td></td>
<td>{Skirt, TShirt}</td>
</tr>
<tr>
<td>3</td>
<td>{Jeans, Shoes, Shorts}, {Jeans, Shoes, TShirt}, {Jeans, Shorts, TShirt},</td>
<td>{Jeans, Shoes, Shorts},</td>
</tr>
<tr>
<td></td>
<td>{Jeans, Shorts, TShirt}, {Jeans, Skirt, TShirt}, {Shoes, Shorts, TShirt},</td>
<td>{Jeans, Shoes, TShirt},</td>
</tr>
<tr>
<td></td>
<td>{Shoes, Skirt, TShirt}</td>
<td>{Jeans, Shorts, TShirt},</td>
</tr>
<tr>
<td></td>
<td></td>
<td>{Shoes, Shorts, TShirt}</td>
</tr>
<tr>
<td>4</td>
<td>{Jeans, Shoes, Shorts, TShirt}</td>
<td>{Jeans, Shoes, Shorts, TShirt}</td>
</tr>
<tr>
<td>5</td>
<td>∅</td>
<td>∅</td>
</tr>
</tbody>
</table>
Apriori Adv/Disadv

• **Advantages:**
 – Uses large itemset property.
 – Easily parallelized. How?
 – Easy to implement.

• **Disadvantages:**
 – Assumes transaction database is memory resident. – (consider Amazon)
 – Requires up to m database scans – (consider Supermarkets)
Improving over Basic Apriori
Sampling

• Large databases
• Sample the database and apply Apriori to the sample.

Potentially Large Itemsets (PL): Large itemsets from sample

Clever Idea: Negative Border (BD^-):
 – Generalization of Apriori-Gen applied to itemsets of varying sizes.
 – Minimal set of itemsets which are not in PL, but whose subsets are all in PL.
Negative Border Example

\[PL \cup BD^-(PL) \]
Four Types of Item Sets

• When mining from a sample, helpful to consider that there are four types of itemsets
 – Those that are frequent
 – That that are infrequent
 – Those on the negative border to those that are frequent
 – Remaining/others

• The negative border (buffer zone): The smallest possible set of itemsets that can potentially be large
Negative Border

• Seems unusual not to add \{A, B\} etc initially.

• But if anything in the negative border is found to be frequent (i.e. B), then we will add \{A, B\} in the second scan.
Sampling Algorithm

1. $D_s =$ sample of Database D;
2. $PL =$ Large itemsets in D_s using smalls;
3. $C = PL \cup BD^-(PL)$;
4. Count C in Database using s;
5. $ML =$ large itemsets in $BD^-(PL)$;
6. If $ML = \emptyset$ then done
7. else $C =$ repeated application of BD^-;
8. Count C in Database;
Sampling Example

• Find AR assuming $s = 20\%$
• $D_s = \{ t_1, t_2 \}$
• Smalls = 10% ??? Why make Smalls < s ???
• $PL = \{ \{Bread\}, \{Jelly\}, \{PeanutButter\},$
 $\{Bread,Jelly\}, \{Bread,PeanutButter\}, \{Jelly,$
 $PeanutButter\}, \{Bread,Jelly,PeanutButter\} \}$
• $BD^{-}(PL) = \{ \{Beer\}, \{Milk\} \}$
• $ML = \{ \{Beer\}, \{Milk\} \}$
• Repeated application of BD^{-} generates all remaining itemsets
Sampling Adv/Disadv

• **Advantages:**
 – Reduces number of database scans to one in the best case and two in worst.
 – Scales better.

• **Disadvantages:**
 – Potentially large number of candidates in second pass (note complexity of AR algorithms typically stated with respect to m)
Partitioning

- Divide database into partitions D^1, D^2, \ldots, D^p
- Apply Apriori to each partition
- Clever idea: Any large itemset must be large in at least one partition.
Partitioning Algorithm

1. Divide D into partitions D^1, D^2, \ldots, D^p;
2. For $I = 1$ to p do
3. \quad $L^i = \text{Apriori}(D^i)$;
4. \quad $C = L^1 \cup \ldots \cup L^p$;
5. Count C on D to generate L;
Partitioning Example

