
A Unification Algorithm for Analysis of
Protocols with Blinded Signatures

Deepak Kapur1?, Paliath Narendran2??, and Lida Wang2? ? ?

1 Department of Computer Science, University of New Mexico, Albuquerque, NM
87131 USA, kapur@cs.unm.edu.

2 Department of Computer Science, SUNY at Albany, Albany, NY 12222 USA,
dran@cs.albany.edu, lidawang@cs.albany.edu.

Abstract. Analysis of authentication cryptographic protocols, particu-
larly finding flaws in them and determining a sequence of actions that
an intruder can take to gain access to the information which a given
protocol purports not to reveal, has recently received considerable atten-
tion. One effective way of detecting flaws is to hypothesize an insecure
state and determine whether it is possible to get to that state by a le-
gal sequence of actions permitted by the protocol from some legal initial
state which captures the knowledge of the principals and the assump-
tions made about an intruder’s behavior. Relations among encryption
and decryption functions as well as properties of number theoretic func-
tions used in encryption and decryption can be specified as rewrite rules.
This, for example, is the approach used by the NRL Protocol Analyzer,
which uses narrowing to reason about such properties of cryptographic
and number-theoretic functions.

Following [14], a related approach is proposed here in which equation
solving modulo most of these properties of cryptographic and number-
theoretic functions is done by developing new unification algorithms
for such theories. A new unification algorithm for an equational theory
needed to reason about protocols that use the Diffie-Hellman algorithm
is developed. In this theory, multiplication forms an Abelian group; ex-
ponentiation function distributes over multiplication, and exponents can
commute. This theory is useful for analyzing protocols which use blinded
signatures. It is proved that the unification problem over this equational
theory can be reduced to the unification problem modulo the theory of
Abelian groups with commuting homomorphisms with an additional con-
straint. Baader’s unification algorithm for the theory of Abelian groups
with commuting homomorphisms, which reduces the unification problem
to solving equations over the polynomial ring over the integers with the
commuting homomorphisms serving as indeterminates, is generalized to
give a unification algorithm over the theory of Abelian groups with com-
muting homomorphism with a linear constraint.

It is also shown that the unification problem over a (simple) extension
of the equational theory considered here (which is also an extension of
the equational theory considered in [14]) is undecidable.

? Research supported in part by the NSF grant nos. CCR-0098114 and CDA-9503064,
the ONR grant no. N00014-01-1-0429, and a grant from the Computer Science Re-
search Institute at Sandia National Labs.

?? Research supported in part by NSF grant no. CCR-0098095 and ONR grant no.
N00014-01-1-0430.

? ? ? Research supported in part by NSF grant no. CCR-0098095.



1 Introduction

Search techniques for exploring the vast state space possibly generated
by a given authentication cryptographic protocol have turned out to be
an effective way to determine possible flaws in protocols. A typical state
is the knowledge possessed by each of the principals interested in commu-
nicating among each other in a secure fashion, time clock often needed
for generating nonces and/or timestamps, and most importantly, an in-
truder who can read, alter and delete traffic, send messages of its own,
pretend to be any of the principals and who may have help from the
principals, etc. Actions taken by principals and an intruder(s) lead to
state changes. At the same time, certain relations between various cryp-
tographic functions as well as properties of number theoretic functions
used for public encryption and decryption must be honored by the states.
For instance in a symmetric key system, it is common to introduce a rule
saying that, if a principal knows a message M encrypted with a key K,
and also knows the key K, then it can learn message M . In a public
key based cryptosystem, encryption and decryption can be expressed in
terms of two functions symbols e and d that obey the following identities:
e(Kpu, d(Kpr,M))→M and d(Kpr, e(Kpu,M))→M where Kpu,Kpr
are respectively the public and private keys for a principal.

A technical report by Clark and Jacob [7] is a comprehensive survey
of authentication protocols. That report reviews numerous protocols pro-
posed in the literature; its annotated bibliography also discusses various
attacks on some of these protocols and how they have been fixed. The
report briefly mentions various approaches for establishing correctness
of authentication protocols. An interested reader should consult [7] for
details. Below, we discuss a state-based approach for analyzing possible
attacks on an authentication protocol; see [13, 12] for more details.

A typical scenario for analyzing a protocol is to hypothesize an inse-
cure state in which the protocol is compromised possibly by an intruder
knowing some information that the protocol professes not to reveal, and
to work backwards to determine whether this state is reachable, by a
sequence of actions of the principals and the intruder, from a given le-
gal state. This, for example, is the approach used by the NRL Protocol
Analyzer (NPA) [13], a software tool for cryptographic protocol analysis
implemented in Prolog. NPA exploits the backtracking facility in Pro-
log in combination with equational unification for exploring the state
space. It makes use of narrowing, a general purpose technique for equa-
tion solving, to identify states which are equivalent because of properties



of encryption, decryption functions as well as properties of number the-
oretic functions used in authentication, encryption and decryption. For
instance, most public key based cryptosystems use multiplication, expo-
nentiation, and modulus operations on numbers. Relations are specified
by terminating rewrite rules. In certain cases, NPA is even able to rule
out the reachability of such insecure states.

(Narrowing is a general purpose technique for equation solving with
respect to a given rewrite system; it thus requires that every property be
oriented into a terminating rewrite rule. See [9], for instance.)

Although narrowing works well for certain properties relating encryp-
tion and decryption, unfortunately there are a number of other properties
of cryptographic operations which cannot be handled. Certain relations,
such as associativity and commutativity properties of arithmetic opera-
tions +, ∗, etc, cannot be oriented into terminating rewrite rules. Fur-
thermore, narrowing is a general purpose method, whereas special pur-
pose unification algorithms for certain theories capturing relations among
cryptographic functions could perhaps be more efficient.

An approach for integrating unification algorithms for equational the-
ories axiomatizing properties of cryptosystems including encryption, de-
cryption and primitive number theoretic functions implementing them,
is outlined in a recent paper by Meadows and Narendran [14]. The basic
idea is to use a unification algorithm for an equational theory in place
of narrowing using rewrite rules in the equational theory. A unification
algorithm for an equational theory found useful in analyzing group Diffie-
Hellman protocols was proposed in the paper and the complexity of the
unifiability check for this equational theory was shown to be NP-complete.

This paper builds on [14]. The equational theory under consideration
is assumed to be weaker than the theory considered in [14] with respect
to the properties of the exponentiation function on numbers. in particu-
lar, the axiom xy

z
,= xy·z relating exponentiation with multiplication is

dropped. However, the exponents are assumed to commute, i.e., xy
z

= xz
y

holds1. This theory is useful in cryptographic techniques such as Chaum’s
blinded signature [6], popular in anonymous electronic cash schemes,
which also make direct use of properties such as distributivity of modular
exponentiation over modular multiplication (i.e., (x · y)z = (xz) · (yz)).

