1. State whether the following quantified formulae are true over the natural numbers \(\mathbb{N} = \{1, 2, \ldots \} \):

(i) \(\forall x \exists y \forall z \ [xy \neq z^2] \)

True: Take \(y = 2x \).

(ii) \(\exists x \forall y \exists z \ [(x = y^2) \lor (y = z^2)] \).

False: Take \(y = 2x^2 \).

(iii) \(\forall x \exists y \forall z \exists w \ [\left| x - z \right| \geq \left| y - w \right|] \)

True: Take \(y = x \) and \(w = z \).

2. Use induction on \(n \) to prove that for all \(n \geq 2 \), \(2^n + 3^n < 5^n \).

Clearly \(2^2 + 3^2 = 13 < 25 = 5^2 \). If \(2^k + 3^k < 5^k \), then \(2^{k+1} + 3^{k+1} < 5^{k+1} \), since \(2^{k+1} < 5 \times 2^k \), \(3^{k+1} < 5 \times 3^k \) and thus

\[
2^{k+1} + 3^{k+1} < 5 \times (2^k + 3^k) < 5^{k+1}.
\]

3. Let \(n \) be a natural number. Show that any set \(S \) of natural numbers of cardinality \(n \) (i.e., \(|S| = n \)) has a subset \(S' \) the sum of whose elements is a multiple of \(n \). (For instance, consider the set \(\{3, 11, 13, 18, 21\} \). Elements of the subset \(\{3, 11, 21\} \) add up to 35 which is a multiple of 5.)

Let \(S = \{a_1, \ldots, a_n\} \). Consider the chain of subsets

\[
\emptyset \subset \{a_1\} \subset \{a_1, a_2\} \subset \ldots \subset \{a_1, \ldots, a_{n-1}\} \subset S
\]

and consider the sums of elements of each of these sets. Since there are \(n + 1 \) sets in this chain there must be two, say \(A \) and \(B \), such that \(A \subset B \) and their sums are the same modulo \(n \). Then the sum of the elements in \(B \setminus A \) must be 0 modulo \(n \).