<table>
<thead>
<tr>
<th>Transaction</th>
<th>Items</th>
</tr>
</thead>
<tbody>
<tr>
<td>D¹</td>
<td></td>
</tr>
<tr>
<td>t_1</td>
<td>Bread, Jelly, PeanutButter</td>
</tr>
<tr>
<td>t_2</td>
<td>Bread, PeanutButter</td>
</tr>
<tr>
<td>t_3</td>
<td>Bread, Milk, PeanutButter</td>
</tr>
<tr>
<td>D²</td>
<td></td>
</tr>
<tr>
<td>t_4</td>
<td>Beer, Bread</td>
</tr>
<tr>
<td>t_5</td>
<td>Beer, Milk</td>
</tr>
</tbody>
</table>

$L^1 = \{\{\text{Bread}\}, \{\text{Jelly}\}, \{\text{PeanutButter}\}, \{\text{Bread, Jelly}\}, \{\text{Bread, PeanutButter}\}, \{\text{Jelly, PeanutButter}\}, \{\text{Bread, Jelly, PeanutButter}\}\}$

$L^2 = \{\{\text{Bread}\}, \{\text{Milk}\}, \{\text{PeanutButter}\}, \{\text{Bread, Milk}\}, \{\text{Bread, PeanutButter}\}, \{\text{Milk, PeanutButter}\}, \{\text{Bread, Milk, PeanutButter}\}, \{\text{Beer}\}, \{\text{Beer, Bread}\}, \{\text{Beer, Milk}\}\}$

$S = 10\%$
Partitioning Adv/Disadv

- **Advantages:**
 - Adapts to available main memory
 - Easily parallelized
 - Maximum number of database scans is two.

- **Disadvantages:**
 - May have many candidates during second scan.
Improving over Basic Apriori
Sampling

- Large databases
- Sample the database and apply Apriori to the sample.
- **Potentially Large Itemsets (PL):** Large itemsets from sample
- **Clever Idea: Negative Border (BD^-):**
 - Generalization of Apriori-Gen applied to itemsets of varying sizes.
 - Minimal set of itemsets which are not in PL, but whose subsets are all in PL.
Sampling Algorithm

1. $D_s = \text{sample of Database } D$;
2. $PL = \text{Large itemsets in } D_s \text{ using smalls}$;
3. $C = PL \cup BD^-(PL)$;
4. Count C in Database using s;
5. $ML = \text{large itemsets in } BD^-(PL)$;
6. If $ML = \emptyset$ then done
7. else $C = \text{repeated application of } BD^-$;
8. Count C in Database;
Sampling Adv/Disadv

• **Advantages:**
 – Reduces number of database scans to one in the best case and two in worst.
 – Scales better.

• **Disadvantages:**
 – Potentially large number of candidates in second pass (note complexity of AR algorithms typically stated with respect to \(m \))
Negative Border

- Let $S \subset D$, $I = \{A, B, C, D, E\}$
 - Say $PL = \{A, B\}$
 - What is $BD^-(PL)$?
- If $BD^-(PL) = \emptyset$ what do we do?
- If no item in $BD^-(PL)$ is found to be frequent what do we do?
Example of Sampling Algorithm

Let \(s = \{t_1, t_2\} \)

<table>
<thead>
<tr>
<th>Transaction</th>
<th>Items</th>
</tr>
</thead>
<tbody>
<tr>
<td>(t_1)</td>
<td>Bread, Jelly, PeanutButter</td>
</tr>
<tr>
<td>(t_2)</td>
<td>Bread, PeanutButter</td>
</tr>
<tr>
<td>(t_3)</td>
<td>Bread, Milk, PeanutButter</td>
</tr>
<tr>
<td>(t_4)</td>
<td>Beer, Bread</td>
</tr>
<tr>
<td>(t_5)</td>
<td>Beer, Milk</td>
</tr>
</tbody>
</table>

MinSup = 30%, MinSup=10%
Partitioning

- Divide database into partitions D^1, D^2, \ldots, D^p
- Apply Apriori to each partition
- Clever idea: Any large itemset must be large in at least one partition.
Partitioning Algorithm

1. Divide D into partitions D_1,D_2,\ldots,D_p;
2. For $I = 1$ to p do
3. $L^i = \text{Apriori}(D^i)$;
4. $C = L^1 \cup \ldots \cup L^p$;
5. Count C on D to generate L;
Partitioning Example