It is proved in this paper that the above distributivity axiom cannot
be added to the theory considered in [14] without making the unification
problem on the extended theory undecidable. The undecidability proof

1 It is easy to see that this property follows from the axiom xy
z

= xy·z because of
commutativity of ·.



of the unification problem over the equational theory of Cartesian Closed
Categories (CCC ) considered in [15] can be adapted to be applicable for
this theory.

A decision procedure for the unification problem for the equational
theory of Abelian group for multiplication along with the distributivity
axiom and the exponent commutativity axiom (and the properties of the
unit 1) is also given. In this sense, the theory considered in this paper and
the theory considered in [14] are two proper subsets with decidable unifi-
cation problems of an equational theory with an undecidable unification
problem.

The remainder of this paper is organized as follows. Section 2 is based
on [14], providing a brief review of the Diffie-Hellman and group Diffie-
Hellman algorithms, and discussing axioms relating number-theoretic prop-
erties of multiplication and exponentiation used. It is included for the sake
of completeness; for details, an interested reader may consult [14].

Section 3 shows the undecidability of the equational theory considered
in [14] along with the distributivity axiom of exponentiation over multi-
plication. The proof is essentially based on the undecidability proof given
in [15] where Hilbert’s tenth problem over natural numbers is shown to be
an instance of the unification problem over the equational theory of carte-
sian closed categories. The main difference is that in the case below, it
is possible to simulate negative numbers as well. Consequently, Hilbert’s
tenth problem over the integers is reduced to this unification problem.

Section 4 develops the necessary background to relate the unification
problem over the equational theory of blinded signatures to the unification
problem over the equational theory of Abelian groups with n commut-
ing homomorphisms, called AGnHC by Baader [2], with an additional
condition, called a linear constraint.

Section 5 shows how Baader’s algorithm for the unification problem
over AGnHC can be generalized so as to satisfy a linear constraint (which
is similar to the linear constant restrictions discussed in [1]). A new way of
defining admissible term orderings is introduced, which is used to compute
a Gröbner basis of a polynomial ideal.

Section 6 concludes with some remarks on complexity of the algorithm
and outlines some areas for further research.

2 Protocols based on Diffie-Hellman Algorithm

This section is borrowed from [14] where the motivation for this approach
is outlined.



The Diffie-Hellman algorithm in its most basic form allows two prin-
cipals to securely exchange a secret key without having any shared secret
beforehand. Consider a prime number P and a generator x of the mul-
tiplicative group of ZP . Principal A generates a secret value NA, and B
generates a secret value NB. The protocol then runs as follows:

1. A→ B : xNA mod P
B then computes (xNA)NB .

2. B → A : xNB mod P
A then computes (xNB )NA , which is the same as (xNB )NA , implying
that the shared key is the same among the principals A and B.

In order to secure the above protocol against active eavesdroppers, it
is necessary to include some form of authentication, usually provided by
public-key signatures. Thus an equational theory that could be used to
reason about Diffie-Hellman would need to take into account the relation-
ship between exponentiation and ·, the commutativity of ·, and possibly
identities obeyed by the signature algorithms used.

Interaction between exponentiation and · is captured by the distribu-
tivity axiom: (x · y)z = (xz) · (yz).

2.1 Some Equational Theories for Diffie-Hellman and Group
Diffie-Hellman

Equational theories under consideration consist of the axioms of Abelian
groups (A, C, U and Inv below), denoted by AG, along with (some) ax-
ioms for exponentiation. In contrast to the equational theory considered
in [14], the axiom, (xy)z = xy·z, used in [14] is excluded; instead, ax-
ioms (Exp2, Exp3, Exp4) are used. The relationship between exp and ·
is captured by axiom Exp3.

Consider the following axioms for · and exponentiation (denoted by
xy):

x · (y · z) = (x · y) · z (A)
x · y = y · x (C)
x · 1 = x (U)

x · x−1 = 1 (Inv)
x1 = x (Exp1)
1x = 1 (Exp2)

(x · y)z = (xz) · (yz) (Exp3)
xy

z
= xz

y
(Exp4)

(xy)z = xy·z (Exp5)



The first four axioms characterize Abelian groups; this theory is de-
noted by AG. The remaining axioms are about exponentiation as well as
interactions between exponentiation and · (particularly, axioms (Exp4)
and (Exp5)).

As stated earlier, [14] gave a unification algorithm for the equational
theory consisting of AG and axioms (Exp1, Exp2, Exp5); it was proved
that the unifiability check is NP-complete. It is easy to see that (Exp4)
follows from AG + (Exp5).

It is shown in the next section that the unifiability check for AG and
axioms (Exp1, Exp2, Exp3) and (Exp5) is undecidable. The rest of the
paper focuses on the decidability of the unifiability check for AG plus
axioms {Exp1, Exp2, Exp3, Exp4}.

3 Undecidability of Unifiability Check for the theory of
AG and Exponentiation

Consider the equational theory E consisting of AG and axioms (Exp1,
Exp2, Exp3 and Exp5). This theory has the following convergent rewrite
system modulo associativity and commutativity (also called AC-convergent).

(x−1)−1 → x

1−1 → 1
x · 1→ x

x · x−1 → 1
x · (x−1 · y)→ y

(x · y)−1 → x−1 · y−1

1z → 1
z1 → z

(x−1)y → (xy)−1

(x · y)z → (xz) · (yz)
(xy)z → x(y·z)

It is easy to see that the normal form of a term using the above rewrite
rules is either 1 or of the form t1 · t2 · . . . · tn, where each ti is x, x−1, xei ,
or (xei)−1 for some variable or constant x, where ei is a term in normal



form wrt the above AC-convergent rewrite system that is different from
1. In what follows, a term of the form bi where i is a positive integer,
is an abbreviation of b · b · . . . · b︸ ︷︷ ︸

i

. If i is a negative integer then bi is an

abbreviation of b−1 · b−1 · . . . · b−1︸ ︷︷ ︸
(−i)

. (b0 = 1.)

Lemma 1. Let t1, . . . , tn be terms in normal form modulo the above
AC-convergent system, such that none of the ti’s has · as the outermost
symbol. If s is the normal form of t = t1 · . . . · tn, then s is either 1 or
s can be written as s1 · . . . · sk where {s1, . . . , sk} ⊆ {t1, . . . , tn} (in the
multiset sense).

Proof: If t is already in normal form, then the lemma holds. If for each
i (1 ≤ i ≤ n) ti = 1, then s is 1. Otherwise since ti (1 ≤ i ≤ n) is in
normal form and none of the tis has · as the outermost symbol, the only
possible reduction rules that can apply to t are:

x · 1→ x

x · x−1 → 1
x · (x−1 · y)→ y

Each time any of these these rules is applied, some ti will be gotten rid
of. By induction on the number of reduction steps, we can complete the
proof. 2

Lemma 2. For all i, the E-unification problem

x · ay =? xb · abi

is solvable iff y ← bm for some integer m.

