1. State whether the following quantified formulae are true over the natural numbers $\mathbb{N} = \{1, 2, \cdots\}$:

 (i) $\forall x \exists y \exists z \left[x + 1 = y^2 + z^2 \right]$

 (ii) $\forall x \forall y \exists z \left[(x > y) \rightarrow (x^3 < y^3 + z^3) \right]$

 (iii) $\forall u \forall v \exists w \exists x \left[ux < vw \right]$

 Give your reasons in each case. (No formal proof is needed.)

2. Exhibit a language A over the alphabet $\{a, b\}$ such that $|A| = 4$ and $|A^2| = 13$.

 (Note that $A^2 = A \circ A$.)

3. Exhibit finite languages A and B such that $|A \circ B| < |B \circ A|$.