<table>
<thead>
<tr>
<th>Transaction</th>
<th>Items</th>
</tr>
</thead>
<tbody>
<tr>
<td>t_1</td>
<td>Bread, Jelly, PeanutButter</td>
</tr>
<tr>
<td>t_2</td>
<td>Bread, PeanutButter</td>
</tr>
<tr>
<td>t_3</td>
<td>Bread, Milk, PeanutButter</td>
</tr>
<tr>
<td>t_4</td>
<td>Beer, Bread</td>
</tr>
<tr>
<td>t_5</td>
<td>Beer, Milk</td>
</tr>
</tbody>
</table>

$S = 10\%$
Partitioning Adv/Disadv

- **Advantages:**
 - Adapts to available main memory
 - Easily parallelized
 - Maximum number of database scans is two.

- **Disadvantages:**
 - May have many candidates during second scan.
Parallelizing AR Algorithms

- Based on Apriori
- Techniques differ:
 - What is counted at each site
 - How data (transactions) are distributed

- Data Parallelism
 - Data partitioned
 - Count Distribution Algorithm

- Task Parallelism
 - Data and candidates partitioned
 - Data Distribution Algorithm
Count Distribution Algorithm (CDA)

1. Place data partition at each site.
2. In Parallel at each site do
3. \(C_1 = \text{Itemsets of size one in } I; \)
4. Count \(C_1; \)
5. Broadcast counts to all sites;
6. Determine global large itemsets of size 1, \(L_1; \)
7. \(i = 1; \)
8. Repeat
9. \(i = i + 1; \)
10. \(C_i = \text{Apriori-Gen}(L_{i-1}); \)
11. Count \(C_i; \)
12. Broadcast counts to all sites;
13. Determine global large itemsets of size \(i, L_i; \)
14. until no more large itemsets found;
Example of Sampling Algorithm

<table>
<thead>
<tr>
<th>Transaction</th>
<th>Items</th>
</tr>
</thead>
<tbody>
<tr>
<td>t_1</td>
<td>Bread, Jelly, PeanutButter</td>
</tr>
<tr>
<td>t_2</td>
<td>Bread, PeanutButter</td>
</tr>
<tr>
<td>t_3</td>
<td>Bread, Milk, PeanutButter</td>
</tr>
<tr>
<td>t_4</td>
<td>Beer, Bread</td>
</tr>
<tr>
<td>t_5</td>
<td>Beer, Milk</td>
</tr>
</tbody>
</table>

$s=\{t_1, t_2\}$

MinSup = 30%, MinSup=10%
CDA Example

<table>
<thead>
<tr>
<th>P1</th>
<th>P2</th>
<th>P3</th>
</tr>
</thead>
<tbody>
<tr>
<td>D1:</td>
<td>D2:</td>
<td>D3:</td>
</tr>
<tr>
<td>t_1 , t_2</td>
<td>t_3 , t_4</td>
<td>t_5</td>
</tr>
<tr>
<td>Counts:</td>
<td>Counts:</td>
<td>Counts:</td>
</tr>
<tr>
<td>Beer 0</td>
<td>Beer 1</td>
<td>Beer 1</td>
</tr>
<tr>
<td>Bread 2</td>
<td>Bread 2</td>
<td>Bread 0</td>
</tr>
<tr>
<td>Jelly 1</td>
<td>Jelly 0</td>
<td>Jelly 0</td>
</tr>
<tr>
<td>Milk 0</td>
<td>Milk 1</td>
<td>Milk 1</td>
</tr>
<tr>
<td>PeanutButter 2</td>
<td>PeanutButter 1</td>
<td>PeanutButter 0</td>
</tr>
</tbody>
</table>

Broadcast Local Counts
Data Distribution Algorithm (DDA)

1. Place data partition at each site.
2. In Parallel at each site do
3. Determine local candidates of size 1 to count;
4. Broadcast local transactions to other sites;
5. Count local candidates of size 1 on all data;
6. Determine large itemsets of size 1 for local candidates;
7. Broadcast large itemsets to all sites;
8. Determine L_1;
9. $i = 1$;
10. Repeat
11. $i = i + 1$;
12. $C_i = \text{Apriori-Gen}(L_{i-1})$;
13. Determine local candidates of size i to count;
14. Count, broadcast, and find L_i;
15. until no more large itemsets found;
DDA Example