Proof: The “if” part is straightforward. It is clear that for every n ≥ i,
{y ← bn, x← ab

n−1 · abn−2 · · · · · abi+1 · abi} is indeed a solution. We prove
the “only if” part by contradiction. Suppose the claim is not true, i.e.,
there is a solution with a y that is not of the form bj where j is an integer.

Let S = { x | x is in normal form and there are y and i such
that ay · x =E xb · ab

i
, i is an integer, y is not of the

form bj where j is an integer }



Let x be the smallest term in the above set. Since x is in normal
form, it must be that xb.ab

i
.i(ay) reduces to x. Now two cases have to be

considered:

(i) ab
i

is a part (factor) of x, i.e., x =AC(·) a
bi · z for some z. Then

ay · abi · z =E zb · ab
i+1 · abi

Canceling on both sides, we find that z ∈ S and z is smaller than x.

(ii) the normal form of xb contains i(ab
i
). Since x is in normal form, x

must contain i(ab
i−1

), i.e., x =AC(·) i(a
bi−1

).z. Then

ay · i(abi−1
) · z =E zb

Again, z is smaller than x, which is a contradiction.

2

Lemma 3. Let b and c be free constants and j be an integer. Then the
E-unification problem

xc · abj =? xb · au

z · au =? zc · a

is unifiable iff u ← cj. (In other words, xc · abj =? xb · ack is unifiable if
and only if j = k.)

Proof: By Lemma 2, the second equation is unifiable iff u← ck where k
is an integer. Suppose the equation xc · abj =? xb · ack is solvable. Replace
b with c everywhere in the equation. Since b and c are free constants, it
must be that yc · acj =E yc · ac

k
where y is x with b replaced everywhere

with c. Now the cancellation properties can be applied to get the result.
2

Lemma 4. Let b and c be free constants and j and k be integers. Then
E-unification problem

xc
k · abj =? xb · au

z · au =? zc · a

is unifiable iff u← cj∗k.



Proof: By Lemma 2, the second equation is unifiable iff u← cn where n
is an integer. Suppose the equation xc

k ·abj =? xb ·acn is solvable. Replace
b with ck everywhere in the equation. Since b and c are free constants, it
must be that yc

k ·acj∗k =E yc
k ·acn where y is x with b replaced everywhere

with ck. Now the cancellation properties can be applied to get the result.2

Lemma 4 shows that multiplication of two integers can be simulated.
Consider, for instance, the equation z = x ∗ y. If x = bi and y = bj , then
we can force z to be bij in the following way:

(i) Copy x to x′ changing b’s to c’s; i.e., x′ = ci. This can be done using
equations as given in the statement of Lemma 4.

(ii) Multiply x′ and y to get z′ = cij .
(iii) Copy z′ to z changing c’s to b’s.

Thus the equations we get are

w1 · ax
′
=? w1

c · a
w2

c · ax =? w2
b · ax′

w3
x′ · ay =? w3

b · az′

w4 · az
′
=? w4

c · a
w5

c · az =? w5
b · az′

Simulating addition is easy, since if x = bi and y = bj , then (ax)y = ab
i+j

.

Now we are ready to prove the undecidability of the equational theory E
by reduction from Hilbert’s tenth problem:

Theorem 1. The unifiability check for the equational theory E is unde-
cidable.

Proof: Given a system of diophantine equations, we can construct a uni-
fication problem modulo E as outlined above. 2

4 Unification over Equational Theory of Blinded
Signatures

In this section, we consider a proper subset of the above equational theory.
In particular, the axiom (Exp5) is replaced by a weaker axiom (Exp4). Let
E0 consist of AG and axioms (Exp1, Exp2, Exp3, Exp4) denoted by Exp.



The theory E0 r Exp4, denoted by E0’, has the following AC-convergent
rewrite system.

(x−1)−1 → x

1−1 → 1
x · 1→ x

x · x−1 → 1
(x · y)−1 → x−1 · y−1

1z → 1
z1 → z

(x−1)y → (xy)−1

(x · y)z → (xz) · (yz)

Exp4 cannot be oriented into a terminating rewrite rule.
In the next sections, we show that the equational unification prob-

lem for E0 is equivalent to the unification problem modulo the theory of
Abelian groups with n commuting homomorphisms, denoted by AGnHC,
but with an additional constraint. The theory AGnHC is a monoidal the-
ory; further, it is shown in [16, 3] that AGnHC is unitary with respect
to unification without constants and it is also unitary with respect to
unification with constants2. In Section 5 of [2], Baader showed that the
unification problem of AGnHC reduces to solving linear equations over
the polynomial ring Z[h1, . . . , hn], where h1, . . . , hn are the commuting
homomorphisms of AGnHC, treated as indeterminates in the polynomial
ring. We generalize Baader’s algorithm by adding an additional key step
to ensure that a given linear constraint is satisfied by the unifier, so as to
apply it to the equational unification problem for E0. This is discussed in
this section and the next section.

4.1 Unification over E0 as a Combination of Theories

Consider a set S0 of equations whose unifiability needs to be checked wrt
E0. Assuming S0 is unifiable, given any unifier θ of S0, θ may substitute
1 for certain variables in S0; also many variables in S0 may get identical
substitutions. Given that there are only finitely many variables in S0,
2 A theory is unitary if a minimal complete set of unifiers always exists and its cardi-

nality is at most one.



there are only finitely many such partial unifiers for S0 in which some
of the variables in S0 get either 1 or another variable as a substitution.
After applying such a partial unifier on S0, simplifying the result by the
rewrite rules of the associated AC-convergent system, and deleting trivial
equations (i.e., equations which are in the equational theory of E0), we
get a set S1 of equations. If S1 is empty, then the above partial unifier is
a unifier of S0. If S1 is not empty, then the following steps are applied.
We will assume that the equations in S1 have been normalized using the
AC-convergent rewrite system for E ′0 (= E0 − Exp4) discussed above.
Thus, a unifier of S1 cannot substitute for any variable x, a normalized
term t properly containing x (occur-check).

Any unification problem S1 over E0 can be simplified using variable
abstraction (by introducing new symbols) to a simple E0-unification prob-
lem, say S2; this is defined precisely below.

Definition 1. An E0-unification problem S over Σ is called an AG-
unification problem if each equation in S is of the form x =? t, where x is
a variable and t is a term over the signature of AG such that t 6=AG 1.

Definition 2. An E0-unification problem S on Σ is called an exponent
E0-unification problem if every equation in S is of the form x =? yz where
x and y are variables and z is a variable or a free constant. Also if z
is a variable, z is called an exponent variable, otherwise it is called an
exponent constant.

Definition 3. An E0-unification problem S on Σ is called a simple E0-
unification problem if S = S1

⋃
S2 where S1 is an AG-unification problem

and S2 is an exponent E0-unification problem.

Let V ar(S) denote the set of all variables in S.

