Axiomatic semantics

- used to prove the correctness of programs
- state-based analysis
 \[\text{state} = \text{mappings from variables to values}\]
 same as environment
- statements in the program viewed as state transitions
- logical formulae (‘assertions’) to represent sets of states
 \[x == 1\] represents all states in which the value of \(x\) is 1
Triples

\(\{P\} \mathcal{S} \{Q\}\)

- \(P\) and \(Q\) are logical formulae (assertions)

 \(P\) is the \textit{precondition}

 \(Q\) is the \textit{postcondition}

- “if the statement \(S\) is executed in any state satisfying \(P\), and \(S\) \underline{successfully terminates}, then the resulting state satisfies \(Q\)”

 \textit{partial correctness}
Examples of valid triples

$$\{x == 10\} \ x = x - 3 \ \{x == 7\}$$

$$\{x > 10\} \ x = x - 3 \ \{x > 7\}$$

$$\{x > 10\} \ x = x - 3 \ \{x > 2\}$$

$$\{x > 10 \land y == 2\} \ x = x - 3 \ \{x > 7\}$$

$$\{x > 10\}$$
while (x > 1) \{x = x + 1;\}
$$\{x == 0\}$$
Examples of invalid triples

\[
\{x == 10\} \ x = x - 3 \ \{x == 8\}
\]

\[
\{x > 10\} \ x = x - 3 \ \{x > 10\}
\]

\[
\{x > 10\} \ x = x - 3 \ \{y > 2\}
\]
Axioms, Inference rules

Axioms: Assertions whose truth is taken at face value

Inference Rules:

\[E_1, \ldots, E_n \]
\[\overline{E} \]

“If \(E_1, \ldots, E_n \) are theorems, then so is \(E \)”

Example: Modus ponens in logic

\[P, \ P \Rightarrow Q \]
\[\overline{Q} \]
Implication

\[P \Rightarrow Q \quad \text{if } P \text{ then } Q \]
\[P \text{ only if } Q \]

<table>
<thead>
<tr>
<th>(P)</th>
<th>(Q)</th>
<th>(P \Rightarrow Q)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

logically equivalent to

\[\neg P \lor Q \]
Precondition strengthening

\[
P_1 \Rightarrow P, \quad \{P\} S \{Q\} \quad \{P_1\} S \{Q\}
\]

\[
\{x > 10\} \; x = x - 3 \; \{x > 7\} \quad \text{is valid}
\]

So is

\[
\{x > 11\} \; x = x - 3 \; \{x > 7\}
\]

since \((x > 11) \Rightarrow (x > 10)\)

\[
\{\text{false}\} S \{Q\} \text{ is valid for every statement } S \\
\text{and assertion } Q
\]
Postcondition weakening

\[
\{P\} \mathcal{S} \{Q\}, \quad Q \Rightarrow Q_1
\]

\[
\{P\} \mathcal{S} \{Q_1\}
\]

\[
\{x > 10\} \ x = x - 3 \ \{x > 7\} \quad \text{is valid}
\]

So is

\[
\{x > 10\} \ x = x - 3 \ \{x > 6\}
\]

since \((x > 7) \Rightarrow (x > 6)\)

\[
\{P\} \mathcal{S} \{\text{true}\} \text{ is valid for every statement } \mathcal{S}
\]

and assertion \(P\)
If-then-else

\[
\begin{align*}
\{ P \land C \} & \quad S_1 \quad \{ Q \}, \\
\{ P \land \neg C \} & \quad S_2 \quad \{ Q \} \\
\{ P \} & \quad \text{if } C \quad \{ S_1 \} \quad \text{else } \quad \{ S_2 \} \quad \{ Q \}
\end{align*}
\]

\[
\{ x > y \} \\
\text{if } (x == 6) \quad \{ x = x - 1; \} \quad \text{else } \quad \{ y = y + 1; \}
\]

\[
\{ x \geq y \}
\]
If-then

\[
\{ P \land C \} \subseteq \{ Q \}, \quad (P \land \neg C) \Rightarrow Q
\]

\[
\{ P \} \text{ if } C \{ S \} \{ Q \}
\]

