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Abstract

We model chaining in terms of a simple, convergent, rewrite system over a signature with two
disjoint sorts: list and element. By interpreting a particular symbol of this signature suitably,
the rewrite system can model several practical situations of interest. An inference procedure is
presented for deciding the unification problem modulo this rewrite system. The procedure is mod-
ular in the following sense: any given problem is handled by a system of ‘list-inferences’, and the
set of equations thus derived between the element-terms of the problem is then handed over to
any (‘black-box’) procedure which is complete for solving these element-equations. An example of
application of this unification procedure is given, as attack detection on a Needham-Schroeder-like
protocol employing the CBC encryption mode.

Keywords: Equational unification, Block chaining, Protocol.
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1 Introduction

The Chaining technique is applicable in many situations. A simple case is e.g., when we want
to calculate the partial sums (resp. products) of a (not necessarily bounded) list of integers, with
a given ‘base’ integer; such a list of partial sums (resp. products) can be calculated, incrementally,
with the help of the following set of equations:

bc(nil, z) = nil, bc(cons(x, Y ), z) = cons(h(x, z), bc(Y, h(x, z)))

where nil is the empty list, z is the given base integer, x is an integer variable, and Y is the the
given list of integers. The partial sums (resp. products) are returned as a list, by evaluating the
function bc, when h(x, z) is interpreted as the sum (resp. product) of x with the given base integer
z.

A more sophisticated example is the Cipher Block Chaining encryption mode (CBC, in short),
employed in cryptography. This mode uses the AC-operator exclusive-or (XOR) for ‘chaining the
ciphers across the message blocks’; here is how this is done: let ⊕ stand for XOR, and m = m1 .m2

be a message decomposed as a concatenation of two message blocks m1,m2, of equal size; then
the encryption e(m,x) of m with x as key will be given by e(m,x) = e(m1, x) . e(m2 ⊕ e(m1, x), x)
(cf. e.g., [12]). The above set of equations also models the CBC encryption mode: the function
h(x, y) will stand in this case for the encryption e(x⊕y, k) of the message-term x XOR-ed with the
initialization vector y, using the public key k of the recipient of the message. Actually, our interest
in the equational theory defined by the above two equations was motivated by the possibility of such
a modeling for Cipher Block Chaining, and the fact that rewrite as well as unification techniques
are often employable, with success, for the formal analysis of cryptographic protocols (cf. e.g.,
[1, 4, 5, 6, 7], and also the concluding section).

This paper is organized as follows. In Section 2 we introduce our notation and the basic notions
used in the sequel; we shall observe, in particular, that the two equations above can be turned into
rewrite rules and form a convergent rewrite system over a 2-sorted signature: lists and elements.
Our concern in Section 3 is the unification problem modulo this rewrite system; we present a 2-
level inference system (corresponding, in a way, to the 2 sorts of the signature) for solving this
problem. Although our main aim is to develop on the unification problem under the assumption
that h is an interpreted function symbol (as in the two situations illustrated above), for the sake of
completeness we shall also consider the case where h is a free uninterpreted symbol. The soundness
and completeness of our inference procedure are established in Section 4. We shall see that while
the complexity of the unification problem is polynomial over the size of the problem when h is
uninterpreted, it turns out to be NP-complete when h is interpreted so that the rewrite system
models CBC encryption.

2 Notation and Preliminaries

We consider a ranked signature Σ, with two disjoint sorts: τe and τl, consisting of binary functions
bc, cons, h, and a constant nil, and typed as follows:

bc : τl × τe → τl , cons : τe × τl → τl , h : τe × τe → τe , nil : τl.