It is easy to see that using abstraction, any E0-unification problem can be
transformed into a simple E0-unification problem. For example, consider
S1 = {w =? (x(yu·v)−1·zu′·v′ )−1}. Using abstractions, the above equation
in S1 is transformed to S2:

{1. w =? z−1
1 , 2. z1 =? xz2 , 3. z2 =? z−1

3 · z4, 4. z3 =? yz5 ,
5. z5 =? u · v, 6. z4 =? zz6 , 7. z6 =? u′ · v′},

where z1, z2, z3, z4, z5, z6 are new variables introduced to abstract alien
subterms in S1.



4.2 Relating AG+ EXP to AGnHC

Given a simple E0-unification problem S2 on Σ = {·,−1, 1, xy}, for each
equation of the form x = yβ in S2, we transform it into x = hβ(y), where
hβ is a homomorphism corresponding to the symbol β. Let H(S2) de-
note the set of all homomorphisms introduced in this way. Let Σ′ =
{·,−1, 1}

⋃
H(S2), E ′ = AG

⋃
{h1(h2(u)) = h2(h1(u)), h(u1 · u2) =

h(u1) · h(u2)} for all h, h1, h2 ∈ H(S2). We call the transformed E ′-
unification problem on Σ′ as an h-image of S2.

For the above example, its h-image T2 is:

{1. w =? z−1
1 , 2. z1 =? hz2(x), 3. z2 =? z−1

3 · z4, 4. z3 =? hz5(y),
5. z5 =? u · v, 6. z4 =? hz6(z), 7. z6 =? u′ · v′}.

The requirement that a normalized unifier for S2 wrt E0 satisfy the
occur-check for every variable x translates to a related requirement in E ′.
A normalized unifier of the h-image T2 of S2 wrt AGnHC should satisfy
(i) the occur-check for every variable x, and in addition, (ii) the substitu-
tion for x must not properly include hx, the homomorphism introduced
for x when x appears as an exponent.

In order to show the equivalence of the unifiability check over E0 with
the unifiability check over AGnHC, it is necessary to place restrictions on
unifiers considered for E0 given that we have considered a priori equivalent
substitutions for variables as well as 1 as the substitution for variables.
This is done by solving the unifiability problem of T2 wrt AGnHC subject
to linear constraints (including) x � hx for every homomorphism hx ∈
H(S2), i.e., a unifier θ of T2 should satisfy the condition that for every
x ∈ V ar(T2), θ(x) does not contain any occurrence of hx.

Definition 4. Given a simple E0-unification problem S and its h-image
T modulo AGnHC, a linear constraint is a total order � over V ar(T ) ∪
H(S) such that x �C hx for all exponent variables x in S.

Definition 5. A substitution β whose domain is V ar(T ) is said to satisfy
a linear constraint C if and only if the following holds: for every x ∈
V ar(T ), β(x) does not contain any of the function symbols below x in C.
In other words, if x �C hy, then β(x) does not contain any occurrence of
hy.

Definition 6. A unifier θ for a unification problem S is said to be a
discriminating unifier if and only if the following hold for all variables in
V ar(S):



1. θ(u) 6=E 1 for all u.
2. θ(v) =E θ(w) iff v = w.

The following two theorems relate the unification problem S2 over E0

to its h-image T2 over AGnHC.

Theorem 2. If a simple E0-unification problem S2 has a discriminat-
ing unifier, then its h-image T2 which is a E ′-unification problem on Σ′

is unifiable. Furthermore, there is a linear constraint C that the unifier
satisfies.

Proof: Let θ be a discriminating unifier of a simple E0-unification problem
S2. Consider all the exponent equations in S2 :

{ xu1 =? xv1
xw1

...
...

xui =? xvi
xwi

...
...

xuk =? xvk
xwk}

The unifier θ includes {xui ← tui , xvi ← tvi , xwi ← twi(1 ≤ i ≤ k)}.
Thus, tui =E0 tvi

twi (1 ≤ i ≤ k).
For each twi , we introduce a homomorphism htwi . Let H′′(S) denote

the set of homomorphisms introduced for all twi . LetΣ′′ = {·,−1 }
⋃
H′′(S).

Let E ′′ = AG
⋃
{htwi (htwj (u)) = htwj (htwi (u)), htwi (u1 · u2) = htwi (u1) ·

htwi (u2)} for all i (1 ≤ i ≤ k). We also define a recursive function rep as
follows:

rep(a) = a where a is a constant in Σ.
rep(A ·B) = rep(A)·rep(B) where A,B are terms on Σ.
rep(Ax) = hx(rep(A)) where x, A are terms on Σ.

It is easy to see that the function rep removes all occurrences of the
exponent operator from terms over Σ. Since θ is a discriminating unifier
for S2, for each twi , twj (i 6= j), we have twi 6=E0 twj . Also it is easy to show
that s =E0 t if and only if rep(s) =E ′ rep(t) for any terms s, t over Σ.
Therefore we should have:

rep(tui) =E ′′ rep(tvi
twi ) =E ′′ htwi (rep(tvi)) (1 ≤ i ≤ k) ——(1).

Now for each htwi (1 ≤ i ≤ k), we introduce the homomorphism hxwi
which is the same homomorphism we introduced for xwi in the h-image



T2 of S2. We also define function rep′ as:

rep′(a) = a where a is a constant on Σ′.
rep′(A ·B) = rep′(A)·rep′(B) where A,B are terms on Σ′.
rep′(htwi (A)) = hxwi (rep

′(A)) where A is a term on Σ.

Obviously rep′ maps all htwi (1 ≤ i ≤ k) to the corresponding hxwi . So
from (1) and the definition of E ′,

rep′(rep(tui)) =E ′ hxwi (rep
′(rep(tvi))).

That means T2 is solvable and a unifier β for T2 can be constructed as
follows: β(x) ← rep′(rep(θ(x))) for every x ∈ V ar(S).

A linear constraint that β satisfies is constructed by comparing θ(xi)
for variables in V ar(T2) using a simplification AC term ordering that is
total on ground terms (e.g. [11]).3

2

Theorem 3. Given a simple E0-unification problem S2 on Σ and its h-
image T2 which is a E ′-unification problem on Σ′, if T2 has a solution
which satisfies a linear constraint, then S2 is solvable.

Proof: Consider in S2, all exponent equations

{ xu1 =? xv1
xw1

...
...

xui =? xvi
xwi

...
...

xuk =? xvk
xwk }.

The h-image T2 for S2 includes:
3 Given a total AC-simplification ordering on ground terms >, add a new constant,

say ⊥, smaller than every other symbol. Now order the terms in the set

{θ(x1), ..., θ(xn),⊥θ(x1), ...,⊥θ(xn)}

using >. All these terms will be distinct because we are considering a discriminating
unifier. Note also that any term that contains θ(xi) as an exponent is > ⊥θ(xi).
Replacing the θ(xi)’s by the (corresponding) xi and replacing the ⊥θ(xi)’s by the
corresponding hxi , we get a linear chain. Reversing the order gives C.



