1. Construct a deterministic finite automaton (DFA) that recognizes the following language:

$$
\left\{w \in\{a, b\}^{*} \mid w \text { starts with } b \text { and contains } b b \text { as a substring. }\right\}
$$

The alphabet is $\{a, b\}$.

Note: $b b$ is in the language and so should be accepted by the DFA.

2. Consider the language

$$
a^{*} b \cup b^{*}
$$

(i.e., $\left.\{a\}^{*}\{b\} \cup\{b\}^{*}\right)$.

The alphabet is $\{a, b\}$.
(a) Construct a deterministic finite automaton (DFA) recognizing this language.

Done in class.
(b) Show that any DFA that accepts this language has to contain a dead state.

Hint: Find a string w such that any string that has w as a prefix will not be in the language. It is not enough to exhibit one DFA for this language that has a dead state.

Done in class: any string that has $b a$ as a prefix is not in the language.