\{ x > 5 \}

if \ (x == 6) \ then \ \{ x = x - 1 \}

\{ x > 4 \}
Sequencing

\[
\begin{align*}
\{P\} S_1 \{Q\}, & \quad \{Q\} S_2 \{R\} \\
\{P\} & S_1; S_2 \{R\}
\end{align*}
\]

\[\{x > y\} \ x = x - 1; \ y = y - 1 \ \{x > y\}\]

is valid because

\[\{x > y\} \ x = x - 1 \ \{x \geq y\}\]

and

\[\{x \geq y\} \ y = y - 1 \ \{x > y\}\]

are valid triples
Assignment

\[\{Q[E/x]\} \ x = E \ \{Q\} \]

\(Q[E/x]\) represents the result of replacing (simultaneously) all occurrences of \(x\) in \(Q\) by \(E\)

\[\{x - 1 \geq y\} \ x = x - 1 \ \{x \geq y\}\]

\[\{(y + 1)^2 \geq 10\} \ x = y + 1 \ \{x^2 \geq 10\}\]
While statements

\[
\begin{align*}
\{I \land C\} & \mathcal{S} \{I\} \\
\{I\} & \text{ while } (C) \{S\} \{I \land \neg C\}
\end{align*}
\]

I is called the loop invariant.
Strongest loop invariant

true is always a loop invariant (why?)

Consider the (valid) triple

\[
\{(x == 50) \land (y == 0)\}
\]

\[
\text{while } (x > 0) \{ x = x - 1; y = y + 2; \}
\]

\[
\{(x == 0) \land (y == 100)\}
\]

\(x \geq 0\) is a loop invariant, since

\[
\{x > 0\} \ x = x - 1; \ y = y + 2 \ \{x \geq 0\}
\]

is valid. But this is not good enough for a proof.

The required invariant \(I\) is

\[
(x \geq 0) \land (2x + y == 100)
\]
Example continued

\{(x > 0) \land (2x + y \equiv 100)\}
\quad x = x - 1;
\{(x \geq 0) \land (2x + y + 2 \equiv 100)\}
\quad y = y + 2;
\{(x \geq 0) \land (2x + y \equiv 100)\}

There are two triples here, both of which are valid.

\[I \land \neg C\]
\[\equiv (x \geq 0) \land (2x + y \equiv 100) \land \neg (x > 0)\]
\[\equiv (x \equiv 0) \land (2x + y \equiv 100)\]
\[\equiv (x \equiv 0) \land (y \equiv 100)\]
Example continued

The precondition

\((x == 50) \land (y == 0)\)

clearly implies the invariant

\((x \geq 0) \land (2x + y == 100)\)

This proves the validity of the triple.

\((2x + y == 100)\) by itself is also an invariant, but this is not strong enough.

\(\neg(x > 0)\) does not imply \((x == 0)\)
Example: Multiplication

\{U \geq 0\}

// U and V are input values
x = U;

y = 0;

while (x > 0)
 \{x = x - 1;
 y = y + V;

};

\{y == UV\}
Example: Multiplication

\{U \geq 0\}

// U and V are input values
x = U;

y = 0;

while (x > 0)
\{x = x - 1;
\}
\{x \geq 0, xV + y == UV\};
\{y == UV\}
Complete Annotation

\{U \geq 0\}

\text{x = U;}

\{x == U, \ x \geq 0\}

\text{y = 0;}

\{x == U, \ x \geq 0, \ y == 0\}

\text{while (x > 0)}

\{x = x - 1;}

\{x \geq 0, \ xV + y + V == UV\}

\text{y = y + V;}

\{x \geq 0, \ xV + y == UV\};

\{y == UV\}
Proving the loop correct

We have to prove that

\[\{ I \land C \} \text{ loop-body } \{ I \} \]

is valid.