{ xu1 =? hxw1
(xv1)

...
...

xui =? hxwi (xvi)
...

...
xuk =? hxwk (xvk)}.

Let β be a ground unifier of T2 which satisfies a linear constraint C. From
C, we can get a subconstraint C ′ on variables in V ar(T2). Assume with-
out loss of generality that C ′ = xn � · · · � xi � · · · � x1. Now we will
use induction on C ′ to form θ.

Let us first consider the first variable xn in C ′. Since xn is the first vari-
able, and β(xn) should not contain any item below xn in C, it must be
that β(xn) is composed of constants, and we define θ(xn) = β(xn).

Assume that we have already constructed all θ(xj′) (j ≤ j′ ≤ n). For
variable xj−1, the following cases arise:

1. β(xj−1) is composed of constants. In this case, we define θ(xj−1) =
β(xj−1).

2. β(xj−1) is composed of constants and some hxwi (1 ≤ i ≤ k) where
each hxwi � xj−1. Since xwi � hxwi , we have xwi � hxwi � xj−1. By
the induction hypothesis, we already know all these θ(xwi). Therefore,
we can define θ(xj−1) = repp(β(xj−1)) where the function repp is
defined as:

repp(a) = a where a is a constant on Σ′.
repp(A·B) = repp(A)·repp(B) where A,B are terms on Σ′.
repp(hxwi (A)) = repp(A)θ(xwi ) where A is a term on Σ′.

It can be shown that θ is a solution for S2. Consider each exponent
equation in T2: xui =? hxwi (xvi). Since β(xui) =E ′ hxwi (β(xvi)), we have
θ(xui) =E0 (θ(xvi))

θ(xwi ) by our definition of θ. 2

In the next section, we show how Baader’s algorithm for unifiability
check for AGnHC can be generalized to work with a linear constraint.
This generalization is then used to solve the unifiability check over E ’,
and hence E0.



5 Unification over AGnHC with a Linear Constraint

In [2], Baader showed that the unifiers of a unification problem wrt
AGnHC, where h1, . . . , hk are the commuting homomorphisms, corre-
spond to the solutions of (nonhomogeneous) linear equations over the
polynomial ring Z[h1, ..., hk] with h1, . . . , hk as indeterminates in the poly-
nomial ring. Let NHE =

{p11X1 + · · ·+ p1nXn = p1,
...

...
pm1X1 + · · ·+ pmnXn = pm}

be a set of linear equations where p11, · · · , p1n, · · · , pm1, · · · , pmn, p1, · · · , pm
are in Z[h1, ..., hk].

Baader [2] gave an algorithm for solving such nonhomogeneous linear
equations by first computing a syzygy basis for homogeneous linear equa-
tions over Z[h1, ..., hk] using an algorithm for computing a weak Gröbner
basis of a polynomial ideal and then computing a particular solution.4

Let SB denote a syzygy basis

{(q11, · · · , q1n), . . . , (qw1, · · · , qwn)}

for the set HE of the homogeneous equations

{p11X1 + · · ·+ p1nXn = 0,
...

...
pm1X1 + · · ·+ pmnXn = 0}.

Let π = (q1, . . . , qn) be a particular solution for the above set of non-
homogeneous equations obtained, for instance, using Baader’s algorithm.
From the particular solution, a most general unifier for the unification
problem wrt AGnHC is computed (as stated above, AGnHC is unitary
for unification without as well as with constants [16, 3]). The algorithm
is nontrivial; we will not discuss the details here because of space limita-
tions, but suggest the reader to refer to [2] for details.

Proposition 1. π′ = (q′1, . . . , q
′
n) is equivalent to π with respect to SB

and hence, is also a particular solution iff there exist multipliers b1, · · · , bw
such that qi − q′i = b1q1i + · · ·+ bwqwi for each 1 ≤ i ≤ n.

4 See Baader [2] for a definition of a weak Gröbner basis as well as syzygy basis.



Definition 7. A linear constraint C on an extended alphabet
Σ′ = {Y0, . . . , Yl, a1, . . . , al}, which includes X1, . . . , Xn, h1 . . . , hk, is writ-
ten as:

Yl �C al �C . . . �C a2 �C Y1 �C a1 �C Y0,

where {X1, . . . , Xn} ⊆ {Y0, . . . , Yl} and {h1, . . . , hk} ⊆ {a1, . . . , al}.

In the above, upper case symbols are used for variables, and lower
case symbols are used for constants. Extra symbols are introduced for
technical reasons so that between every two variables, there is a constant
in the ordering.

Definition 8. A solution β for the above set of nonhomogeneous linear
equations satisfies a linear constraint C if and only if for every Y ∈
{Y0, . . . , Yl}, β(Y ) does not contain any of the symbols below Y in C. In
other words, if Y �C aj then β(Y ) does not contain any occurrence of aj.

Note that among variables, Yl is the most constrained, since it cannot
contain any of a1, . . . , al. On the other hand, from the point of view
of constants, a1 is the most constrained since it cannot appear in any
variable other than Y0.

5.1 Solutions Satisfying a Linear Constraint

Our goal is to find, among all particular solutions of the above set NHE of
nonhomogeneous equations, a solution that satisfies the linear constraint
C. In order to search for a particular solution that is equivalent to π and
also satisfies C, an admissible ordering �t on terms (and polynomials)
induced by C is defined in such a way that solutions satisfying C are
minimal in this ordering.

Let τ1, . . . , τn be new indeterminates. Consider the following set MSB
of polynomials in Z[h1, . . . , hk, τ1, . . . , τn], constructed from SB:

{q11τ1 + . . .+ q1nτn, . . . , qw1τ1 + . . .+ qwnτn}.

In addition, we include in MSB, additional polynomials {τiτj | 1 ≤ i, j ≤
n} so that after simplification using these rules, every polynomial under
consideration is linear in the τi’s. Thus we only have to consider terms
of the form hd1

1 . . . hdkk τj , where d1, . . . dk are nonnegative integers. Be-
low we define an admissible ordering �t on such linear terms (in τi’s)
in Z[h1, . . . , hk, τ1, . . . , τn] induced by C. This term ordering �t is then
extended to the simplified polynomials in Z[h1, . . . , hk, τ1, . . . , τn] which
are linear in the τi’s, in the usual way [5, 10].



The ordering �t is used to to construct a strong Gröbner basis GMSB
for the set MSB of polynomials [10]. The polynomial πp = q1τ1 + . . . qnτn
corresponding to the particular solution π is then normalized using the
Gröbner basis GMSB. Since the equivalence relation induced by MSB
preserves solutions ofNHE, the canonical (normal) form of πp wrtGMSB
also corresponds to a particular solution. If this particular solution sat-
isfies C (i.e., all terms are good in the sense defined below), then we get
from the canonical form of πp, a unifier for the unification problem wrt
AGnHC satisfying C. If the canonical form of πp does not satisfy C, then
the unification problem wrt AGnHC does not have a solution satisfying
C, since no polynomial in the equivalence class of πp satisfies C (as ev-
ery polynomial in the equivalence class of πp is bigger than or equal to
the normal form of πp wrt �t whereas a polynomial corresponding to a
solution satisfying C must be smaller wrt �t).