We also assume given a set X of countably many variables; the objects of our study are the
(well-typed) terms of the algebra T (Σ,X ); terms of the type τe will be referred to as elements;
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and those of the type τl as lists. For better readability, the set of variables X will be divided
into two subsets: those to which ‘lists’ can get assigned will be denoted with upper-case letters
as: X, Y, Z, U, V, W, . . . , with possible suffixes or primes; these will be said to be variables of
type τl; variables to which ‘elements’ can get assigned will be denoted with lower-case letters, as:
x, y, z, u, v, w, . . . , with possible suffixes or primes; these will be said to be variables of type τe.
The theory we shall be studying in this paper is defined by the two axioms (equations) already
mentioned in the Introduction:

bc(nil, z) = nil

bc(cons(x, Y ), z) = cons(h(x, z), bc(Y, h(x, z)))

It is easy to see that these axioms can both be oriented left-to-right under a suitable lexicographic
path ordering (lpo) (cf. e.g., [8]), and that they form then a convergent – i.e., confluent and
terminating – 2-sorted rewrite system. The (sorted) equational theory defined by the two axioms
above will be denoted in the sequel as BC, and referred to as ‘block chaining’.

In the case where h is a free uninterpreted symbol, h will obviously be fully cancellative in the
sense that for any terms s1, t1, s2, t2, we have: h(s1, t1) =BC h(s2, t2) if and only if s1 =BC s2 and
t1 =BC t2. But when h is interpreted, e.g. as for CBC, this is no longer true; in that case, h will only
be semi-cancellative in the following sense: for any terms s1, s2, t, we have: h(s1, t) =BC h(s2, t)
if and only if s1 =BC s2 and h(t, s1) =BC h(t, s2) if and only if s1 =BC s2. In the sequel, we shall
always assume the symbol h to be semi-cancellative.

Our concern in this work is the equational unification problem modulo BC. We assume without
loss of generality (wlog) that any given BC-unification problem P is in a standard form, i.e., P is
given as a set of equations EQ, each having one of the following forms:

U =? V, U =? bc(V, y), U =? cons(v,W ), U =? nil,
u =? v, v =? h(w, x), u =? const

where const stands for any ground constant of sort τe. The first four kinds of equations – the
ones with a list variable on the left-hand side – are called list equations, and the rest (those which
have an element variable on the left-hand side) are called element equations. For any problem P
in standard form, L(P) will denote the subset formed of its list equations, and E(P) the subset of
element equations. A set of element equations is said to be in dag-solved form (or d-solved form)
if and only if they can be arranged as a list

x1 =? t1, . . . , xn =? tn

where: (a) each left-hand side xi is a distinct variable, and (b) ∀ 1 ≤ i ≤ j ≤ n: xi does not occur
in tj [11]. Such a notion is naturally extended to sets of list equations as well. In the next section
we give an inference system for solving any BC-unification problem in standard form. Its rules will
transform any given problem P into one in d-solved form.

For better comprehension, and to facilitate presentation, in the sequel we shall denote by BC0

the theory defined by the rewrite system BC when h is a free uninterpreted symbol; and by BC1

the theory defined in the case where h is interpreted so that BC models the CBC encryption mode.
Any development presented below for the theory BC – without further precision on h – is meant as
one which will be valid for both BC0 and BC1.
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3 Inference System for BC-Unification

The inference rules have to consider two kinds of equations: the rules for the list equations in
P, i.e., equations whose left-hand sides (lhs) are variables of type τl, and the rules for the element
equations, i.e., equations whose lhs are variables of type τe. Our method of solving any given
unification problem will be ‘modular’ on these two sets of equations: The list inference rules will
be shown to terminate under suitable conditions, and then all we will need to do is to solve the
resulting set of element equations for h.

A few technical points need to be mentioned before we formulate our inference rules. Note first
that it is not hard to see that cons is cancellative; by this we mean that cons(s1, t1) ≈BC cons(s2, t2),
for terms s1, s2, t1, t2, if and only if s1 ≈BC s2 and t1 ≈BC t2. On the other hand, since we assume
that h is semi-cancellative we can show, by structural induction, that bc is also conditionally semi-
cancellative (depending on whether its first argument is nil or not). A more rigorous proof of this
is given in Appendix A.

Note that U =? bc(U, x) is solvable by the substitution {U := nil}; in fact this equation forces
U to be nil, as would also the set of equations: U =? bc(V, y), V =? bc(U, x). Cycles of this kind
have therefore to be checked to determine whether a list variable is forced to be nil. This can be
effectively done by defining a relation >bc over type τl variables:

U >bc V iff there is an equation U =? bc(V,X).