Broadcast Database Partition

CSI 660 - Data Mining : Association Rules
Comparing AR Techniques

- Target
- Type
- Data Type
- Data Source
- Technique
- Itemset Strategy and Data Structure
- Transaction Strategy and Data Structure
- Optimization
- Architecture
- Parallelism Strategy
Comparison of AR Techniques

<table>
<thead>
<tr>
<th>Partitioning</th>
<th>Scans</th>
<th>Data Structure</th>
<th>Parallelism</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apriori</td>
<td>$m + 1$</td>
<td>hash tree</td>
<td>none</td>
</tr>
<tr>
<td>Sampling</td>
<td>2</td>
<td>not specified</td>
<td>none</td>
</tr>
<tr>
<td>Partitioning</td>
<td>2</td>
<td>hash table</td>
<td>none</td>
</tr>
<tr>
<td>CDA</td>
<td>$m + 1$</td>
<td>hash tree</td>
<td>data</td>
</tr>
<tr>
<td>DDA</td>
<td>$m + 1$</td>
<td>hash tree</td>
<td>task</td>
</tr>
</tbody>
</table>
Example of Sampling Algorithm

\[s = \{ t_1, t_2 \} \]

<table>
<thead>
<tr>
<th>Transaction</th>
<th>Items</th>
</tr>
</thead>
<tbody>
<tr>
<td>(t_1)</td>
<td>Bread, Jelly, PeanutButter</td>
</tr>
<tr>
<td>(t_2)</td>
<td>Bread, PeanutButter</td>
</tr>
<tr>
<td>(t_3)</td>
<td>Bread, Milk, PeanutButter</td>
</tr>
<tr>
<td>(t_4)</td>
<td>Beer, Bread</td>
</tr>
<tr>
<td>(t_5)</td>
<td>Beer, Milk</td>
</tr>
</tbody>
</table>

\[\text{MinSup} = 30\%, \ \text{MinSup} = 10\% \]
Homework #1

• Show that the sampling algorithm will generate the same results as apriori using only at most two applications of the negative border concept.
 – Three hints: 1) Introduce the notion of a false positive (something is said to frequent and it is not) and a false negative (something is said to be infrequent and it is frequent) 2) If an itemset is frequent in the data then it will be frequent in either the sample or the remainder of the database, 3) The negative border notion is a generalization of apriori-gen

• If we knew the candidate frequent/large itemsets were $C_1 \ldots C_i$, $i < m$, what is efficiency saving of Apriori over naïve Association rule mining with respect to the number of queries.

• Why is the number of sequential association rules: $m^k 2^{(k-1)}$
Apriori-Gen Example

<table>
<thead>
<tr>
<th>Transaction</th>
<th>Items</th>
</tr>
</thead>
<tbody>
<tr>
<td>t_1</td>
<td>Blouse</td>
</tr>
<tr>
<td>t_2</td>
<td>Shoes, Skirt, TShirt</td>
</tr>
<tr>
<td>t_3</td>
<td>Jeans, TShirt</td>
</tr>
<tr>
<td>t_4</td>
<td>Jeans, Shoes, TShirt</td>
</tr>
<tr>
<td>t_5</td>
<td>Jeans, Shorts</td>
</tr>
<tr>
<td>t_6</td>
<td>Shoes, TShirt</td>
</tr>
<tr>
<td>t_7</td>
<td>Jeans, Skirt</td>
</tr>
<tr>
<td>t_8</td>
<td>Jeans, Shoes, Shorts, TShirt</td>
</tr>
<tr>
<td>t_9</td>
<td>Jeans</td>
</tr>
<tr>
<td>t_{10}</td>
<td>Jeans, Shoes, TShirt</td>
</tr>
<tr>
<td>t_{11}</td>
<td>TShirt</td>
</tr>
<tr>
<td>t_{12}</td>
<td>Blouse, Jeans, Shoes, Skirt, TShirt</td>
</tr>
<tr>
<td>t_{13}</td>
<td>Jeans, Shoes, Shorts, TShirt</td>
</tr>
<tr>
<td>t_{14}</td>
<td>Shoes, Skirt, TShirt</td>
</tr>
<tr>
<td>t_{15}</td>
<td>Jeans, TShirt</td>
</tr>
<tr>
<td>t_{16}</td>
<td>Skirt, TShirt</td>
</tr>
<tr>
<td>t_{17}</td>
<td>Blouse, Jeans, Skirt</td>
</tr>
<tr>
<td>t_{18}</td>
<td>Jeans, Shoes, Shorts, TShirt</td>
</tr>
<tr>
<td>t_{19}</td>
<td>Jeans</td>
</tr>
<tr>
<td>t_{20}</td>
<td>Jeans, Shoes, Shorts, TShirt</td>
</tr>
</tbody>
</table>
Apriori Algorithm