In the following subsection, such an admissible ordering �t induced
by a linear constraint C is defined on terms in Z[h1, . . . , hk, τ1, . . . , τn]
which are linear in the τi’s (i.e., whose degree in {τ1, . . . , τn} is 1).

5.2 A New Way of Defining an Admissible Ordering on Terms

It is well-known that to construct a Gröbner basis of a polynomial ideal,
a total admissible term ordering is needed. An admissible ordering must
satisfy two properties:

1. For any term t 6= 1, t �t 1, and
2. for any terms s, t, u, if s �t t, then u s �t u t.

Two commonly used admissible orderings in the Gröbner basis literature
are the total degree ordering and the pure lexicographic ordering induced
by a total ordering on indeterminates. Below we define an admissible
ordering in a radically different way.

Consider any two terms s, t in Z[h1, . . . , hk, τ1, . . . , τn] which are linear
in {τ1, . . . , τn}. Define s �t t iff nf(s) >′ nf(t), where the function nf
stands for the normal form with respect to the reduction rules defined
below in order to capture the linear constraint C. After defining nf and
>′, we show that �t is admissible.

The term nf(s) of a term s is over the extended alphabet Σ1 =
{a1, ..., al, v1..., vl, a

′
1, ..., a

′
l, t0, t1, ..., tl}, where a′i is a copy of ai distin-

guishing it from ai, vj ’s are introduced to represent badness in a term
(there is one for every aj), and tj ’s are introduced to stand for Yj ’s. Recall
that {h1, . . . , hk} ⊆ {a1, . . . , al} and {X1, . . . , Xn} ⊆ {Y0, . . . , Yl}; thus,



corresponding to every Xi, there is a Yj = Xi; similarly, corresponding to
each τi, there is a tj = τi, i.e., {τ1, . . . , τn} ⊆ {t0, . . . , tl}.

Below, legal term, good term, and bad term are defined on Σ1 based
on whether the term satisfies the linear constraint C.

Definition 9. A term s = a1
d1a2

d2 ...al
dlτi is called a legal term (only

such terms appear in the polynomials in the basis MSB and in the com-
putation of a Gröbner basis from MSB because of rules τiτj → 0).

A legal term s = a1
d1a2

d2 ...al
dlτi is called a good term if for each 1 ≤ j ≤

l, aj �C Xi in C, i.e., s satisfies the linear constraint C with respect to Xi.

A legal term s = a1
d1a2

d2 ...al
dlτi is called a bad term if there exists a

1 ≤ j ≤ l such that it is not the case that aj �C Xi in C, i.e., s does not
satisfy the linear constraint C with respect to Xi.
(A legal term that is not good, is bad.)

To capture the restrictions imposed by the linear constraint C on terms,
we define the reduction rules on legal terms as:

ai tj → ai
′ tj if ai �C Yj .

ai tj → ai
′ vitj if ai 6�C Yj .

So the normal form of a legal term a1
d1a2

d2 ...al
dlτi with respect to the

above rules is either

(i) (a1
′)d1(a2

′)d2 ...(al′)
dlτi, or

(ii) (a1
′)d1(a2

′)d2 ...(al′)
dlvj1

dj1 ...vju
dju ...vjk

djk τi,

where for each 1 ≤ u ≤ k, it is not the case that aju �C Yi.

Let nf(t) denote the normal form of a term t by the above rules.

To compare the normal forms of s and t using the above reduction rules,
we define the following lexicographic ordering >′ on symbols in Σ1:

a1 >
′ . . . >′ al >

′ v1 >
′ . . . >′ vl >

′ tl >
′ . . . >′ t1

>′ t0 >
′ a′1 >

′ . . . >′ a′l

This ordering is extended in a natural way to terms over Σ1.
By the above reduction rules, the normal form of a bad term is greater

than the normal form of a good term because only the normal form of a
bad term has some vj ’s which are greater than all a′i’s and ti’s.

Below, we sketch a proof that the ordering �t on legal terms in
Z[h1, · · · , hl, t1, . . . , tn], defined as



s �t t iff nf(s) >′ nf(t)

is admissible.
For any s 6= 1, it is easy to see that s �t 1.
The following lemma ensures that if s �t t, then for any u, u s �t u t,

by proving that nf(s) >′ nf(t) iff nf(u s) >′ nf(u t).

Lemma 5. Let Σ1, >′, and nf be as defined above. Then nf(s) >′ nf(t)
iff nf(us) >′ nf(ut) for all legal terms s, t, us and ut.

To keep the main body of the report self-contained, a proof sketch of the
lemma is given below. For the complete proof, the reader may consult the
appendix.
Proof-sketch: (i) If nf(s) >′ nf(t) then nf(u s) >′ nf(u t): To prove
this, it is enough to prove that for any symbol ap in Σ1, nf(ap s) >′

nf(ap t) if nf(s) >′ nf(t).
The key idea is this: since nf(s) >′ nf(t), multiplying by ap on

both sides could contribute either a′p or a′p vp to the normal forms. The
only hard case is when nf(s) contains ti and nf(t) contains tj such that
Yj �C Yi (i.e., Yj is ‘more constrained’ than Yi) and in addition, ap �C Yi
and ap 6�C Yj . Multiplying both sides by ap will contribute a′p to nf(ap s)
and a′p vp to nf(ap t). But since nf(s) >′ nf(t) there must be some aq in
s such that aq 6�C Yi and the power of aq in s is larger than the power of
aq in t. Thus nf(s) includes vq whose power in s is larger than its power
in nf(t). But since ap �C Yi, vq >′ vp. Thus nf(ap s) >′ nf(ap t) (since
the presence of vq will “lexicographically nullify” the effect of including
vp).

(ii) If nf(u s) >′ nf(u t), then nf(s) >′ nf(t): This part is easier and
similar. (Observe that >′ is a total ordering on terms.) 2

6 Conclusion

We have presented a unification algorithm for analyzing cryptographic
protocols using modular exponentiation and multiplication. This algo-
rithm along with a related algorithm in [14] addresses theories, similar
to theories arising in many cryptographic protocols including the RSA
cryptosystem [18], one of the most popular public-key cryptosystems.

While the check for unifiability over the theory discussed in [14] is NP-
complete, the check for unifiability for the theory discussed in this paper
is likely to be worse; it can be easily shown to be EXPSPACE-hard. Uni-
fication algorithms for these theories are exponential in complexity (the



algorithm in this paper is double-exponential given that the Gröbner basis
algorithm used for solving syzygies is doubly-exponential). An interesting
challenge is thus to identify special cases arising in cryptographic protocol
analysis for which these unification algorithms are more efficient. As ob-
served in [14], Pereira and Quisquater’s algorithm [17] for analyzing the
cliques protocol is not precisely a unification algorithm but it appears to
be closely related, and it is possible that their approach could be applied
to developing an efficient unification algorithm. Pereira and Quisquater
were able to discover several security problems by solving a set of linear
equations.