If X >bc
+ X then X has to be nil. A set nonnil of variables that cannot be nil for any unifying

substitution is defined, recursively, as follows:

• if U =? cons(x, V ) is an equation then U ∈ nonnil.

• if U =? bc(V, x) is an equation and V ∈ nonnil then U ∈ nonnil.

• if U =? bc(V, x) is an equation and U ∈ nonnil then V ∈ nonnil.

We also have to account for cases where an ‘occur-check’ succeeds on some list variable, and the
problem will be unsolvable. The simplest among such cases is when we have an equation of the form
U =? cons(z, U) in EQ. But one could have more complex unsolvable cases, where the equations
involve both cons and bc; e.g., when EQ contains equations of the form: U =? cons(x, V ), U =?

bc(V, y); the problem will be unsolvable in such a case: indeed, from the axioms of BC, one deduces
that V must be of the form V = cons(v, V ′), for some v and V ′, then x must be of the form
x = h(v, y), and subsequently V = bc(V ′, x), and we are back to a set of equations of the same
format. We need to infer failure in such a case; for that, we define two relations on the list variables
of EQ:

• U >cons V iff U = cons(z, V ), for some z.

• U ∼bc V iff U = bc(V,w), or V = bc(U,w), for some w.

Note that ∼bc is the symmetric closure of the relation >bc. The reflexive, symmetric and transitive
closure of >bc will be denoted as ∼∗

bc.

Definition 3.1 Let Gl = Gl(P) be the graph whose nodes are the list variables of P, with arcs
defined as follows: From a node U on Gl there is a directed arc to a (not necessarily different)
node V on Gl iff:
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(a) Either U >cons V : in which case the arc is labeled with >cons,

Or U >bc V : in which case the arc is labeled with >bc.

(b) In the latter case, Gl will also have a two-sided (undirected) edge between U and V , which is
labeled with ∼bc.

(c) On the set of nodes on Gl, we define a partial relation �l by setting: U �l V iff there is
a path on Gl from U to V , at least one arc of which has label >cons. In other words:
�l = ∼∗

bc ◦ >cons ◦ (∼bc ∪ >cons)∗.

(d) A list variable U of P is said to violate occur-check iff U �l U on Gl.

The graph Gl = Gl(P) is called the Propagation Graph for P. We formulate now the inference
rules for the list equations in P.

3.1 Inference System INF l for List-Equations

(L1) Variable Elimination:
{U =? V } ] EQ

{U =? V } ∪ [V/U ](EQ)
if U occurs in EQ

(L2) Cancellation on cons:
EQ ] {U =? cons(v,W ), U =? cons(x, V )}
EQ ∪ {U =? cons(v,W ), v =? x, W =? V }

(L3.a) Nil solution-1:
EQ ] {U =? bc(V, x), U =? nil}
EQ ∪ {U =? nil, V =? nil}

(L3.b) Nil solution-2:
EQ ] {U =? bc(V, x), V =? nil}
EQ ∪ {U =? nil, V =? nil}

(L3.c) Nil solution-3:
EQ ] {U =? bc(V, x)}

EQ ∪ {U =? nil, V =? nil}
if V >∗

bc U

(L4.a) Semi-Cancellation on bc:
EQ ] {U =? bc(V, x), U =? bc(W,x)}
EQ ∪ {U =? bc(W,x), V =? W}

if U ∈ nonnil

(L4.b) Pushing bc below cons:
EQ ] {U =? bc(V, x), U =? bc(W, y)}

EQ ∪ {V =? cons(v, Z), W =? cons(w,Z), U =? cons(u, U ′),
U ′ =? bc(Z, u), u =? h(v, x), u =? h(w, y)}

if U ∈ nonnil

(L5) Splitting:
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EQ ] {U =? cons(x, U1), U =? bc(V, z)}
EQ ∪ {U =? cons(x,U1), x =? h(y, z), U1 =? bc(V1, x), V =? cons(y, V1)}