\[\{ x \geq 0, xV + y == UV, x > 0 \} \]

\[x = x - 1; \]

\[\{ x \geq 0, xV + y + V == UV \} \]

\[y = y + V; \]

\[\{ x \geq 0, xV + y == UV \}; \]
Once we have proved

$$\{I\} \text{ while } (C) \{S\} \{I \land \neg C\}$$

we have to prove

$$I \land \neg C \Rightarrow (y == UV)$$

That is,

$$(x \geq 0 \land (xV + y == UV) \land \neg(x > 0))$$

$$\Rightarrow (y == UV)$$
Verification conditions

Lemmas to be proved to verify a completely annotated program

<table>
<thead>
<tr>
<th>Triple</th>
<th>VC</th>
</tr>
</thead>
<tbody>
<tr>
<td>({P} \mathsf{x} = \mathsf{E}{Q})</td>
<td>(P \Rightarrow Q[E/x])</td>
</tr>
<tr>
<td>({P} \text{ if } C {S_1} \text{ else } {S_2} {Q})</td>
<td>VCs for ({P \land C} \mathsf{S_1} {Q}) and ({P \land \lnot C} \mathsf{S_2} {Q})</td>
</tr>
<tr>
<td>({P} \text{ if } C {S} {Q})</td>
<td>VCs for ({P \land C} \mathsf{S} {Q}) and ((P \land \lnot C) \Rightarrow Q)</td>
</tr>
<tr>
<td>Triple</td>
<td>VC</td>
</tr>
<tr>
<td>--------</td>
<td>----</td>
</tr>
<tr>
<td>{P} S_1 {Q} S_2 {R}</td>
<td>VCs for {P} S_1 {Q} and {Q} S_2 {R}</td>
</tr>
</tbody>
</table>
| \{P\} while (C) \{S\} [I] \{Q\} | \(P \Rightarrow I\)
 \(I \land \neg C \Rightarrow Q\)
 VCs for \{I \land C\} S \{I\} |
Weakest Liberal Preconditions

{…} $\subseteq \{Q\}$

Think of Q as a set of states

$\text{wlp}(S, Q) = \{\sigma \mid \text{if we execute } S \text{ in state } \sigma \text{ and the computation terminates, then the resulting state is in } Q\}$
Weakest Liberal Preconditions

\[wlp(x = E, Q) = Q[E/x] \]

\[wlp(\text{if } C \text{ then } R \text{ else } S, Q) = (C \land wlp(R, Q)) \lor (\neg C \land wlp(S, Q)) \]

\[wlp(\text{if } C \text{ then } R, Q) = (C \land wlp(R, Q)) \lor (\neg C \land Q) \]

\[wlp(S_1; S_2, Q) = wlp(S_1, wlp(S_2, Q)) \]

If \(S\) is a loop-free (compound) statement, then the VC for

\[\{P\} S \{Q\} \]

is

\[P \Rightarrow wlp(S, Q) \]
\{ U \geq 0 \} \quad (U \text{ is the input})

\begin{align*}
i &= 1; \\
S &= 0; \\
\text{while (} i \leq U \text{)} \\
&\quad \{ S = S + 2*i - 1; \\
&\quad \quad i = i + 1; \\
&\quad \} \quad \{ i \leq U + 1, S == (i - 1)^2 \}; \\
\{ S == U^2 \} \\
\end{align*}
\(\{ U \geq 0 \} \quad (U \text{ is the input}) \)

\[
\begin{align*}
 x &= U; \\
 S &= 0; \\
 \text{while } (x \geq 1) & \\
 \quad \{ S = S + 2*x - 1; \} \\
 \quad \quad x = x - 1; \\
 \}\end{align*}
\]

\(\{ S == U^2 \} \)
\{U \geq 0\} \quad (U \text{ is the input})

\[
x = U;
S = 0;
\text{while (x} \geq 1) \quad \{S = S + 2*x - 1; \quad x = x - 1;
\}
\{x \geq 0, \ x^2 + S \quad == \quad U^2\}
\]

\{S \quad == \quad U^2\}