Also, it still remains to be seen in practice whether the integration of
these unification algorithms into a software tool such as NRL Protocol
Analyzer works more effectively than an approach based on narrowing
implemented in it. (In the presence of associativity and commutativity
(AC) properties of certain operations, it is unclear how simple narrowing
is helpful unless an AC-unification algorithm is integrated into narrow-
ing.)

As observed in [14], it will be necessary not only to develop algorithms
for particular theories relevant to cryptographic protocol analysis, but to
be able to combine them at will. Most protocols make use of several
different forms of encryption, depending on the needs of the application.

References

1. F. Baader and K.U. Schultz. Unification in the Union of Disjoint Equational
Theories: Combining Decision Procedures. Proc. 11th Conference on Automated
Deduction (CADE-11), Saratoga Springs, NY, Springer LNAI 607, 1992, 50–65.

2. F. Baader. Unification in Commutative Theories, Hilbert’s Basis Theorem, and
Gröbner Bases. J. ACM, 40 (3), 1993, 477–503.

3. F. Baader and W. Nutt. Adding Homomorphisms to Commutative/Monoidal The-
ories, or: How Algebra Can Help in Equational Unification. Proc. 4th Interna-
tional Conference on Rewriting Techniques and Applications, RTA 91, Springer
LNCS 488, 1991, 124–135.

4. F. Baader and W. Snyder. Unification Theory. In: J.A. Robinson and A. Voronkov,
editors, Handbook of Automated Reasoning. Elsevier Science Publishers, 2001.

5. B. Buchberger. Gröbner Bases: An Algorithmic Method in Polynomial Ideal The-
ory. In Multidimensional Systems Theory (N.K. Bose, ed.), Reichel, Dordrecht,
1985, 184–229.

6. D. Chaum. Security without Identification: Transaction Systems to Make Big
Brother Obsolete. CACM 28 (10), 1985, 1030–1044.

7. J. Clark and J. Jacob. A Survey of Authentication Protocol Liter-
ature: Version 1.0. Unpublished Technical Report, Department of Com-
puter Science, University of York, UK, Nov. 1997. Available at the URL:
www-users.cs.york.ac.uk/~jac/papers/drareviewps.ps



8. M. Davis. Computability and Unsolvability. Dover Publications, 1982.
9. J.-M. Hullot. Canonical forms and unification. In Proc. of the 5th conference on

Automated Deduction (CADE-5), Lecture Notes in Computer Science 87, 318–334.
10. A. Kandri-Rody and D. Kapur. Computing the Gröbner Basis of a Polynomial

Ideal over Integers. Proc. Third MACSYMA Users’ Conference, Schenectady, NY,
July 1984, 436–451.

11. D. Kapur and G. Sivakumar. A Total, Ground Path Ordering for Proving Termi-
nation of AC-Rewrite Systems. Proc. Rewriting Techniques and Applications, 8th
International Conference, RTA-97, Sitges, Spain (ed. Comon, H.), Springer LNCS
1231, June 1997, 142-156.

12. C. Meadows. Formal Verification of Cryptographic Protocols: A Survey. Proc.
AsiaCrypt 96, 1996.

13. C. Meadows. The NRL Protocol Analyzer: An Overview. J. Logic Programming,
26(2), 1996, 113–131.

14. C. Meadows and P. Narendran. A Unification Algorithm for the Group Diffie-
Hellman Protocol. Presented at the Workshop on Issues in the Theory of Security
(WITS 2002), Portland, Oregon, Jan 2002.

15. P. Narendran, F. Pfenning, and R. Statman. On the Unification Problem for
Cartesian Closed Categories. Journal of Symbolic Logic, 62 (2), June 97, 636–647.

16. W. Nutt. Unification in Monoidal Theories. Proc. 10th International Conference
on Automated Deduction (CADE-10), Kaiserslautern, West Germany, Springer
LNCS 449, July 1990.

17. O. Pereira and J.-J. Quisquater. A Security Analysis of the Cliques Protocols
Suites. Proc. 14th IEEE Computer Security Foundations Workshop, June 2001,
73–81.

18. R.L. Rivest, A. Shamir, and L. Adleman. A Method for Obtaining Digital Signa-
tures and Public Key Cryptosystems. CACM, 21 (2), 1978, 120–126.



Appendix

Lemma 5: Let the alphabet order on

Σ = {a1, . . . , al, v1, . . . , vl, a
′
1, . . . , a

′
l, t1, . . . , tl}

be a1 > . . . > al > v1 > v2 > . . . > vl > tl > . . . > t1 > a′1 > . . . > a′l. Let
� be the pure lexicographic order on terms over Σ. Then nf(s) � nf(t)
iff nf(ms) � nf(mt) for all legal terms s, t, ms and mt on Σ.

Proof: We first prove that if nf(s) � nf(t) then nf(ms) � nf(mt) To
prove this, it is enough to prove that for any legal term s, t, character ap
on Σ, nf(aps) � nf(apt) if nf(s) � nf(t).

Without loss of generality, we assume that s and t are in the format
of ai1 ...air ...aiktx (1 ≤ x ≤ n, ir < ir+1 (1 ≤ r < k)). Also we as-
sume the normal forms of s and t are in the format of a′i1 ...a

′
ir
...a′iktx or

a′i1 ...a
′
ir
...a′ikvz1 ...vzr ...vzq tx (1 ≤ x ≤ n, ir ≤ ir+1, zr ≤ zr+1 (1 ≤ r < k)).

Now we want to prove that nf(aps) � nf(apt) if nf(s) � nf(t). Since it is
impossible that the normal form of a good term is pure lexicographically
greater than the normal form of a bad term, we only need to consider the
following three possibilities for s and t:

1. Both s and t are good terms. Since nf(s) � nf(t), we will get the
following reductions:

s t
‖ ‖

ai1 ...aiktx aj1 ...ajlty

+↓ ↓+

a′i1 ...a
′
ik
tx � a′j1 ...a

′
jl
ty

Since a′i1 ...a
′
ik
tx � a′j1 ...a

′
jl
ty, it must be that x ≥ y. After adding ap to

s and t, we would have the following three cases: (Note: since x ≥ y,
so it is not possible that p > x and p ≤ y. In other words, the case of
aps being a good term but apt being a bad them is impossible).
(a) p > x and p > y, so both aps and apt are still good terms. The

reductions would be:



aps apt
‖ ‖

apai1 ...aiktx apaj1 ...ajlty

+↓ ↓+

a′pa
′
i1
...a′iktx � a

′
pa
′
j1
...a′jlty

Clearly nf(aps) � nf(apt).