(L6) Occur-Check Violation:
EQ

FAIL
if U occurs in EQ, and U �l U on the graph Gl

(L7) Size Conflict:
EQ ] {U =? cons(v,W ), U =? nil}

FAIL

The symbol ‘]’ in the premises of the above inference rules stands for disjoint set union (and
‘∪’ for usual set union). The role of the Variable Elimination inference rule (L1) is to keep the
propagation graph of P irredundant: each variable has a unique representative node on Gl(P), up
to variable equality. This rule is applied most eagerly. Rules (L2) and (L3.a)–(L3.c) come next in
priority, and then (L4.a) and (L4.b). The Splitting rule (L5) is applied in the “laziest” fashion, i.e.,
(L5) is applied only when no other rule is applicable. The above inference rules are all “don’t-care”
nondeterministic.

The validity of the rule (L4.b) (‘Pushing bc below cons’) results from the cancellativity of cons
and the semi-cancellativity of bc; note that the variables Z,U ′, u in the ‘inferred part’ of this rule
(L4.b) might need to be fresh; the same is true also for the variables y, V2 in the inferred part of the
Splitting rule; but in either case, this is not obligatory if existing variables meet the requirements.
We show now that such an introduction of fresh variables cannot go for ever, and that the above 7
don’t-care nondeterministic rules suffice, essentially, for deciding unifiability modulo the axioms of
BC.

Proposition 3.2 Let P be any BC-unification problem, given in standard form. The system INF l

of list inference rules, given above, terminates on P in polynomially many steps.

Proof: The variable elimination rule (L1) removes nodes from the propagation graph, while the
list inference rules (L2) through (L4.a) eliminate a (directed) outgoing arc from some node of Gl.
Thus their termination is easy to check. Therefore the system of list inference rules will terminate
if the splitting rule (L5) terminates and the rule (L4.b) (Pushing bc below cons) terminates. We
show that if occur-check violation (L7) does not occur, then applications of the rule (L5) or of the
rule (L4.b) cannot go on forever.

First of all, observe that though the splitting rule may introduce new variables, the number of
∼∗

bc-equivalence classes of nodes cannot increase, since the (possibly) new variable V1 belongs to the
same equivalence class as U1 (V1 ∼bc U1). Thus applying the splitting rule (L5) on a list-equation
U = bc(V, x) removes that equation and creates a list equation of the form U1 = bc(V1, x

′) for some
list variables U1 and V1, such that V ∼bc U >cons U1 ∼bc V1.

Suppose now that applying the splitting rule does not terminate. Then, at some stage, the
graph of the derived problem will have a sequence of nodes of the form U0 = U >cons U1 >cons

· · · >cons Un, such that its number of nodes n strictly exceeds the initial number of ∼∗
bc-equivalence

classes – which cannot increase under splitting, as was observed above. So there must exist indices
0 ≤ i < j ≤ n such that Uj ∼∗

bc Ui; in other words, we would have Ui �l Ui, and that would have
caused the inference procedure to terminate with FAIL. We conclude therefore that applying the
splitting rule must terminate.
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The same kind of reasoning also works for the rule (L4.b): an application of that rule removes
two list equations of the form U =? bc(V, x), U =? bc(W, y) and creates a list equation of the
form U ′ = bc(Z, u) (plus some other cons and/or element equations), where U = cons(u, U ′) so
U >cons U ′. We conclude, for the same reason as above, that applying rule (L4.b) must terminate.

To show that the number of steps is polynomial on the input problem size, note first that the
number of nodes and edges on the Propagation Graph of P is polynomial in the size of P, and
that number decreases under all the inferences other than (L4.b) and (L5). But these latter rules
do not increase the number of ∼bc-edges. Let the level of a ∼bc-edge be the length of the longest
cons-path to that edge. (L4.b) and (L5) remove one ∼bc-edge and add a new one at a greater level.
Since, the length of any cons-chain is polynomially bounded, (L4.b) and (L5) can only be applied
a polynomial number of times. 2

A set of equations will be said to be L-reduced if none of the above inference rules (L1) through
(L7) is applicable.