1. \(C_1 \) = Itemsets of size one in \(I \);
2. Determine all large itemsets of size 1, \(L_1 \);
3. \(i = 1 \);
4. Repeat
5. \(i = i + 1 \);
6. \(C_i = \text{Apriori-Gen}(L_{i-1}) \);
7. Count \(C_i \) to determine \(L_i \); (note that this involves performing a query)
8. until no more large itemsets found;
Apriori-Gen

• Aside: L is a set of sets.
• Generate candidates of size i+1 from large itemsets of size i.
• Approach used: join large itemsets of size i if they agree on i-1
• May also prune candidates who have subsets that are not large.
Sampling Algorithm

1. $D_s =$ sample of Database D;
2. $PL =$ Large itemsets in D_s using smalls;
3. $C = PL \cup BD^{-}(PL)$;
4. Count C in Database using s;
5. $ML =$ large itemsets in $BD^{-}(PL)$;
6. If $ML = \emptyset$ then done
7. else $C =$ repeated application of BD^{-};
8. Count C in Database;
Measuring Quality of Rules

• Support (Joint probability)
 – What does a support of 1 mean?

• Confidence (Conditional probability)
 – What does a confidence of 1 mean?

• Does this capture all “interesting” rules?

• Interest (Ratio normalized by independence assumption) a.k.a. lift. Problem with the measure?
 – What does an interest of 1 mean?

• Conviction (Asymmetrical interest measure)
 – A → B rewritten using the implication elimination of P.L?

• Chi Squared Test
 – Create a contingency table, test for independence
Sequential Association Rules
What Is Sequential Pattern Mining?

• Sequential pattern mining:
 – Frequent temporal sequential patterns in the database.
 – Association rule --- intra-transaction
 – Sequential rule --- inter-transaction

• Example (Video stores can use this)
 – 80% of customers typically rent “star wars”, then “Empire strikes back”, and then “Return of Jedi”.

• Applications.
 – Change experimental unit from a set to a sequence
 – Web-access pattern.
 – Predict onset of disease from a sequences of symptoms, etc
Sequential Association Rules

Given:
A set of objects with associated event occurrences.

Actual Pattern
{1} → {2}

Possible patterns
{1,4} → {3,2}

Note arrow means “some time after” not directly after
Input Database

<table>
<thead>
<tr>
<th>Customer ID</th>
<th>TransactionTime</th>
<th>Items</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>30</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>90</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>10,20</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>30</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>40,60,70</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>30,50,70</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>30</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>40,70</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>90</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>90</td>
</tr>
</tbody>
</table>

MinSupp = 40%, i.e. 2 customers:

- \(<30><90>\) \((1, 4)\)
- \(<30><40,70>\) \((2, 4)\)
Seq. Association Rule Def

- Given is a set of objects, with each object associated with its own timeline of events, find rules that predict strong sequential dependencies among different events.

\[(A \ B) \ (C) \rightarrow (D \ E)\]

- Rules are formed by first discovering patterns. Event occurrences in the patterns are governed by timing constraints.

\[(A \ B) \ (C) \ (D \ E)\]

\[\leq xg \hspace{1cm} >ng \hspace{1cm} \leq ws\]

\[\leq ms\]
Complexity

- Much **higher computational complexity** than association rule discovery.
 - $O(m^k 2^{k-1})$ number of possible sequential patterns having k events, where m is the total number of possible events.
- Time constraints offer some pruning. Further use of **support based pruning contains complexity**.
 - A subsequence of a sequence occurs at least as many times as the sequence.
 - A sequence has no more occurrences than any of its subsequences.
 - Build sequences in increasing number of events. [GSP algorithm by Agarwal & Srikant]
Sequential Apriori

