CSI 409 - Fall 2017: Homework \#1 Some answers and hints

1. State whether the following quantified formulae are true over the natural numbers
$\mathbb{N}=\{1,2, \cdots\}$:
(i) $\forall x \exists y \exists z\left[x+1=y^{2}+z^{2}\right]$

False: Take $x=2$. Now 3 is not the sum of two squares.
(ii) $\forall x \forall y \exists z\left[(x>y) \rightarrow\left(x^{3}<y^{3}+z^{3}\right)\right]$ True: Pick $z=x+1$.
(iii) $\forall u \forall v \exists w \exists x[u x<\nu w]$

$$
\text { True: Take } w=u+1 \text { and } x=1 \text {. }
$$

2. Exhibit a language A over the alphabet $\{a, b\}$ such that $|A|=4$ and $\left|A^{2}\right|=13$.
(Note that $\left.A^{2}=A \circ A.\right)$

$$
\{a, a a, a a a a, b\} .
$$

3. Exhibit finite languages A and B such that $|A \circ B|<|B \circ A|$.

$$
A=\{a, a a\}, B=\{b, a b\} .
$$