Unification modulo BC: The rules (L1) through (L7) are not enough to show the existence of
a unifier modulo BC. The subset of element equations, E(P), may not be solvable; for example,
the presence of an element equation of the form {x =? h(x, z)} should lead to failure. However, we
have the following:

Proposition 3.3 If L(P) is in L-reduced form, then P is unifiable modulo BC if and only if the
set E(P) of its element equations is solvable.

Proof: If L(P) is L-reduced, then setting every list variable that is not in nonnil to nil will lead
to a unifier for L(P), modulo BC, provided E(P) is solvable. 2

Recall that BC0 is the theory defined by BC when h is uninterpreted.

Proposition 3.4 Let P be any BC0-unification problem, given in standard form. Unifiability of P
modulo BC0 is decidable in polynomial time (wrt the size of P).

Proof: If the inferences of INF l applied to P lead to failure, then P is not unifiable modulo BC;
so assume that this is not the case, and replace P by an equivalent problem which is L-reduced,
deduced in polynomially many steps by Proposition 3.2. By Proposition 3.3, the unifiability modulo
BC of such a P amounts to checking if the set E(P) of its element equations is solvable. We are in
the case where h is uninterpreted, so to solve E(P) we apply the rules for standard unification, and
check for their termination without failure; this can be done in polynomial time; cf. e.g., [3]. (In
this case, h is fully cancellative.) 2

It can be seen that, while termination of the above inference rules guarantees the existence of a
unifier (provided the element equations are syntactically solvable), the resulting L-reduced system
may not lead directly to a unifier. For instance, the system of list equations: {U =? bc(V, x), U =?

bc(V, y)}. is L-reduced system is unifiable, with two incomparable unifiers; namely:

{x := y, U := bc(V, y)} and {U := nil, V := nil}

To get this complete set of unifiers we need two more inference rules, which are “don’t-know”
nondeterministic, and to be applied only to L-reduced systems:
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(L8) Nil-solution-Branch:
EQ ] {U =? bc(V, x), U =? bc(V, y)}

EQ ∪ {U =? nil, V =? nil}
(L9) Cancellation-Branch on bc:

EQ ] {U =? bc(V, x), U =? bc(V, y)}
EQ ∪ {U =? bc(V, y), x =? y}

if U ∈ nonnil

We establish now a technical result, valid whether or not h is interpreted:

Proposition 3.5 Let P be any BC-unification problem in standard form, to which none of the
inferences of INF l is applicable. Then its set of list-equations is in d-solved form.

Proof: Observe first that if INF l is inapplicable to P, then, on the propagation graph Gl for P,
there is at most one outgoing directed arc of Gl at any node U : Otherwise, suppose there are two
distinct outgoing arcs at some node U on Gl; if both directed arcs bear the label >cons, then rule
(L2) of INF l would apply; if both bear the label >bc, then either (L4.a) or (L4.b) would apply;
the only remaining case is where one of the outgoing arcs is labeled with >cons and the other has
label >bc, but then the splitting rule (L5) would apply.

Consider now any given connected component Γ of Gl. There can be no directed cycle from
any node U on Γ to itself: otherwise the Occur-Check-Violation rule (L6) would have applied. It
follows, from this observation and the preceding one, that there is a unique end-node U0 on Γ –
i.e., a node from which there is no directed outgoing arc –, and also that for any given node U on
Γ, there is a unique well-defined directed path leading from U to that end-node U0.

It follows easily from these, that the left-hand-side list-variables of P (on the different connected
components of Gl) can be ordered suitably so as to satisfy the condition for P to be in d-solved
form. 2

Example 3.6 The following BC0-unification problem: is in standard form:

U =? cons(x,W ), U =? bc(V, y), W =? bc(V3, y), x =? h(z, y), y =? a

We apply splitting, by writing V =? cons(v2, V2), where v2, V2 are fresh; we deduce, after one
application of (L2) (Cancellation on cons):

U =? cons(x, W ), V =? cons(v2, V2), W =? bc(V2, y), W =? bc(V3, y)

x =? h(v2, y), x =? h(z, y), y =? a

To which, rule (L4.a) (Semi-Cancellation on bc) and the (semi-)cancellativity of h apply; we
finally get

U =? cons(x,W ), V =? cons(z, V3), W =? bc(V3, y), x =? h(z, y), y =? a

as solution, where z and V3 can be taken as arbitrary. Note that this final set of equations is in
d-solved form; and also that its the propagation graph is connected, with V3 as the end-node.

