The homework should be submitted using the `turnin` program before midnight on Feb 26. Late homeworks will not be accepted.

Remember that collaboration of any kind is not allowed.

1. Define a SCHEME function `repetitions` that accepts a list of integers \(L \) and an integer \(k \), and returns the number of occurrences of \(k \) in \(L \).
 For instance,

 \[
 \text{(repetitions '(1 2 3 2 3) 2)} \Rightarrow 2
 \]

 \[
 \text{(repetitions '(1 2 3 4) 5)} \Rightarrow 0
 \]

 Note: Use `equal?` to test for equality.

2. Define a SCHEME function `binaryrep` that accepts an integer \(n \) and returns a list of 0s and 1s corresponding to the binary representation of its absolute value. Leading 0s must be removed. For instance, \(\text{(binaryrep 4)} \) must return \((1 0 0) \) and not \((0 1 0 0) \).

 \[
 \text{(binaryrep 20)} \Rightarrow (1 0 1 0 0)
 \]

 \[
 \text{(binaryrep -13)} \Rightarrow (1 1 0 1)
 \]