\[S_1 = \{ \text{frequent 1-item sequences} \}; \]
\[k = 2; \]
\[\text{while}(S_{k-1} \text{ is not empty }) \{ \]
\[\quad C_k = \text{Sequential Apriori_generate}(S_{k-1}); \]
\[\quad \text{for all object timelines } o \text{ in } T \{ \]
\[\quad \quad \text{Count}(C_k, o); \]
\[\quad \} \]
\[S_k = \{ s \text{ in } C_k \text{ s.t. } s.\text{count} \geq \text{minimum_support} \}; \]
\[\} \]
\[\text{Answer} = \text{union of all sets } S_k; \]
Sequential Apriori-Gen

Sequential_Apriori_generate(S_{1-1}) {
 join S_{k-1} with S_{k-1} such that,
 c_1 and c_2 join together if subsequences formed by
 deleting first event of c_1 and last event of c_2 are the same.
 and then new candidate, c, has a form
 c = (c_1)(e) or (c_1 e) if e, the last event of c_2, is the only event
 in last event-set of c_2 or otherwise, respectively.
 c is then added to a hash-tree structure.
}

Examples of join:
(2 3) (4 6) (7) joins with (3) (4 6) (7) (8) to create (2 3) (4 6) (7) (8)
(1 2) joins with (2 3) to create (1 2 3)
Special case (k=2): (1) joins with (2) to create (1)(2) and (1,2)
An Example

Given a set of sequences, find the complete set of frequent subsequences

A sequence database

<table>
<thead>
<tr>
<th>SID</th>
<th>sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td><a(abc)(ac)d(cf)></td>
</tr>
<tr>
<td>20</td>
<td><(ad)c(bc)(ae)></td>
</tr>
<tr>
<td>30</td>
<td><(ef)(ab)(df)c</td>
</tr>
<tr>
<td>40</td>
<td><eg(af)c</td>
</tr>
</tbody>
</table>

A sequence: <(ef)(ab)(df)c|b>

An element may contain a set of items. Items within an element are unordered and we list them alphabetically.

<a(bc)dc> is a subsequence of <a(abc)(ac)d(cf)>

Given support threshold min_sup =2, <(ab)c> is a sequential pattern
Count Operation

- Various possibilities for counting occurrences of a sequence in an object’s timeline
 - Count only one occurrence per object.
 - Count the number of span-size windows the sequence occurs in.
 - Count the number of distinct occurrences of a sequence:
 - Each event-timestamp pair considered at most once.
 - Each counted occurrence has at least one new event-timestamp pair.
The AprioriAll Algorithm

- **Pseudo-code:**
 - \(C_k \): Candidate sequence of size \(k \)
 - \(L_k \): frequent or large sequence of size \(k \)

\[
L_1 = \{\text{large 1-sequence}\}; \quad //\text{result of itemset phase}
\]

\[
\text{for } (k = 2; \; L_k \neq \emptyset; \; k++) \text{ do begin}
\]

\[
C_k = \text{candidates generated from } L_{k-1};
\]

\[
\text{for each customer sequence } c \text{ in database do}
\]

\[
\quad \text{Increment the count of all candidates in } C_k
\]

\[
\quad \text{that are contained in } c
\]

\[
\text{end}
\]

\[
\text{Answer=} \text{Maximal sequences in } \bigcup_k L_k;
\]
Candidate generation

- **Join Step:**
 - \(C_k \) is generated by joining \(L_{k-1} \) with itself
 - Insert into \(C_k \),
 - Select \(p.litemset_1, \ldots, p.litemset_{k-1}, q.litemset_{k-1} \)
 - From \(L_{k-1} p, L_{k-1} q \)
 - Where \(p.litemset_1 = q.litemset_1, \ldots, \)
 - \(p.litemset_{k-2} = q.litemset_{k-2} \)

- **Prune Step:** Any \((k-1)\)-subsequences of \(s \) (length \(k \)) that is not frequent cannot be a subsequence of a frequent \(k \)-sequence.

For example: \(\{1,2,3\} \times \{1,2,4\} = \{1,2,3,4\} \) and \(\{1,2,4,3\} \)
Advanced AR Techniques

- Generalized Association Rules
 - Need is-a hierarchy
- Multiple-Level Association Rules
- Quantitative Association Rules
- Using multiple minimum supports