We now turn our attention to solving a unification problem modulo the theory BC. When h
is uninterpreted, we saw above that this unification is decidable in polynomial time; but in the
case where h is interpreted so that BC models CBC, we shall see that unification modulo BC1 is
NP-complete.
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4 Solving a BC-Unification problem

Let P be a BC-Unification problem, given in standard form. We assume that INF l has terminated
without failure on P; we saw, in the preceding section (Proposition 3.5), that P is then in d-
solved form. We also assume that we have a sound and complete procedure for solving the element
equations of P, that we shall denote as INFe. For the theory BC0 where h is uninterpreted, we
know (Proposition 3.4) that INFe is standard unification, with cancellation rules for h, and failure
in case of ‘symbol clash’. For the theory BC1, where h(x, y) is interpreted as e(x ⊕ y, k) for some
fixed key k, INFe will have rules for semi-cancellation on h and e, besides the rules for unification
modulo XOR in some fixed procedure, that we assume given once and for all.

In all cases, we shall consider INFe as a black-box that either returns most general unifiers
(mgu’s) for the element equations of P, or a failure message when these are not satisfiable. Note
that INFe is unitary for BC0 and finitary for BC1. For any problem P in d-solved form, satisfiable
under the theory BC0, there is a unique mgu, as expressed by the equations of P themselves (cf.
also [11]), that we shall denote by θP . Under BC1 there could be more than one (but finitely many)
mgu’s; we shall agree to denote by θP any one among them.

The entire procedure for solving any BC-unification problem P, given in standard form, can now
be synthesized as a nondeterministic algorithm:

The Algorithm A: Given a BC-unification problem P, in standard form.
Gl = Propagation graph for P. INF l = Inference procedure for L(P).
INFe = (Complete) Procedure for solving the equations of E(P).

1 Compute a standard form for P, to which the mandatory inferences of INF l are no longer
applicable. If this leads to failure, exit with FAIL. Otherwise, replace P by this standard
form.

2 Apply the “don’t-know” nondeterministic rules (L8)-(L9), – followed by the rules of INF l as
needed – until the equations no longer get modified by the inference rules (L1)-(L9). If this
leads to failure, exit with FAIL.

3 Apply the procedure INFe for solving the element-equations in E(P); if this leads to failure,
exit with FAIL.

4 Otherwise let σ be the substitution on the variables of P as expressed by the resulting equa-
tions. Return σ as a solution to P.

Proposition 4.1 The algorithm A is sound and complete.

Proof: The soundness of A follows from the soundness (assumed) of INFe and that of INF l,
which is easily checked: If P ′ is any problem derived from P by applying any of these inference
rules, then any solution for P ′ corresponds to a solution for P. The completeness of A follows from
the completeness (assumed) of INFe, and the completeness of INF l that we prove below:

Lemma 4.2 If σ is a solution for a given BC-unification problem P in standard form, then there
is a sequence of INF l-inference steps that transforms P into a problem P ′ in d-solved form such
that σ is an instance of θP ′ (modulo BC).
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Proof-sketch. The proof is by case analysis. We may assume, without loss of generality, that P
is L-reduced (i.e., the mandatory inferences of INF l have all been applied). If P is already in
d-solved form then we are done since σ �BC θP , for some mgu θP . If P is not in d-solved form,
then we have to consider several cases, depending on the possible inference branches. We will just
illustrate one such case. Suppose there are two equations U =? bc(Z, v) and U =? bc(Y, w) in P.
If σ(v) =BC σ(w), then we must have σ(Z) =BC σ(Y ), so σ must be a solution for the problem
obtained by applying the rule (L4.a). If σ(v) 6=BC σ(w), then σ must be a solution to the problem
derived under rule (L4.b). Now, we know that the inference steps always terminate, so such a
reasoning can be completed into an inductive argument, to prove the lemma. 2

4.1 BC1-Unification is NP-Complete

Recall that BC1 is the theory defined by BC when the symbol h is interpreted so that BC models
CBC.