(b) p ≤ x and p > y, so aps is a bad term but apt is a good term, the
reductions would be:

aps apt
‖ ‖

apai1 ...aiktx apaj1 ...ajlty

+↓ ↓+

a′pa
′
i1
...a′ikvptx � a

′
pa
′
j1
...a′jlty

nf(aps) � nf(apt).

(c) p ≤ x and p ≤ y, so both aps and apt are bad terms. The reductions
would be:

aps apt
‖ ‖

apai1 ...aiktx apaj1 ...ajlty

+↓ ↓+

a′pa
′
i1
...a′ikvptx � a

′
pa
′
j1
...a′jlvpty

nf(aps) � nf(apt).

2. s is a bad term and t is a good term. In this case, since nf(s) � nf(t)
the reductions would be:

s t
‖ ‖

ai1 ...aiktx aj1 ...ajlty

+↓ ↓+

a′i1 ...a
′
ik
vz1 ...vzr ...vzq tx � a′j1 ...a

′
jl
ty

(for each r (1 ≤ r ≤ q), there exists a u (1 ≤ u ≤ k) so that iu ≤ x
and zr = iu.)

After adding ap to s and t, we will have the following cases:



(a) p > y. So apt is still a good term, and we will have the following
possibilities:

i. p > x. The reductions would be:

aps apt
‖ ‖

apai1 ...aiktx apaj1 ...ajlty

+↓ ↓+

a′pa
′
i1
...a′ikvz1 ...vzr ...vzq tx � a

′
pa
′
j1
...a′jlty

(for each r (1 ≤ r ≤ q), there exists a u (1 ≤ u ≤ k) so that
iu ≤ x and zr = iu.)

nf(aps) � nf(apt).

ii. p ≤ x. The reductions would be:
aps apt
‖ ‖

apai1 ...aiktx apaj1 ...ajlty

+↓ ↓+

a′pa
′
i1
...a′ikvz1 ...vzr ...vzqvptx � a

′
pa
′
j1
...a′jlty

(for each r(1 ≤ r ≤ q), there exists a u(1 ≤ u ≤ k) so that
iu ≤ m and zr = iu.)

Thus nf(aps) � nf(apt).

(b) p ≤ y. So apt is a bad term, and we have the following possibilities:

i. p > x, so aptx is a good term. The reductions would be:
aps apt
‖ ‖

apai1 ...aiktx apaj1 ...ajlty

+↓ ↓+

a′pa
′
i1
...a′ikvz1 ...vzr ...vzq tx � a

′
pa
′
j1
...a′jlvpty

(for each r (1 ≤ r ≤ q), there exists a u (1 ≤ u ≤ k) so that
iu ≤ x and zr = iu.)

The reason a′pa
′
i1
...a′ikvz1 ...vzr ...vzq tx � a′pa

′
j1
...a′jlvpty is that

since p > x and for each r (1 ≤ r ≤ q), zr ≤ x, so zr < p,



resulting vzr > vp according to our alphabet order on Σ. So
nf(aps) � nf(apt).

ii. p ≤ x, the reductions would be:
aps apt
‖ ‖

apai1 ...aiktx apaj1 ...ajlty

+↓ ↓+

a′pa
′
i1
...a′ikvz1 ...vzr ...vzqvptx � a

′
pa
′
j1
...a′jlvpty

(for each r (1 ≤ r ≤ q), there exists a u (1 ≤ u ≤ k) so that
iu ≤ m and zr = iu.)

Thus nf(aps) � nf(apt).

3. Both s and t are bad terms. Since nf(s) � nf(t), the reductions would
be:

s t
‖ ‖

ai1 ...aiktx aj1 ...ajlty

+↓ ↓+

a′i1 ...a
′
ik
vz1 ...vzr ...vzq tx � a′j1 ...a

′
jl
vw1 ...vwr ...vwg ty

(for each r (1 ≤ r ≤ q), there exists a u (1 ≤ u ≤ k) so that iu ≤ x
and zr = iu, ju ≤ y and ju = wr.)

After adding ap to s and t, we have the following sub-cases:
(a) p > x and p > y. The reductions would be:

aps apt
‖ ‖

apai1 ...aiktx apaj1 ...ajlty

+↓ ↓+

a′pa
′
i1
...a′ikvz1 ...vzr ...vzq tx � a

′
pa
′
j1
...a′jlvw1 ...vwr ...vwg ty

(for each r (1 ≤ r ≤ q), there exists a u (1 ≤ u ≤ k) so that iu ≤ x
and zr = iu, ju ≤ n and ju = wr.)

nf(aps) � nf(apt).

(b) p > x and p ≤ y. The reductions would be:



aps apt
‖ ‖

apai1 ...aiktx apaj1 ...ajlty

+↓ ↓+

a′pa
′
i1
...a′ikvz1 ...vzr ...vzq tx � a

′
pa
′
j1
...a′jlvw1 ...vwr ...vwgvpty

(for each r (1 ≤ r ≤ q), there exists a u (1 ≤ u ≤ k) so that iu ≤ x
and zr = iu, ju ≤ y and ju = wr.)

The reason a′pa
′
i1
...a′ikvz1 ...vzr ...vzq tx � a

′
pa
′
j1
...a′jlvw1 ...vwr ...vwgvpty

is that since a′i1 ...a
′
ik

vz1 ...vzr ...vzq tx � a′j1 ...a
′
jl
vw1 ...vwr ...vwg ty and y > x, so there must

exists a r (1 ≤ r ≤ q) so that zr < wr and za = wa for all
a (1 ≤ a < r), also since p > x, zr ≤ x, so zr < p, resulting
vzr > vp, a′pa

′
i1
...a′ikvz1 ...vzr ...vzq tx � a′pa

′
j1
...a′jlvw1 ...vwr ...vwgvpty.

nf(aps) � nf(apt).

(c) p ≤ m and p > n. The reductions would be:
aps apt
‖ ‖

apai1 ...aiktx apaj1 ...ajlty

+↓ ↓+

a′pa
′
i1
...a′ikvz1 ...vzr ...vzqvptx � a

′
pa
′
j1
...a′jlvw1 ...vwr ...vwg ty

(for each r (1 ≤ r ≤ q), there exists a u (1 ≤ u ≤ k) so that iu ≤ x
and zr = iu, ju ≤ y and ju = wr.)

nf(aps) � nf(apt).

(d) p ≤ x and p ≤ y. The reductions would be:
aps apt
‖ ‖

apai1 ...aiktx apaj1 ...ajlty

+↓ ↓+

a′pa
′
i1
...a′ikvz1 ...vzr ...vzqvptx � a

′
pa
′
j1
...a′jlvw1 ...vwr ...vwgvpty

(for each r (1 ≤ r ≤ q), there exists a u (1 ≤ u ≤ k) so that
iu ≤ m and zr = iu, ju ≤ n and ju = wr.)

nf(aps) � nf(apt).



In the same way, we can prove that if the normal form of ms �
the normal form of mt then the normal form of s � the normal form of t.
(omitted.)