Proposition 4.3 Unifiability modulo the theory BC1 is NP-complete.

Proof: We deduce the NP-upper bound from the following facts:

- For any given BC-unification problem, computing a standard form is in polynomial time, wrt
the size of the problem.

- Given a standard form, the propagation graph can be constructed in polynomial time (wrt
its number of variables).

- Applying (L1)-(L9) till termination takes only polynomially many steps.

- Extracting the set of element-equations from the set of equations obtained in the previous
step is in P.

- Solving the element-equations with the procedure INFe using unification modulo XOR is in
NP.

The NP-lower bound follows from the fact that general unification modulo XOR is NP-complete [10].
2

4.2 An Illustrative Example

The following public key protocol is known to be secure ([9]):
A → B : {A,m}kb

B → A : {B,m}ka

where A,B are the participants of the protocol session, m is a message that they intend secret for
others, and kb (resp. ka) is the public key of B (resp. A).

However, if the CBC encryption mode is assumed and the message blocks are all of the same
size, then this protocol becomes insecure, here is why. Let eZ(x) stand for the encryption e(x, kz)
with the public key kz of any principal Z. What A sends to B is cons(A, cons(m,nil)), or [A,m]
in ML-notation, encrypted using B’s public-key. Under the CBC encryption mode, this will sent
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as:
A → B : [ eB(A⊕ v), eB(m⊕ eB(A⊕ v)) ].

Here ⊕ stands for XOR and v is the initialization vector that A and B have agreed upon. But
then, some other agent I, entitled to open a session with B with initialization vector w, can get
hold of the first block (namely: eB(A⊕v)) as well as the second block of what A sent to B, namely
eB(m, eB(A⊕ v)); (s)he can then send the following as a ‘bona fide message’ to B:

I → B : [ eB(I ⊕ w), eB(m⊕ eB(A⊕ v)) ];
upon which B will send back to I the following:

B → I : [ eI(B ⊕ w), eI( m⊕ eB(A⊕ v)⊕ eB(I ⊕ w)⊕ eI(B ⊕ w) ) ].
It is clear then that the intruder I can get hold of the message m which was intended to remain
secret for him/her.

Example 4.4 The above attack (which exploits the properties of XOR: x⊕x = 0, x⊕ 0 = x) can
be reconstructed by solving a certain BC1-unification problem. We assume that the names A,B, I,
as well as the initialization vector w, are constants. The message m and the initialization vector
v, that A and B have agreed upon, are constants intended to be secret for I. We shall interpret the
function symbol h of BC in terms of encryption with the public key of B: i.e., h(x, y) is eB(x⊕ y).
Due to our CBC-assumption, the ground terms h(A, v), h(m,h(A, v)) both become ‘public’ (i.e.,
accessible to I). We shall agree that a ground constant d stands for the public term h(m,h(A, v)).

The above attack then amounts to saying that the intruder I can send the following term, as a
message to B:

cons( h(I, w), [d] ) = cons( h(I, w), cons( h(m,h(A, v), nil ) );

which will be considered a legitimate message by B (as mentioned earlier).

The possibility for I to construct the attack along this scheme can then be deduced by solving the
following BC1-unification problem:

bc(X, h(I, w)) =? cons( h(m,h(A, v)), nil )

under the condition that terms in the solution are all ‘public’. After transforming into standard
form, we apply rule (L5) (‘Splitting’) and write: X =? cons(z, Y ), where z and Y are fresh
variables. By applying rule (L2) (‘Cancellation on cons’) we deduce Y := nil, but we still have to
show that following problem:

h(z, h(I, w)) =? h(m,h(A, v))

is solvable for z, with public terms; using the properties of XOR we get the solution

z := h( h(m,h(A, v)), h(I, w) ),

i.e., z := h( d, h(I, w) ). The solution thus derived for X is X := [h( d, h(I, w) )]. 2

Remark: It might be of interest to note that the above reasonings do not go through if the names-
tamps form the second block in the messages sent; the protocol could be secure, in such a case, even
under CBC.
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5 Conclusion

We have addressed the unification problem modulo a convergent 2-sorted rewrite system BC, which
can model, in particular, the CBC encryption mode of cryptography, by interpreting suitably the
function h in BC. A procedure has been given for deciding unification modulo BC, which has been
shown to be sound and complete when h is either uninterpreted, or interpreted in such a manner. In
the uninterpreted case, the procedure is a combination of the inference procedure INF l presented
in this paper, with standard unification; in the case where h is interpreted as mentioned above,
our unification procedure is a combination of INF l with any complete procedure for deciding
unification modulo the associative-commutative theory for XOR.

Although we have given an example of attack detection using our unification procedure on a
cryptographic protocol employing CBC encryption, for the formal analysis of cryptographic pro-
tocols, unification needs to generalized as a procedure for solving deduction constraints [13] or,
equivalently, as a cap unification procedure [2]. Building such an extension is part of our projected
future work.
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A Appendix: Proof of Semi-Cancellativity of bc

Lemma A.1 For all terms t1, t2, t3,

bc(t1, t3) ≈BC bc(t2, t3)

if and only if t1 ≈BC t2.

Proof. If t1 ≈BC t3 ≈BC nil, then this equation is trivially true. Similarly, if t1 and t3 equal non-nil
constants, then bc must cancel and t1 ≈BC t3.

Suppose, then, that t1 and t3 are not constants. Then t1 ≈BC cons(u1, t
′
1) and t3 ≈BC cons(u2, t

′
3),

for terms u1, u2, t′1, and t′3. After substituting back into the original equation and applying the
second axiom, we get

cons(h(u1, t2), bc(t′1, h(u1, t2))) ≈BC cons(h(u2, t2), bc(t′3, h(u2, t2)))

Since cons is cancellative, we get two equations

h(u1, t2) ≈BC h(u2, t2), bc(t′1, h(u1, t2)) ≈BC bc(t′3, h(u2, t2))

And since h is semi-cancellative,

u1 ≈BC u2, bc(t′1, h(u1, t2)) ≈BC bc(t′3, h(u1, t2))

Since we can assume there are no cycles in our set of equations, our system is well-founded. There-
fore, by structural induction, bc(t1, t2) ≈BC bc(t3, t2) if and only if t1 ≈BC t3. 2

Lemma A.2 For all terms t1, t2, t3,

bc(t1, t2) ≈BC bc(t1, t3)

if and only if t1 ≈BC nil or t2 ≈BC t3.

Proof. If t1 ≈BC nil, then by the first axiom, we get nil ≈BC nil, which is trivially true. If t1 is
non-nil and equal to a constant, then bc must cancel and t2 ≈BC t3.

If t1 is not equal to a constant, then t1 ≈BC cons(u, t′1), for some terms u and t′1. Substituting
back into the original equation and applying the second axiom,

cons(h(u, t2), bc(t′1, h(u, t2))) ≈BC cons(h(u, t3), bc(t′1, h(u, t3)))

Cancelling on cons gives

h(u, t2) ≈BC h(u, t3), bc(t′1, h(u, t2)) ≈BC bc(W ′, h(u, t3))

And since h is semicancellative,

t2 ≈BC t3, bc(t′1, h(u, t2)) ≈BC bc(t′1, h(u, t2))

Therefore, bc(t1, t2) ≈BC bc(t1, t3) if and only if either t1 ≈BC nil or t2 ≈BC t3. 2
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Lemma A.3 For all terms t1, t2, t3, t4, u1, u2, if

bc(cons(u1, t1), t2) ≈BC bc(cons(u2, t3), t4)

then h(u1, t2) ≈BC h(u2, t4) and t1 ≈BC t3.

Proof. By applying the second axiom, we get

cons(h(u1, t2), bc(t1, h(u1, t2))) ≈BC cons(h(u2, t4), bc(t3, h(u2, t4)))

Cancelling on cons gives

h(u1, t2) ≈BC h(u2, t4), bc(t1, h(u1, t2)) ≈BC bc(t3, h(u2, t4))

Notice that, by Lemma A.1, this implies that t1 ≈BC t3. 2
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